1
|
Wang X, Peng H. 9-Hexadecenoic acid inhibits the aggressiveness of gastric cancer via targeting PTPN1/FTH1 signaling. Anticancer Drugs 2025:00001813-990000000-00384. [PMID: 40279138 DOI: 10.1097/cad.0000000000001724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
9-Hexadecenoic acid (9-HA) possesses anti-tumor properties. However, the effects of 9-HA on gastric cancer are scarcely reported. The present study aimed to investigate the effects of 9-HA on gastric cancer. mRNA levels were detected by reverse transcription quantitative PCR. Protein expression was detected by western blot. Cell behaviors were analyzed using Cell Counting Kit-8, colony formation, transwell, and propidium iodide staining assays. Co-localization of PTPN1 and FTH1 was determined using fluorescence in situ hybridization assay. In vivo assay was conducted to further verify the effects of 9-HA on gastric cancer. 9-HA suppressed the malignant behavior of gastric cancer. Moreover, 9-HA promoted iron-overload-dependent ferroptosis of gastric cancer in vivo and in vitro. Traditional Chinese medicine systems pharmacology predicted that 9-HA could target PTPN1, which was upregulated in gastric cancer cells. PTPN1-mediated phosphorylation of FTH1 contributed to the latter degradation. Overexpressed PTPN1 alleviated the effects of 9-HA, promoting the aggressiveness of gastric cancer and suppressing tumor cell ferroptosis. Interestingly, overexpressed PTPN1 antagonized the effects of 9-HA, promoted tumor growth, and inhibited the ferroptosis of gastric cancer. In summary, 9-HA-mediated downregulation of PTPN1 drives ferroptosis and inhibit the aggressiveness of gastric cancer. Thence, 9-HA may be an alternative strategy for gastric cancer.
Collapse
Affiliation(s)
- Xin Wang
- Department of Traditional Chinese Medicine, The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | | |
Collapse
|
2
|
Khan E, Hylton H, Rajan N, Bouley SJ, Siddiqui JK, Rajasekaran S, Koshre GR, Storts H, Valenciaga A, Khan M, Liyanarachchi S, Fernandez F, Zheng X, Phay J, Dedhia PH, Wang J, Walker JA, Ringel MD, Miles WO. Proteomic Profiling of Medullary Thyroid Cancer Identifies CAPN1 as a Key Regulator of NF1 and RET Fueled Growth. Thyroid 2025; 35:177-187. [PMID: 39868924 DOI: 10.1089/thy.2024.0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Background: Medullary thyroid cancer (MTC) is a frequently metastatic tumor of the thyroid that develops from the malignant transformation of C-cells. These tumors most commonly have activating mutations within the RET or RAS proto-oncogenes. Germline mutations within RET result in C-cell hyperplasia, and cause the MTC pre-disposition disorder, multiple endocrine neoplasia, type 2A (MEN2A). Single-agent therapies for MTC, including vandetanib (VAN) and cabozantinib for all MTCs and selpercatinib (SEL) for RET-mutated MTC, lead to partial responses but are not curative. Methods: To identify new therapeutic targets for MTC, we conducted proteomic profiling of normal C-cells, MTC cells, pre-malignant MEN2A patient samples, and MTC tumors. Results: From this analysis, we identified CAPN1, a member of the CALPAIN (CAPN) family endopeptidases, as widely upregulated in MTC samples. We found that short hairpin RNA-mediated depletion of CAPN1 or inhibitors of CAPN1 significantly reduced MTC cell growth, colony formation, and xenograft tumor growth in vivo. In addition, we show that CAPN1 inhibitors synergize with VAN and SEL in vitro, maximizing apoptosis. Mechanistic experiments implicate CAPN1 in inhibiting neurofibromin, encoded by NF1, and CAPN1 inhibitors stabilize NF1 protein levels and diminish downstream RAS/RET activation of AKT and ERK. Conclusions: Our data suggest that increased CAPN1 levels support RET and RAS-fueled growth by reducing NF1 levels. We find that combinatorial therapies between CAPN1 inhibitors and VAN or SEL show maximal efficacy in MTC cells.
Collapse
Affiliation(s)
- Eshan Khan
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Hannah Hylton
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Neel Rajan
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
- Department of Molecular Medicine and Therapeutics, The Ohio State University, Columbus, Ohio, USA
| | - Stephanie J Bouley
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jalal K Siddiqui
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Swetha Rajasekaran
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Ganesh R Koshre
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Hayden Storts
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Anisley Valenciaga
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
- Department of Molecular Medicine and Therapeutics, The Ohio State University, Columbus, Ohio, USA
| | - Misbah Khan
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Sandya Liyanarachchi
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
- Department of Molecular Medicine and Therapeutics, The Ohio State University, Columbus, Ohio, USA
| | - Francisco Fernandez
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xuguang Zheng
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - John Phay
- Division of Surgical Oncology, Ohio State University Comprehensive Cancer Center and Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Priya H Dedhia
- Division of Surgical Oncology, Ohio State University Comprehensive Cancer Center and Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jing Wang
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - James A Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Matthew D Ringel
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
- Department of Molecular Medicine and Therapeutics, The Ohio State University, Columbus, Ohio, USA
| | - Wayne O Miles
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, Ohio, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Varlı M, Lee K, Kang KB, Kim H. Unveiling the antimetastatic activity of monoterpene indole alkaloids targeting MMP9 in cancer cells, with a focus on pharmacokinetic and cellular insights. Mol Cells 2024; 47:100143. [PMID: 39481856 PMCID: PMC11625137 DOI: 10.1016/j.mocell.2024.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/12/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024] Open
Abstract
Distant metastasis, together with acquired resistance, limits the therapeutic impact of chemotherapy and molecularly targeted therapies. The properties of the tumor microenvironment determine how sensitive or resistant various cancers are to specific pharmacological treatments. Matrix metalloproteinase 9 (MMP9) is widely known for its ability to break down the extracellular matrix and it also modulates the motility of cancer cells. Here, our goal was to identify compounds that target MMP9 and evaluate their capacity to inhibit the motility of cancer cells. The antimetastatic effect of monoterpene indole alkaloids (MIAs) on cell viability and motility was evaluated by methyl thiazolyl tetrazolium assay, migration assay, invasion assay, quantitative real-time polymerase chain reaction, pathway-focused expression analysis, Western blotting, reporter assay, molecular docking simulation, and target prediction. MIA compounds target MMP9. MIAs inhibited the expression of phospho-epidermal growth factor receptor, phospho-Akt, phospho-JNK, and cyclin D1. Additionally, MIAs had predicted favorable pharmacokinetic profile and drug-like properties. Furthermore, among the MIA compounds, lyaloside and 5(S)-5-carbomethoxystrictosidine had low cytotoxicity and regulated cancer-related signaling, including cell migration, cell invasion, epithelial-mesenchymal transition, and immune evasion. Our findings demonstrated that the MIAs used in this study have potential antimetastasis properties that occur via MMP9-mediated regulation of cancer signaling and have the potential to be used therapeutically at safe doses.
