1
|
Yang Y, Li Z, Yu X, Zheng Y, Yu Y, Yang M, Zhang N. WDR11-DT enhances radiosensitivity via promoting PARP1 degradation and homologous recombination deficiency. Cancer Lett 2025; 625:217757. [PMID: 40320037 DOI: 10.1016/j.canlet.2025.217757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/08/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Radiotherapy is an important management for non-small cell lung cancer (NSCLC). Although long non-coding RNAs (lncRNAs) have been reported to be involved in modulating radiosensitivity, the underlying mechanisms are still largely unclear. Here, we found that tumor suppressor WDR11-DT is a novel radiation-induced lncRNA, which is transcriptionally regulated by SPDEF, in NSCLC. In contrast to normal tissues, WDR11-DT is down-regulated in NSCLC specimens and its low expression was associated with poor prognosis of patient receiving radiotherapy. Importantly, WDR11-DT can markedly enhance NSCLC cells' radiosensitivity in vitro and in vivo. WDR11-DT functions through distinct mechanisms via binding different proteins. WDR11-DT facilitates interactions between PARP1 and its E3 ligase TRIP12, promotes PARP1 protein degradation and suppresses PARP1-controlled Single-strand breaks (SSBs) repair. Additionally, WDR11-DT binds RNA-bind protein HNRNPK, represses its functions in improving RNA stability of homologous recombination (HR) genes, decreases expression of BRCA1, ATM, BLM and RAD50, and suppresses radiotherapy-triggered HR repair. WDR11-DT-induced dual restraints of PARP1 and the HR pathway lead to the accumulation of double-strand breaks as well as synthetic lethal effects of malignant cells, which, thereby, enhances radiosensitivity and inhibits progression of lung cancer. These results extend our current knowledge of radio-biology and elucidate that WDR11-DT may be a new target for boosting cancer radiotherapy.
Collapse
Affiliation(s)
- Yanting Yang
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Zongcheng Li
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Xinyuan Yu
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Yanxiu Zheng
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China
| | - Yongquan Yu
- Department of Radiology, Weihai Central Hospital, Qingdao University, Weihai, Shandong, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Precision Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China; School of Life Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, Shandong Province, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong Province, 250117, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
2
|
Lei X, Zheng Y, Su W. RNA-binding proteins and autophagy in lung cancer: mechanistic insights and therapeutic perspectives. Discov Oncol 2025; 16:599. [PMID: 40272614 PMCID: PMC12022210 DOI: 10.1007/s12672-025-02413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 04/16/2025] [Indexed: 04/27/2025] Open
Abstract
BACKGROUND Lung cancer remains a leading cause of cancer-related mortality worldwide. Its progression is intricately associated with the dynamic regulation of autophagy and RNA-binding proteins (RBPs), which play crucial roles in mRNA stability, alternative splicing, and cellular stress responses. OBJECTIVES This review aims to systematically analyze the mechanisms through which RBPs and autophagy contribute to lung cancer progression and explore potential therapeutic strategies targeting these pathways. METHODS We reviewed recent studies on the molecular mechanisms by which RBPs regulate tumor proliferation, metabolic adaptation, and their interaction with autophagy. The review also examines the dual roles of autophagy in lung cancer, highlighting its context-dependent effects on cell survival and death. RESULTS The interactions and regulatory networks between RBPs and autophagy involve multiple levels of regulation. RBPs can directly influence autophagy processes and act as microRNA (miRNA) sponges to regulate mRNA stability. The modulation of RBPs affects the expression of autophagy-related genes (ATGs) and autophagosome formation. Additionally, RBPs participate in complex regulatory interactions with non-coding RNAs (ncRNAs), including long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and other proteins. CONCLUSIONS This review proposes innovative therapeutic strategies that combine RBP-targeting approaches (e.g., small molecule inhibitors, CRISPR gene editing) with autophagy modulators (e.g., mTOR inhibitors, chloroquine) to enhance treatment efficacy. Nanoparticle drug delivery systems and epigenetic regulation offer further opportunities for targeted interventions. This review lays a theoretical foundation for advancing lung cancer research and provides novel insights into synergistic therapies that target both RBPs and autophagy to improve treatment outcomes for lung cancer.
