1
|
Xu Y, Chen R, Pan R, Gao X, Huang H, Wang M. Clinical management of checkpoint inhibitor pneumonitis: Focus, challenges, and future directions. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2025; 3:29-40. [PMID: 40226598 PMCID: PMC11993061 DOI: 10.1016/j.pccm.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 04/15/2025]
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized the treatment landscape for various malignancies by demonstrating exceptional antitumor effects and significant improvement in patient survival. Despite their overt therapeutic advantages, ICIs also induce immune-related adverse events (irAEs). Of these, checkpoint inhibitor pneumonitis (CIP) represents a prominent manifestation of pulmonary toxicity following ICI therapy, with incidence rates ranging from 2.7 % to 20.0 %. Notably, a substantial proportion of CIP cases show severe manifestations, often leading to life-threatening complications, which emphasizes its clinical significance. Understanding the risk factors and potential pathogenetic mechanisms of CIP, combined with vigilant monitoring during immunotherapy, is pivotal for early detection and management of this condition. Proactive strategies for the timely identification, accurate diagnosis, and effective management of CIP are essential to optimize patient outcomes. However, several challenges persist in CIP management, including management of severe and refractory cases, determining the timing of ICI rechallenge after CIP, management of long-term chronic CIP, and mitigating secondary infections. In order to manage this potentially life-threatening irAE effectively, it is urgent to establish multi-disciplinary treatment (MDT) management, precision CIP management, and practical surveillance systems for CIP monitoring, diagnosis, and management and to call for prospective multi-center clinical trials.
Collapse
Affiliation(s)
- Yan Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ruxuan Chen
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Ruili Pan
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaoxing Gao
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Hui Huang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Mengzhao Wang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
2
|
Tan P, Huang W, He X, Lv F, Cui Y, Du S. Risk Factors for Refractory Immune Checkpoint Inhibitor-related Pneumonitis in Patients With Lung Cancer. J Immunother 2023; 46:64-73. [PMID: 36637978 PMCID: PMC9889196 DOI: 10.1097/cji.0000000000000451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/19/2022] [Indexed: 01/14/2023]
Abstract
Checkpoint inhibitor-related pneumonitis (CIP) is one of the most important immune checkpoint inhibitors side effects, and it is rare but fatal. Identifying patients at risk of refractory CIP before the start of CIP therapy is important for controlling CIP. We retrospectively analyzed the clinical data of 60 patients with lung cancer who developed CIP. Refractory CIP was defined as CIP with poor response to corticosteroid treatment, including CIP not relieved with corticosteroid administration or CIP recurrence during the corticosteroid tapering period. We analyzed clinical characteristics, peripheral blood biomarkers, treatment, and outcomes in nonrefractory and refractory CIP. Risk factors associated with refractory CIP were assessed. Among 60 patients with CIP, 16 (26.7%) had refractory CIP. The median onset time for patients with nonrefractory and those with refractory CIP was 16.57 (interquartile range [IQR], 6.82-28.14) weeks and 7.43 (IQR, 2.71-19.1) weeks, respectively. The level of lactate dehydrogenase (LDH) was significantly higher in the refractory CIP group at baseline (255 [222, 418] vs. 216 [183, 252], P =0.031) and at CIP onset (321.5 [216.75, 487.5] vs. 219 [198. 241], P =0.019). An LDH level >320 U/L at CIP onset was an independent risk factor of refractory CIP (odds ratio [OR], 8.889; 95% confidence interval [CI]: 1.294-61.058; P =0.026). The incidence of refractory CIP is high among patients with CIP. An increased LDH level at CIP onset is independently associated with refractory CIP. Monitoring LDH levels during immune checkpoint inhibitors treatment is recommended.