Collapse
Affiliation(s)
- Mücahit Varlı
- College of Pharmacy, Sunchon National University, Sunchon 57922, Korea.
| | - Kyungha Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul 04310, Korea.
| | - Kyo Bin Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Sookmyung Women's University, Seoul 04310, Korea.
| | - Hangun Kim
- College of Pharmacy, Sunchon National University, Sunchon 57922, Korea.
| |
Collapse
|
4
|
Song N, Cui K, Zeng L, Fan Y, Wang Z, Shi P, Su W, Wang H. Calpain 8 as a potential biomarker regulates the progression of pancreatic cancer via EMT and AKT/ERK pathway. J Proteomics 2024; 301:105182. [PMID: 38697284 DOI: 10.1016/j.jprot.2024.105182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
Calpain is a non-lysozyme, calcium-dependent intracellular cysteine protease that has been shown to play a role in tumor proliferation, survival, migration, invasion, and apoptosis. Dysregulation of calpain expression is closely related to tumorigenesis. However, the role of calpain-8 (CAPN8), as a member of the calpain family, in pancreatic cancer (PC) is remains unclear. In elucidating the mechanism of CAPN8 in PC, a comprehensive bioinformatics analysis and in vitro experiments were conducted. The TCGA database was used to explore the expression level of CAPN8, and the results in PC tissues and cell lines were verified. Then, the correlation between CAPN8 and clinicopathological features was analyzed. Additionaly, promoter methylation, immune infiltration, and GO/KEGG enrichment analyses were performed. Lastly, the molecular mechanism of CAPN8 in PC was investigated by using cell counting kit (CCK) 8, transwell, wound healing, Western blot assays, and so on. Results indicate that CAPN8 was highly expressed in PC and correlated with poor prognosis and advanced TNM stage. In addition, a low level of immune infiltration was closely associated with the high expression level of CAPN8. Based on these findings, we hypothesized that CAPN8 is a potential biomarker that regulates progression of PC via EMT and the AKT/ERK pathway. SIGNIFICANCE: Through comprehensive biological information and in vitro experiments, CAPN8 has been confirmed to play an important role in regulating pancreatic cancer (PC) proliferation, migration and invasion. CAPN8 is found to be closely related to the diagnosis, survival and prognosis of PC. Above all, CAPN8 may be a potential biomarker for the diagnosis and prognosis of PC.
Collapse
Affiliation(s)
- Na Song
- Department of Pathology, Xinxiang Key Laboratory of Tumor Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China; Department of Pathology, Xinxiang Medical University, Xinxiang 453000, China
| | - Kai Cui
- Department of Pathology, Xinxiang Medical University, Xinxiang 453000, China
| | - Liqun Zeng
- Department of Pathology, Xinxiang Medical University, Xinxiang 453000, China
| | - Yanwu Fan
- Department of Pathology, Xinxiang Medical University, Xinxiang 453000, China
| | - Ziwei Wang
- Department of Pathology, Xinxiang Medical University, Xinxiang 453000, China
| | - Pingyu Shi
- Department of Pathology, Xinxiang Medical University, Xinxiang 453000, China
| | - Wei Su
- Department of Pathology, Xinxiang Key Laboratory of Tumor Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China.
| | - Haijun Wang
- Department of Pathology, Xinxiang Key Laboratory of Tumor Precision Medicine, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China; Department of Pathology, Xinxiang Medical University, Xinxiang 453000, China.
| |
Collapse
|
5
|
Guo Q, Li K, Jiang N, Zhou R, Rao XR, Wu CY. A novel risk model of three gefitinib-related genes FBP1, SBK1 and AURKA is related to the immune microenvironment and is predicting prognosis of lung adenocarcinoma patients. Aging (Albany NY) 2023; 15:9633-9660. [PMID: 37737707 PMCID: PMC10564433 DOI: 10.18632/aging.205040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
PURPOSE Gefitinib, an anticancer drug, has been reported to potentially improve the prognosis of patients with lung adenocarcinoma (LUAD). This study aims to investigate the roles and mechanisms of Gefitinib. METHODS The effects of Gefitinib on the growth and migration of LUAD cells were assessed using various methods, including CCK-8, flow cytometry, wound healing, and Transwell assays. To analyze the function and mechanisms of the differentially expressed Gefitinib target genes (GTGs), data from the TCGA database were utilized. Kaplan-Meier survival and ROC analysis identified prognostic-related GTGs and constructed a prognostic nomogram in LUAD. Consensus clustering, COX analysis and survival analysis evaluated the relationship between GTGs and the prognosis of LUAD patients. The mechanisms of the risk model involved LUAD progression, and the relationship between the risk model and immune microenvironment were investigated. RESULTS Gefitinib could inhibit proliferation, migration and invasion and promote cell apoptosis. 84 DEGTGs were involved in RAS, MAPK, ERBB pathways. The DEGTGs (FBP1, SBK1, and AURKA) were the independent risk factors for dismal prognosis of LUAD patients and were used to establish risk model and nomogram. Gefitinib could promote the expression of FBP1 and inhibit the expression of SBK1 and AURKA. High-risk LUAD patients had the dismal prognosis, and the high-risk score group was significantly associated with the immune microenvironment. CONCLUSION FBP1, SBK1, and AURKA are prognostic risk factors, and the risk model and nomogram of FBP1, SBK1 and AURKA are associated with dismal prognosis and immune cell infiltration, and have huge prospects for application in evaluating the prognosis in LUAD.