Collapse
Affiliation(s)
- Xiao Lei
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
- Zhanjiang Key Laboratory of Tumor Microenvironment and Organoid Research, Zhanjiang, 524001, China
- Department of Guangdong Medical University, Zhanjiang, 524023, China
| | - Yuexin Zheng
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China
- Zhanjiang Key Laboratory of Tumor Microenvironment and Organoid Research, Zhanjiang, 524001, China
- Department of Guangdong Medical University, Zhanjiang, 524023, China
| | - Wenmei Su
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, Guangdong, China.
- Zhanjiang Key Laboratory of Tumor Microenvironment and Organoid Research, Zhanjiang, 524001, China.
- Department of Guangdong Medical University, Zhanjiang, 524023, China.
| |
Collapse
|
3
|
García-Hernández L, Dai L, Rodríguez-Ulloa A, Yi Y, González LJ, Besada V, Li W, Perea SE, Perera Y. Time- and dose-dependent effects of CIGB-300 on the proteome of lung squamous cell carcinoma. Biol Chem 2025:hsz-2024-0149. [PMID: 40261874 DOI: 10.1515/hsz-2024-0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/13/2025] [Indexed: 04/24/2025]
Abstract
Proteome-wide scale in a dose - and time-depending setting is crucial to fully understand the pharmacological mechanism of anticancer drugs as well as identification of candidates for drug response biomarkers. Here, we investigated the effect of the CIGB-300 anticancer peptide at IC50 and IC80 doses during 1 and 4 h of treatment on the squamous lung cancer cell (NCI-H226) proteome. An overwhelming dose-dependent inhibitory effect with minor up-regulated proteins was observed by increasing CIGB-300 dose level. Functional enrichment was also CIGB-300 dose-dependent with common or exclusively regulated proteins in each dose and time settings. A protein core involving small molecule biosynthesis, aldehyde metabolism and metabolism of nucleobases was regulated irrespectively to the dose or the treatment time. Importantly, a group of proteins linked to NSCLC tumor biology, poor clinical outcome and some Protein Kinase CK2 substrates, were significantly regulated by treating with both CIGB-300 doses. Likewise, we observed a consistent downregulation of different proteins that had been already reported to be inhibited by CIGB-300 in lung adenocarcinoma and acute myeloid leukemia. Overall, our proteomics-guided strategy based on time and drug dose served to uncover novel clues supporting the CIGB-300 cytotoxic effect and also to identify putative pharmacodynamic biomarkers in NSCLC.
Collapse
Affiliation(s)
- Liudy García-Hernández
- Department of System Biology, Center for Genetic Engineering & Biotechnology (CIGB), 31 Ave, Havana 10600, Cuba
| | - Lingfeng Dai
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co., Ltd, Yangjiaqiao Street, Lengshuitan District, Yongzhou City 425000, Hunan Province, China
| | - Arielis Rodríguez-Ulloa
- Department of System Biology, Center for Genetic Engineering & Biotechnology (CIGB), 31 Ave, Havana 10600, Cuba
| | - Ying Yi
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co., Ltd, Yangjiaqiao Street, Lengshuitan District, Yongzhou City 425000, Hunan Province, China
| | - Luis J González
- Department of System Biology, Center for Genetic Engineering & Biotechnology (CIGB), 31 Ave, Havana 10600, Cuba
| | - Vladimir Besada
- Department of System Biology, Center for Genetic Engineering & Biotechnology (CIGB), 31 Ave, Havana 10600, Cuba
| | - Wen Li
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co., Ltd, Yangjiaqiao Street, Lengshuitan District, Yongzhou City 425000, Hunan Province, China
| | - Silvio E Perea
- Department of Pharmaceuticals, Center for Genetic Engineering & Biotechnology (CIGB), 31 Ave, Playa, Havana 10600, Cuba
| | - Yasser Perera
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co., Ltd, Yangjiaqiao Street, Lengshuitan District, Yongzhou City 425000, Hunan Province, China
| |
Collapse
|
4
|
Sulaj E, Sandell FL, Schwaigerlehner L, Marzban G, Dohm JC, Kunert R. Systems Biology of Recombinant 2G12 and 353/11 mAb Production in CHO-K1 Cell Lines at Phosphoproteome Level. Proteomes 2025; 13:9. [PMID: 39982319 PMCID: PMC11843875 DOI: 10.3390/proteomes13010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/31/2025] [Accepted: 02/06/2025] [Indexed: 02/22/2025] Open