Collapse
Affiliation(s)
- Peixin Tan
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University
| | - Wei Huang
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University
| | - Xinyan He
- School of Medicine, South China University of Technology, Guangzhou, China
| | - Fengquan Lv
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University
| | - Yanhai Cui
- Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Southern Medical University
| | - Shasha Du
- Department of Radiation Oncology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University
| |
Collapse
|
3
|
Zhou C, Yang Y, Lin X, Fang N, Chen L, Jiang J, Deng H, Deng Y, Wan M, Qiu G, Sun N, Wu D, Long X, Zhong C, Xie X, Xie Z, Liu M, Ouyang M, Qin Y, Petrella F, Fiorelli A, Bravaccini S, Kataoka Y, Watanabe S, Goto T, Solli P, Igai H, Saito Y, Tsoukalas N, Nakada T, Li S, Chen R. Proposed clinical phases for the improvement of personalized treatment of checkpoint inhibitor-related pneumonitis. Front Immunol 2022; 13:935779. [PMID: 35967342 PMCID: PMC9364904 DOI: 10.3389/fimmu.2022.935779] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background Checkpoint inhibitor-related pneumonitis (CIP) is a lethal immune-related adverse event. However, the development process of CIP, which may provide insight into more effective management, has not been extensively examined. Methods We conducted a multicenter retrospective analysis of 56 patients who developed CIP. Clinical characteristics, radiological features, histologic features, and laboratory tests were analyzed. After a comprehensive analysis, we proposed acute, subacute, and chronic phases of CIP and summarized each phase's characteristics. Results There were 51 patients in the acute phase, 22 in the subacute phase, and 11 in the chronic phase. The median interval time from the beginning of CIP to the different phases was calculated (acute phase: ≤4.9 weeks; subacute phase: 4.9~13.1 weeks; and chronic phase: ≥13.1 weeks). The symptoms relieved from the acute phase to the chronic phase, and the CIP grade and Performance Status score decreased (P<0.05). The main change in radiologic features was the absorption of the lesions, and 3 (3/11) patients in the chronic phase had persistent traction bronchiectasis. For histologic features, most patients had acute fibrinous pneumonitis in the acute phase (5/8), and most had organizing pneumonia in the subacute phase (5/6). Other histologic changes advanced over time, with the lesions entering a state of fibrosis. Moreover, the levels of interleukin-6, interleukin-10 and high-sensitivity C-reactive protein (hsCRP) increased in the acute phase and decreased as CIP progressed (IL-6: 17.9 vs. 9.8 vs. 5.7, P=0.018; IL-10: 4.6 vs 3.0 vs. 2.0, P=0.041; hsCRP: 88.2 vs. 19.4 vs. 14.4, P=0.005). Conclusions The general development process of CIP can be divided into acute, subacute, and chronic phases, upon which a better management strategy might be based devised.
Collapse
Affiliation(s)
- Chengzhi Zhou
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, First Affiliated Hospital, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| | - Yilin Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, First Affiliated Hospital, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| | - Xinqing Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, First Affiliated Hospital, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| | - Nianxin Fang
- Affiliated Dongguan People’s Hospital, Dongguan Institute of Respiratory and Critical Care Medicine, Southern Medical University, Dongguan, China
| | - Likun Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Juhong Jiang
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, First Affiliated Hospital, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| | - Haiyi Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, First Affiliated Hospital, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| | - Yu Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, First Affiliated Hospital, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| | - Minghui Wan
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, First Affiliated Hospital, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| | - Guihuan Qiu
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, First Affiliated Hospital, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| | - Ni Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, First Affiliated Hospital, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| | - Di Wu
- Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| | - Xiang Long
- Department of Respiratory Disease, Peking University Shenzhen Hospital, Shenzhen, China
| | - Changhao Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, First Affiliated Hospital, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| | - Xiaohong Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, First Affiliated Hospital, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| | - Zhanhong Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, First Affiliated Hospital, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| | - Ming Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, First Affiliated Hospital, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| | - Ming Ouyang
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, First Affiliated Hospital, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| | - Yinyin Qin
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, First Affiliated Hospital, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| | - Francesco Petrella
- Division of Thoracic Surgery, European Institute of Oncology, IRCCS, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Alfonso Fiorelli
- Thoracic Surgery Unit, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Sara Bravaccini
- IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Yuki Kataoka
- Department of Internal Medicine, Kyoto Min-Iren Asukai Hospital, Kyoto, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Taichiro Goto
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Yamanashi, Japan
| | - Piergiorgio Solli
- Division of Thoracic Surgery & Lung Transplantation, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Hitoshi Igai
- Department of General Thoracic Surgery, Japanese Red Cross Maebashi Hospital, Maebashi, Japan
| | - Yuichi Saito
- Department of Surgery, Teikyo University School of Medicine, Tokyo, Japan
| | | | - Takeo Nakada
- Division of Thoracic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Shiyue Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, First Affiliated Hospital, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
| | - Rongchang Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, First Affiliated Hospital, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, China
- Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|