Collapse
Affiliation(s)
- Qiang Guo
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Kai Li
- Department of Hepatobiliary and Pancreatic Surgery, The People’s Hospital of Jianyang City, Jianyang, China
| | - Ni Jiang
- Department of Obstetrics and Gynecology, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin-Rui Rao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuang-Yan Wu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Li K, Quan L, Huang F, Li Y, Shen Z. ADAM12 promotes the resistance of lung adenocarcinoma cells to EGFR-TKI and regulates the immune microenvironment by activating PI3K/Akt/mTOR and RAS signaling pathways. Int Immunopharmacol 2023; 122:110580. [PMID: 37418984 DOI: 10.1016/j.intimp.2023.110580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/15/2023] [Accepted: 06/24/2023] [Indexed: 07/09/2023]
Abstract
Lung adenocarcinoma (LUAD) is a malignant respiratory disease, resulting in a heavy social burden. Epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) resistance and tumor immune microenvironment are important directions in the treatment of LUAD. In this study, we confirmed the role of ADAM metallopeptidase domain 12 (ADAM12) in LUAD development and progression. Our bioinformatic analysis was conducted to screen ADAM12 was correlated with EGFR-TKI and immune infiltration in LUAD patients. Our results showed that the transcription and post-transcription level of ADAM12 is significantly increased in tumor samples compared to normal samples, and ADAM12 correlated with poor prognosis in LUAD patients. High level of ADAM12 accelerated the LUAD progression via promoting proliferation, cell cycle, apoptosis escaping, immune escaping, EGFR-TKI resistance, angiogenesis, invasion and migration based on experiment validation in vitro and in vivo, which could be attenuated by ADAM12 knockdown. Further mechanistic studies suggested that the PI3K/Akt/mTOR and RAS signaling pathways were activated after ADAM12 knockdown. Therefore, ADAM12 might be validated as a possible molecular therapy target and prognostic marker for patients with LUAD.
Collapse
Affiliation(s)
- Keyu Li
- Department of Respiratory and Critical Care Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine Central South University, Changsha 410008, China
| | - Lingli Quan
- Department of Pulmonary and Critical Care Medicine 1, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Central South University, Zhuzhou 412000, China
| | - Fang Huang
- Department of General Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine Central South University, Changsha 410008, China
| | - Yukun Li
- Department of Assisted Reproductive Centre, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Central South University, Zhuzhou 412000, China.
| | - Zhenyu Shen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hunan University of Medicine, Huaihua 418000, China.
| |
Collapse
|
7
|
Hong L, Wang X, Cui W, Wang F, Shi W, Yu S, Luo Y, Zhong L, Zhao X. Construction of a ferroptosis scoring system and identification of LINC01572 as a novel ferroptosis suppressor in lung adenocarcinoma. Front Pharmacol 2023; 13:1098136. [PMID: 36686701 PMCID: PMC9846555 DOI: 10.3389/fphar.2022.1098136] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Background: Ferroptosis is a novel process of programmed cell death driven by excessive lipid peroxidation that is associated with the development of lung adenocarcinoma. N6-methyladenosine (m6a) modification of multiple genes is involved in regulating the ferroptosis process, while the predictive value of N6-methyladenosine- and ferroptosis-associated lncRNA (FMRlncRNA) in the prognosis of patients remains with LUAD remains unknown. Methods: Unsupervised cluster algorithm was applied to generate subcluster in LUAD according to ferroptosis-associated lncRNA. Stepwise Cox analysis and LASSO algorithm were applied to develop a prognostic model. Cellular location was detected by single-cell analysis. Also, we conducted Gene set enrichment analysis (GSEA) enrichment, immune microenvironment and drug sensitivity analysis. In addition, the expression and function of the LINC01572 were investigated by several in vitro experiments including qRT-PCR, cell viability assays and ferroptosis assays. Results: A novel ferroptosis-associated lncRNAs-based molecular subtype containing two subclusters were determined in LUAD. Then, we successfully created a risk model according to five ferroptosis-associated lncRNAs (LINC00472, MBNL1-AS1, LINC01572, ZFPM2-AS1, and TMPO-AS1). Our nominated model had good stability and predictive function. The expression patterns of five ferroptosis-associated lncRNAs were confirmed by polymerase chain reaction (PCR) in LUAD cell lines. Knockdown of LINC01572 significantly inhibited cell viability and induced ferroptosis in LUAD cell lines. Conclusion: Our data provided a risk score system based on ferroptosis-associated lncRNAs with prognostic value in LUAD. Moreover, LINC01572 may serve as a novel ferroptosis suppressor in LUAD.