Abstract
Background: Chinese hamster ovary (CHO) cells are extensively used in the pharmaceutical industry for producing complex proteins, primarily because of their ability to perform human-like post-translational modifications. However, the efficiency of high-quality protein production can vary significantly for monoclonal antibody-producing cell lines, within the CHO host cell lines or by extrinsic factors. Methods: To investigate the complex cellular mechanisms underlying this variability, a phosphoproteomics analysis was performed using label-free quantitative liquid chromatography after a phosphopeptide enrichment of recombinant CHO cells producing two different antibodies and a tunicamycin treatment experiment. Using MaxQuant and Perseus for data analysis, we identified 2109 proteins and quantified 4059 phosphosites. Results: Significant phosphorylation dynamics were observed in nuclear proteins of cells producing the difficult-to-produce 2G12 mAb. It suggests that the expression of 2G12 regulates nuclear pathways based on increases and decreases in phosphorylation abundance. Furthermore, a substantial number of changes in the phosphorylation pattern related to tunicamycin treatment have been detected. TM treatment affects, among other phosphoproteins, the eukaryotic elongation factor 2 kinase (Eef2k). Conclusions: The alterations in the phosphorylation landscape of key proteins involved in cellular processes highlight the mechanisms behind stress-induced cellular responses.
Collapse
Affiliation(s)
- Eldi Sulaj
- Department of Biotechnology and Food Science, Institute of Animal Cell Technology and Systems Biology (IACTSB), BOKU University, Muthgasse 18, 1190 Vienna, Austria; (E.S.); (L.S.); (R.K.)
| | - Felix L. Sandell
- Department of Biotechnology and Food Science, Institute of Computational Biology (ICB), BOKU University, Muthgasse 18, 1190 Vienna, Austria; (F.L.S.)
| | - Linda Schwaigerlehner
- Department of Biotechnology and Food Science, Institute of Animal Cell Technology and Systems Biology (IACTSB), BOKU University, Muthgasse 18, 1190 Vienna, Austria; (E.S.); (L.S.); (R.K.)
| | - Gorji Marzban
- Department of Biotechnology and Food Science, Institute of Bioprocess Science and Engineering (IBSE), BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Juliane C. Dohm
- Department of Biotechnology and Food Science, Institute of Computational Biology (ICB), BOKU University, Muthgasse 18, 1190 Vienna, Austria; (F.L.S.)
| | - Renate Kunert
- Department of Biotechnology and Food Science, Institute of Animal Cell Technology and Systems Biology (IACTSB), BOKU University, Muthgasse 18, 1190 Vienna, Austria; (E.S.); (L.S.); (R.K.)
| |
Collapse
|
5
|
Yang M, Ke Z, Wang D. Heterogeneous nuclear ribonucleoprotein K is a potential target for enhancing the chemosensitivity of nasopharyngeal carcinoma. Open Life Sci 2024; 19:20220975. [PMID: 39479349 PMCID: PMC11524390 DOI: 10.1515/biol-2022-0975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 09/03/2024] [Indexed: 11/02/2024] Open
Abstract
The resistance of tumor cells to chemotherapy drugs is a critical determinant in the recurrence and metastasis of nasopharyngeal carcinoma (NPC). Therefore, it is crucial to identify effective biotargets that can enhance the sensitivity of NPC cells to chemotherapy drugs. Heterogeneous nuclear ribonucleoprotein K (hnRNPK) plays a central role in regulating chemotherapy resistance across various tumor types. However, its specific function in NPC cells remains unclear. This study reveals that hnRNPK is overexpressed in NPC tissues while weakly expressed in normal nasopharyngeal tissues. The expression level of hnRNPK is negatively associated with NPC patient survival. Importantly, hnRNPK is a key inducer of chemotherapy resistance in NPC, as evidenced by the significant increase in NPC cell sensitivity to cisplatin following hnRNPK knockdown. Mechanistically, hnRNPK induces chemotherapy resistance in NPC cells by suppressing the activation of the Akt/caspase 3 pathway. In NPC tumor-bearing mice, hnRNPK knockdown enhances the efficacy of cisplatin chemotherapy. Consequently, this work identifies a potential target for enhancing the sensitivity of NPC cells to chemotherapy.