Collapse
Affiliation(s)
- Lingling Hong
- Nantong Hospital of Traditional Chinese Medicine, Affiliated Traditional Chinese Medicine Hospital of Nantong University, Nantong, China
| | - Xuehai Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Weiming Cui
- Department of Thoracic and Cardiac Surgery, Nanjing Brain Hospital, Nanjing, China
| | - Fengxu Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Weiwei Shi
- Nantong Hospital of Traditional Chinese Medicine, Affiliated Traditional Chinese Medicine Hospital of Nantong University, Nantong, China
| | - Shali Yu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China
| | - Yonghua Luo
- Nantong Fourth People’s Hospital, Nantong, China,*Correspondence: Yonghua Luo, ; Lixin Zhong, ; Xinyuan Zhao,
| | - Lixin Zhong
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China,*Correspondence: Yonghua Luo, ; Lixin Zhong, ; Xinyuan Zhao,
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong, China,*Correspondence: Yonghua Luo, ; Lixin Zhong, ; Xinyuan Zhao,
| |
Collapse
|
8
|
Wang J, Cai S, Xiong Q, Weng D, Wang Q, Ma Z. PIK3R2 predicts poor outcomes for patients with melanoma and contributes to the malignant progression via PI3K/AKT/NF-κB axis. Clin Transl Oncol 2022; 25:1402-1412. [PMID: 36528701 DOI: 10.1007/s12094-022-03036-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Melanoma is an aggressive form of skin cancer worldwide. Phosphoinositide-3-kinase regulatory subunit 2 (PIK3R2) exerts carcinogenic roles in various tumors. So far, the function and mechanism of PIK3R2 in melanoma are not been fully clarified. OBJECTIVE We aimed to clarify the role of PIK3R2 in melanoma. METHODS PIK3R2 expressions in melanoma clinical tissues and melanoma cells were measured using quantitative real-time PCR and Western blot. In addition, PIK3R2 expressions in different tumor stages of melanoma were determined by immunohistochemistry assay. Meanwhile, PIK3R2 function was evaluated using loss or gain-of-function assays, Cell Counting Kit-8 assay, flow cytometry, and Transwell analysis. Furthermore, PIK3R2 mechanism in melanoma was assessed by a series of rescue experiments. RESULTS PIK3R2 was highly expressed in melanoma tissues and cells, and PIK3R2 expressions were the highest in Stage IV. Functionally, PIK3R2 knockdown repressed melanoma cell proliferation, invasion, epithelial-mesenchymal transition, and facilitated cell apoptosis. Also, PIK3R2 overexpression produced an opposite trend. Mechanistically, PIK3R2 facilitated melanoma progression by activating PI3K/AKT/NF-κB pathway. Furthermore, PIK3R2 knockdown restrained the melanoma tumor growth in vivo. CONCLUSIONS PIK3R2 aggravated melanoma by activating PI3K/AKT/NF-κB pathway, prompting that PIK3R2 might be a therapeutic target for melanoma.
Collapse
Affiliation(s)
- Jianguo Wang
- Department of Surgery, Nanjing Pukou Central Hospital (Pukou Branch Hospital of Jiangsu Province Hospital), Nanjing, 211800, Jiangsu, People's Republic of China
| | - Shizhong Cai
- Department of Child and Adolescent Healthcare, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu, People's Republic of China
- Suzhou Key Laboratory of Structural Deformities in Children, No. 92 Zhongnan Street, Suzhou, 215025, Jiangsu, People's Republic of China
| | - Qianwei Xiong
- Department of Urology, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu, People's Republic of China
- Suzhou Key Laboratory of Structural Deformities in Children, No. 92 Zhongnan Street, Suzhou, 215025, Jiangsu, People's Republic of China
| | - Deyu Weng
- Department of Surgery, Nanjing Pukou Central Hospital (Pukou Branch Hospital of Jiangsu Province Hospital), Nanjing, 211800, Jiangsu, People's Republic of China
| | - Qian Wang
- Department of Anesthesiology, Children's Hospital of Soochow University, No. 92 Zhongnan Street, Suzhou, 215025, Jiangsu, People's Republic of China.
| | - Zhourui Ma
- Department of Burns and Plastic Surgery, Children's Hospital of Soochow University, No. 92 Zhongnan Street, Suzhou, 215025, Jiangsu, People's Republic of China.
- Suzhou Key Laboratory of Structural Deformities in Children, No. 92 Zhongnan Street, Suzhou, 215025, Jiangsu, People's Republic of China.
| |
Collapse
|
9
|
Dai L, Xu X, Yang T, Yin Z, Ye Z, Wei Y. SPTBN1 attenuates rheumatoid arthritis synovial cell proliferation, invasion, migration and inflammatory response by binding to PIK3R2. Immun Inflamm Dis 2022; 10:e724. [PMID: 36444616 PMCID: PMC9667201 DOI: 10.1002/iid3.724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND As an autoimmune systemic disorder, rheumatoid arthritis (RA) features chronic inflammation as well as synovial infiltration of immune cells. This study was designed with the purpose of discussing the hidden mechanism of SPTBN1 and exploring favorable molecular-targeted therapies. METHODS With the application of RT-qPCR and western blot, the expressions of SPTBN1 and PIK3R2 before or after transfection were estimated. Besides, Cell Counting Kit-8, Edu, wound healing, transwell, enzyme-linked immunosorbent assay, and TUNEL were adopted for the evaluation of the viability, proliferation, migration, invasion, inflammatory response, and apoptosis of fibroblast-like synoviocyte (FLS). In addition, the interaction of SPTBN1 and PIK3R2 was testified by applying immunoprecipitation (IP) and western blot was utilized for the assessment of migration-, apoptosis-, and PI3K/AKT signal-related proteins. RESULTS It was discovered that SPTBN1 declined in RA synovial cells and its overexpression repressed the proliferation, migration, invasion, and inflammation of RA-FLSs but promoted apoptosis. IP confirmed that SPTBN1 could bind to PIK3R2 in FLSs. To further figure out the hidden mechanism of SPTBN1 in RA, a series of functional experiments were carried out and the results demonstrated that the reduced expressions of MMP2, MMP9, IL-8, IL-1β, IL-6, and Bcl2 as well as increased levels of Bax and cleaved caspase3 in SPTBN1-overexpressed RA-FLSs were reversed by PIK3R2 depletion, revealing that SPTBN1 repressed the migration and inflammation and promoted the apoptosis of RA-FLSs via binding to PIK3R2. Results obtained from western blot also revealed that PIK3R2 interference ascended the contents of p-PI3K and p-AKT in SPTBN1-overexpressed RA-FLSs, implying that SPTBN1 repressed PI3K/AKT signal in RA via PIK3R2. DISCUSSION SPTBN1 alleviated the proliferation, migration, invasion, and inflammation in RA via interacting with PIK3R2.
Collapse
Affiliation(s)
- Li‐ping Dai
- Department of RheumatologyFutian District Rheumatology HospitalShenzhenGuangdongChina
| | - Xiao‐dong Xu
- Department of RheumatologyFutian District Rheumatology HospitalShenzhenGuangdongChina
| | - Ting‐ting Yang
- Department of RheumatologyFutian District Rheumatology HospitalShenzhenGuangdongChina
| | - Zhi‐hua Yin
- Department of RheumatologyFutian District Rheumatology HospitalShenzhenGuangdongChina
| | - Zhi‐zhong Ye
- Department of RheumatologyFutian District Rheumatology HospitalShenzhenGuangdongChina
| | - Ya‐zhi Wei
- Department of RheumatologyFutian District Rheumatology HospitalShenzhenGuangdongChina
| |
Collapse
|
10
|
Circ-GSK3B up-regulates GSK3B to suppress the progression of lung adenocarcinoma. Cancer Gene Ther 2022; 29:1761-1772. [PMID: 35821283 DOI: 10.1038/s41417-022-00489-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 04/12/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023]
Abstract
GSK3B is the mRNA form of glycogen synthase kinase 3 beta (GSK-3β), which is a critical repressor of Wnt/β-catenin signaling pathway and generally inhibited in cancer cells. Plenty of researches have disclosed that circular RNAs, namely circRNAs exert important functions in the progression of various human malignancies including lung adenocarcinoma (LUAD). Therefore, we attempted to explore whether there existed certain circRNAs that could mediate LUAD development by regulating GSK3B expression and Wnt/β-catenin pathway. In the present research, circ-GSK3B (hsa_circ_0066903) was found to be significantly down-regulated in LUAD tissues and cells and it suppressed the proliferation, migration and stemness of LUAD cells. Furthermore, it was discovered that circ-GSK3B competitively sponged miR-3681-3p and miR-3909 to elevate GSK3B expression. Circ-GSK3B could impair the binding ability of FKBP51 to GSK-3β to inhibit the phosphorylation of GSK-3βS9, resulting in the inactivation of Wnt/β-catenin signaling. In addition, the regulatory effect of circ-GSK3B on LUAD tumorigenesis and cell progression was testified through in vitro and in vivo rescue experiments. In conclusion, circ-GSK3B suppressed LUAD development through up-regulating and activating GSK3B.
Collapse
|
11
|
Zhou J, Guo H, Zhang Y, Liu H, Dou Q. The role of PTP1B (PTPN1) in the prognosis of solid tumors: A meta-analysis. Medicine (Baltimore) 2022; 101:e30826. [PMID: 36221386 PMCID: PMC9543024 DOI: 10.1097/md.0000000000030826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Protein tyrosine phosphatase 1B (PTP1B) played different role in different solid tumors, and was associated with the prognosis of solid tumors. However, the roles existed controversy. This meta-analysis was performed to determine whether PTP1B was relevant to the prognosis of solid tumors. MATERIALS AND METHODS A literature search in Web of Science, Embase and PubMed databases were performed up to November 1, 2021. A meta-analysis dealed with PTP1B assessment in solid tumors, providing clinical stages and survival comparisons according to the PTP1B status. RESULTS High PTP1B expression was significantly associated with later clinical stage of solid tumors (Odds ratio [OR] 2.25, 95% confidence interval [CI]: 1.71-2.98, P < .001). For solid tumors, the hazard ratio (HR) for disease free survival (DFS) detrimental with high PTP1B expression compared with low PTP1B expression was 1.07 (95%CI: 0.67-1.73, P = .77) with the obvious heterogeneity (P = .03, I2 = 66%). The HR of overall survival (OS) for solid tumors with high PTP1B expression versus low PTP1B expression was 1.26 (95%CI: 1.03-1.55, P = .03) with significant publication bias (t = 3.28, P = .005). Subgroup analysis indicated that the high expression of PTP1B was remarkably correlated with poor OS in colorectal carcinoma, only (HR = 1.43; 95%CI: 1.18-1.74; P = .003). CONCLUSIONS High PTP1B expression is significantly associated with later clinical stage of solid tumors. The high expression of PTP1B is remarkably correlated with poor OS in colorectal carcinoma, only. There is no definite conclusion that PTP1B was, or not associated with DFS and OS of solid tumors because of heterogeneity and publication bias. Whether PTP1B can be used as a biomarker for predicting the prognosis of solid tumors needs further study.
Collapse
Affiliation(s)
- Jiupeng Zhou
- Xi’an Chest Hospital, Xi’an, Shaanxi Province, China
- *Correspondence: Jiupeng Zhou, Xian Chest Hospital, Xi’an 710000, Shaanxi Province, China (e-mail: )
| | - Hui Guo
- The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| | | | - Heng Liu
- Xi’an Chest Hospital, Xi’an, Shaanxi Province, China
| | - Quanli Dou
- Xi’an Chest Hospital, Xi’an, Shaanxi Province, China
| |
Collapse
|
12
|
Luo L, Yao X, Xiang J. Pyroptosis-Related Gene Model Predicts Prognosis and Immune Microenvironment for Non-Small-Cell Lung Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1749111. [PMID: 36092153 PMCID: PMC9453043 DOI: 10.1155/2022/1749111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/12/2022] [Accepted: 08/09/2022] [Indexed: 12/13/2022]
Abstract
Non-small-cell lung cancer (NSCLC) has a high incidence and mortality worldwide. Moreover, it needs more accurate means for predicting prognosis and treatments. Pyroptosis is a novel form of cell death about inflammation which was highly related to the occurrence and development of tumors. Despite having some studies about pyroptosis-related genes (PRGs) and cancer, the correlation has not been explored enough between PRGs and immune in NSCLC. In this study, we constructed a PRG model by WGCNA to access the prognosis value PRGs have. The testing cohort (n = 464) with four datasets from the GEO database conducted a survival analysis to confirm the stability of the prognostic model. The risk score and age are examined as independent prognostic factors. Based on the PRGs, we found multiple pathways enriched in immune in NSCLC. Separating samples into three subtypes by consensus cluster analysis, Cluster 3 was identified as immune-inflamed phenotype with an optimistic prognostic outcome. A three-gene PRG signature (BNIP3, CASP9, and CAPN1) was identified, and BNIP3 was identified as the core gene. Knockdown of BNIP3 significantly inhibited the growth of H358 cells and induced pyroptosis. In conclusion, the model construction based on PRGs provides novel insights into the prediction of NSCLC prognosis, and BNIP3 can serve as a diagnostic biomarker for NSCLC.
Collapse
Affiliation(s)
- Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China 524023
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong, China 524023
| | - Xinyue Yao
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong, China 524023
| | - Jing Xiang
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong, China 524023
| |
Collapse
|
13
|
Sadrkhanloo M, Entezari M, Orouei S, Ghollasi M, Fathi N, Rezaei S, Hejazi ES, Kakavand A, Saebfar H, Hashemi M, Goharrizi MASB, Salimimoghadam S, Rashidi M, Taheriazam A, Samarghandian S. STAT3-EMT axis in tumors: Modulation of cancer metastasis, stemness and therapy response. Pharmacol Res 2022; 182:106311. [PMID: 35716914 DOI: 10.1016/j.phrs.2022.106311] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 02/07/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) mechanism is responsible for metastasis of tumor cells and their spread to various organs and tissues of body, providing undesirable prognosis. In addition to migration, EMT increases stemness and mediates therapy resistance. Hence, pathways involved in EMT regulation should be highlighted. STAT3 is an oncogenic pathway that can elevate growth rate and migratory ability of cancer cells and induce drug resistance. The inhibition of STAT3 signaling impairs cancer progression and promotes chemotherapy-mediated cell death. Present review focuses on STAT3 and EMT interaction in modulating cancer migration. First of all, STAT3 is an upstream mediator of EMT and is able to induce EMT-mediated metastasis in brain tumors, thoracic cancers and gastrointestinal cancers. Therefore, STAT3 inhibition significantly suppresses cancer metastasis and improves prognosis of patients. EMT regulators such as ZEB1/2 proteins, TGF-β, Twist, Snail and Slug are affected by STAT3 signaling to stimulate cancer migration and invasion. Different molecular pathways such as miRNAs, lncRNAs and circRNAs modulate STAT3/EMT axis. Furthermore, we discuss how STAT3 and EMT interaction affects therapy response of cancer cells. Finally, we demonstrate targeting STAT3/EMT axis by anti-tumor agents and clinical application of this axis for improving patient prognosis.
Collapse
Affiliation(s)
- Mehrdokht Sadrkhanloo
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Orouei
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nikoo Fathi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
14
|
Lan C, Tang H, Liu S, Ma L, Li J, Wang X, Hou Y. Comprehensive analysis of prognostic value and immune infiltration of calpains in pancreatic cancer. J Gastrointest Oncol 2021; 12:2600-2621. [PMID: 35070391 PMCID: PMC8748070 DOI: 10.21037/jgo-21-705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/01/2021] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Calpains (CAPNs) are intracellular calcium-activated neutral cysteine proteinases involved in cancer initiation, progression, and metastasis. However, its role in pancreatic cancer (PC) is still unclear. This study aims to identify the prognostic value and immune infiltration of CAPNs for PC patients using comprehensive bioinformatics analyzes. METHODS We analyzed the transcription levels of CAPNs in different cancers from Oncomine, differential gene expression in tumor/normal tissues and pathological stage through GEPIA database, the prognostic value of the mRNA expression of CAPNs by Kaplan-Meier plotter, the protein expression comparison of different CAPNs in human tumor/normal tissues from The Human Protein Atla, the CAPNs gene alterations through cBioPortal, the prediction of protein-protein interactions by STRING and GeneMANIA, the functional enrichment of discrepant CAPNs by GO and KEGG, and the immune infiltration of CAPNs by ssGSEA. RESULTS Our results showed that CAPN1, 2, 4, 5, 6, 8, 9, 10, and 12 were highly expressed in PC. CAPN1, 5, 8, and 12 expression levels were positively correlated with individual cancer stages. Furthermore, CAPN1, 2, 5, and 8 expression levels were negatively correlated with overall survival (OS) and recurrence-free survival (RFS), while CAPN10 was positively correlated with OS and RFS. We found that CAPN1, 2, 5, and 8 were correlated with tumor-infiltrating T follicular helper cells and CAPN10 with tumor-infiltrating T helper 2 cells. Functional enrichment analysis showed that differentially expressed CAPNs (CAPN1, 2, 5, 8, and 10) are involved in axonogenesis, cell-substrate adhesion, immune response-activating cell surface receptor signaling pathway, and cell junction organization in PC. CONCLUSIONS These results suggested that CAPN1, 2, 5, 8, and 10 could be used as prognostic biomarkers in PC and improve individualized treatment strategies.
Collapse
Affiliation(s)
- Chuan Lan
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Haoyou Tang
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Sheng Liu
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Lin Ma
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jianshui Li
- Department of Hepatobiliary Surgery and Center of Severe Acute Pancreatitis, The Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xi Wang
- Department of Organ Transplantation, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Yifu Hou
- Department of Organ Transplantation, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province & Organ Transplantation Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
15
|
Synergistic Effects of Different Levels of Genomic Data for the Staging of Lung Adenocarcinoma: An Illustrative Study. Genes (Basel) 2021; 12:genes12121872. [PMID: 34946821 PMCID: PMC8700916 DOI: 10.3390/genes12121872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is a common and very lethal cancer. Accurate staging is a prerequisite for its effective diagnosis and treatment. Therefore, improving the accuracy of the stage prediction of LUAD patients is of great clinical relevance. Previous works have mainly focused on single genomic data information or a small number of different omics data types concurrently for generating predictive models. A few of them have considered multi-omics data from genome to proteome. We used a publicly available dataset to illustrate the potential of multi-omics data for stage prediction in LUAD. In particular, we investigated the roles of the specific omics data types in the prediction process. We used a self-developed method, Omics-MKL, for stage prediction that combines an existing feature ranking technique Minimum Redundancy and Maximum Relevance (mRMR), which avoids redundancy among the selected features, and multiple kernel learning (MKL), applying different kernels for different omics data types. Each of the considered omics data types individually provided useful prediction results. Moreover, using multi-omics data delivered notably better results than using single-omics data. Gene expression and methylation information seem to play vital roles in the staging of LUAD. The Omics-MKL method retained 70 features after the selection process. Of these, 21 (30%) were methylation features and 34 (48.57%) were gene expression features. Moreover, 18 (25.71%) of the selected features are known to be related to LUAD, and 29 (41.43%) to lung cancer in general. Using multi-omics data from genome to proteome for predicting the stage of LUAD seems promising because each omics data type may improve the accuracy of the predictions. Here, methylation and gene expression data may play particularly important roles.
Collapse
|
16
|
Low-intensity ultrasound inhibits melanoma cell proliferation in vitro and tumor growth in vivo. J Med Ultrason (2001) 2021; 48:451-461. [PMID: 34453238 DOI: 10.1007/s10396-021-01131-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE To determine the effect of low-intensity ultrasound on cancer cell proliferation in vitro and tumor growth in vivo. METHODS In vitro, several cancer cell lines were exposed to low-intensity ultrasound at 0.11 W/cm2 for 2 min. Of the cell lines screened, melanoma C32 is one of the cell lines that showed sensitivity to growth inhibition by ultrasound and was therefore used in succeeding experiments. In vivo, under the same ultrasound conditions used in vitro, C32 tumors in mice were exposed to ultrasound daily for 2 weeks, and the tumor volumes were monitored weekly using sonography. RESULTS In vitro, C32 cell growth was inhibited, attaining 43.2% inhibition on the 3rd day. In vivo, tumor growth was significantly inhibited, with the treated tumors exhibiting 2.7-fold slowed tumor growth vs. untreated tumors at week 2. Such inhibition was not associated with increased cell death. Several genes related to the cell cycle and proliferation were among those significantly regulated. CONCLUSION These findings highlight the potential of low-intensity ultrasound to inhibit tumor growth in a noninvasive, safe, and easy-to-administer way. In addition, this may suggest that the mechanical stress induced by ultrasound on C32 cells may have affected the intrinsic biomolecular mechanism related to the cell growth of this particular cell line. Further research is needed to identify which of the regulated genes played key roles in growth inhibition.
Collapse
|
17
|
Li K, Zhu X, Yuan C. Inhibition of miR-185-3p Confers Erlotinib Resistance Through Upregulation of PFKL/MET in Lung Cancers. Front Cell Dev Biol 2021; 9:677860. [PMID: 34368128 PMCID: PMC8335405 DOI: 10.3389/fcell.2021.677860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/21/2021] [Indexed: 01/20/2023] Open
Abstract
Erlotinib (ER), as an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), has a significant therapeutic effect in lung cancers. However, EGFR TKI resistance inevitably occurs after treatment for approximately 12 months, which weakens its antitumor effect. Here, we identified miR-185-3p as a significantly downregulated microRNA responsible for acquired EGFR TKI resistance in cells and patients with lung cancer. qRT-PCR and Western Blot were performed to determine the relative expression of miR-185-3p in ER-resistant tumor tissues and cells. The viability and apoptosis of lung cancer cells were evaluated by Cell Counting Kit-8 (CCK8) assay and flow cytometry, respectively. The binding between miR-185-3p and liver-type phosphofructokinase (PFKL) was verified by dual luciferase assay. It was found that overexpression of miR-185-3p conferred ER sensitivity in lung cancer cell lines. MiR-185-3p was downregulated in ER-resistant lung cancer cells (H1299/ER and A549/ER). MiR-185-3p inhibited proliferation and induced cell apoptosis in ER-resistant cells. Mechanistically, miR-185-3p downregulation contributed to ER resistance through upregulating the PFKL. Moreover, Mesenchymal to epithelial transition (MET) oncoprotein promoted EGFR-TKI resistance by regulating miR-185-3p and PFKL. These findings revealed a novel mechanism in which downregulation of miR-185-3p may induce overexpression of PFKL and MET and confer ER resistance in lung cells. Combination of PFKL/MET inhibitors and EGFR TKIs could be a rational therapeutic approach for lung cancer patients with EGFR mutation.
Collapse
Affiliation(s)
- Ke Li
- Department of Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xinling Zhu
- Department of Operating Room, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Conghu Yuan
- Department of Anesthesiology, Yancheng Third People's Hospital, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng, China
| |
Collapse
|
18
|
Fu D, Zhang B, Wu S, Zhang Y, Xie J, Ning W, Jiang H. Prognosis and Characterization of Immune Microenvironment in Acute Myeloid Leukemia Through Identification of an Autophagy-Related Signature. Front Immunol 2021; 12:695865. [PMID: 34135913 PMCID: PMC8200670 DOI: 10.3389/fimmu.2021.695865] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/11/2021] [Indexed: 12/04/2022] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common hematopoietic malignancies that has an unfavorable outcome and a high rate of relapse. Autophagy plays a vital role in the development of and therapeutic responses to leukemia. This study identifies a potential autophagy-related signature to monitor the prognoses of patients of AML. Transcriptomic profiles of AML patients (GSE37642) with the relevant clinical information were downloaded from Gene Expression Omnibus (GEO) as the training set while TCGA-AML and GSE12417 were used as validation cohorts. Univariate regression analyses and multivariate stepwise Cox regression analysis were respectively applied to identify the autophagy-related signature. The univariate Cox regression analysis identified 32 autophagy-related genes (ARGs) that were significantly associated with the overall survival (OS) of the patients, and were mainly rich in signaling pathways for autophagy, p53, AMPK, and TNF. A prognostic signature that comprised eight ARGs (BAG3, CALCOCO2, CAMKK2, CANX, DAPK1, P4HB, TSC2, and ULK1) and had good predictive capacity was established by LASSO–Cox stepwise regression analysis. High-risk patients were found to have significantly shorter OS than patients in low-risk group. The signature can be used as an independent prognostic predictor after adjusting for clinicopathological parameters, and was validated on two external AML sets. Differentially expressed genes analyzed in two groups were involved in inflammatory and immune signaling pathways. An analysis of tumor-infiltrating immune cells confirmed that high-risk patients had a strong immunosuppressive microenvironment. Potential druggable OS-related ARGs were then investigated through protein–drug interactions. This study provides a systematic analysis of ARGs and develops an OS-related prognostic predictor for AML patients. Further work is needed to verify its clinical utility and identify the underlying molecular mechanisms in AML.
Collapse
Affiliation(s)
- Denggang Fu
- Department of Pediatrics, The Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Biyu Zhang
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Shiyong Wu
- Department of Pediatrics, The Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yinghua Zhang
- Department of Pediatrics, The Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jingwu Xie
- Department of Pediatrics, The Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States.,The IU Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN, United States
| | - Wangbin Ning
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China
| | - Hua Jiang
- Department of Pediatrics, The Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
19
|
Du Y, Fan K, Lu X, Wu C. Integrating Multi–Omics Data for Gene-Environment Interactions. BIOTECH 2021; 10:biotech10010003. [PMID: 35822775 PMCID: PMC9245467 DOI: 10.3390/biotech10010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 01/05/2023] Open
Abstract
Gene-environment (G×E) interaction is critical for understanding the genetic basis of complex disease beyond genetic and environment main effects. In addition to existing tools for interaction studies, penalized variable selection emerges as a promising alternative for dissecting G×E interactions. Despite the success, variable selection is limited in terms of accounting for multidimensional measurements. Published variable selection methods cannot accommodate structured sparsity in the framework of integrating multiomics data for disease outcomes. In this paper, we have developed a novel variable selection method in order to integrate multi-omics measurements in G×E interaction studies. Extensive studies have already revealed that analyzing omics data across multi-platforms is not only sensible biologically, but also resulting in improved identification and prediction performance. Our integrative model can efficiently pinpoint important regulators of gene expressions through sparse dimensionality reduction, and link the disease outcomes to multiple effects in the integrative G×E studies through accommodating a sparse bi-level structure. The simulation studies show the integrative model leads to better identification of G×E interactions and regulators than alternative methods. In two G×E lung cancer studies with high dimensional multi-omics data, the integrative model leads to an improved prediction and findings with important biological implications.
Collapse
|
20
|
Chen X, Zhou M, Fan W, Yang M, Yang L. Combination of Sodium Cantharidinate with Cisplatin Synergistically Hampers Growth of Cervical Cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:171-183. [PMID: 33469269 PMCID: PMC7812528 DOI: 10.2147/dddt.s282777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/16/2020] [Indexed: 01/22/2023]
Abstract
Background Sodium cantharidinate (SC) has been broadly applied in lung cancer treatment in China, while its specific function in cervical cancer (CC), a great contributor to death of female reproductive system cancers, remains unclear. Our research evaluated the anti-tumor effects of SC in CC and the mechanism involved. Methods First, cisplatin (DDP)-resistant Caski-1 and ME180 cell lines were developed and treated with SC. The effects of SC on CC cell growth were then evaluated. Subsequently, the genes targeted by SC were predicted via the bioinformatics website. The correlations between PTPN1 expression and tumor stage, lymph node metastasis and tumor differentiation were examined. We further conducted rescue experiments by overexpressing PTPN1 in CC cells, followed by SC and cisplatin treatments. The activation of the PI3K/AKT pathway in CC cells, and the effect of SC on the growth and drug resistance of Caski-1 cells in vivo were investigated. Results The sensitivity of Caski-1 and ME180 cells to DDP was increased after SC treatment, which also enhanced the inhibitory effect of DDP on the cell growth. By prediction, we found that SC could target PTPN1. Patients with high expression of PTPN1 had higher clinical stage, lymph node metastasis and lower tumor differentiation. SC inhibited PTPN1 expression. Overexpression of PTPN1 attenuated the effect of SC. Furthermore, PTPN1 activated the PI3K/AKT pathway. Moreover, SC treatment inhibited the growth and drug resistance of Caski-1 cells in vivo. Conclusion SC promotes drug sensitivity of CC cells to DDP by targeting PTPN1, thereby impairing the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Xiangxun Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, People's Republic of China
| | - Mengxi Zhou
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, People's Republic of China
| | - Wenjie Fan
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, People's Republic of China
| | - Mingwei Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, People's Republic of China
| | - Lin Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, People's Republic of China
| |
Collapse
|