Collapse
Affiliation(s)
- Ming Yang
- Department of Otorhinolaryngology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Zhaoyang Ke
- Department of Otorhinolaryngology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, China
| | - Daji Wang
- Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
6
|
纪 凯, 于 冠, 周 乐, 张 天, 凌 潜, 满 文, 朱 冰, 张 卫. [ HNRNPA1 gene is highly expressed in colorectal cancer: its prognostic implications and potential as a therapeutic target]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1685-1695. [PMID: 39505336 PMCID: PMC11744076 DOI: 10.12122/j.issn.1673-4254.2024.09.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Indexed: 11/08/2024]
Abstract
OBJECTIVE To investigate the expression level of HNRNP A1 in colorectal cancer (CRC) and its prognostic implications. METHODS We investigated HNRNP A1 expression level in CRC using HPA, TIMER, and GEPIA databases and analyzed its association with Ki-67 and VEGFA expressions. Kaplan-Meier Plotter database was used to analyze the correlation of HNRNP A1 mRNA levels with the survival rates of CRC patients. Pathway enrichment analysis was performed for predicting the biological roles of HNRNP A1 in CRC progression. Immunohistochemistry and Western blotting were used to examine the protein levels of HNRNP A1 in CRC versus adjacent tissues, and TIMER was used for assessing its expression in the infiltrating immune cells. In RKO/Caco2 cells, the effects of lentivirus-mediated knockdown of HNRNP A1 on cell proliferation and migration were observed, and the inhibitory effect of VPC-80051 (a HNRNP A1 inhibitor) on cell proliferation was evaluated to assess its potential as a therapeutic agent. RESULTS HNRNP A1 was significantly overexpressed in CRC tissues and correlated with a poor prognosis of the patients. HNRNP A1 expression level was correlated with the infiltrating immune cells in CRC microenvironment and positively correlated with MKI67 and VEGFA expressions in CRC. A high HNRNP A1 expression predicted a in survival and progression-free survival of CRC patients and was involved in multiple biological processes related with CRC progression. In RKO/Caco2 cells, HNRNP A1 knockdown significantly suppressed cell proliferation and migration, and treatment with VPC-80051 also effectively inhibited CRC cell proliferation. Immunohistochemical study demonstrated a close correlation of HNRNP A1 overexpression with tumor stage of CRC. CONCLUSION HNRNP A1 is overexpressed in CRC tissues to modulate cell proliferation and migration and is correlated with a poorer prognosis. VPC-80051 can effectively inhibit CRC cell proliferation, suggesting the potential of HNRNP A1 as a therapeutic target for CRC.
Collapse
Affiliation(s)
- 凯 纪
- 蚌埠医科大学第一附属医院胃肠外科, 安徽 蚌埠 233000Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
- 海军军医大学第一附属医院//上海长海医院肛肠外科, 上海 200082Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200082, China
| | - 冠宇 于
- 海军军医大学第一附属医院//上海长海医院肛肠外科, 上海 200082Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200082, China
| | - 乐其 周
- 海军军医大学第一附属医院//上海长海医院肛肠外科, 上海 200082Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200082, China
| | - 天帅 张
- 海军军医大学第一附属医院//上海长海医院肛肠外科, 上海 200082Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200082, China
| | - 潜龙 凌
- 蚌埠医科大学第一附属医院胃肠外科, 安徽 蚌埠 233000Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| | - 文江 满
- 蚌埠医科大学第一附属医院胃肠外科, 安徽 蚌埠 233000Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
- 海军军医大学第一附属医院//上海长海医院肛肠外科, 上海 200082Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200082, China
| | - 冰 朱
- 蚌埠医科大学第一附属医院胃肠外科, 安徽 蚌埠 233000Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| | - 卫 张
- 海军军医大学第一附属医院//上海长海医院肛肠外科, 上海 200082Department of Colorectal Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200082, China
| |
Collapse
|
7
|
Li C, Lu T, Chen H, Yu Z, Chen C. The up-regulation of SYNCRIP promotes the proliferation and tumorigenesis via DNMT3A/p16 in colorectal cancer. Sci Rep 2024; 14:21570. [PMID: 39284825 PMCID: PMC11405714 DOI: 10.1038/s41598-024-59575-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/12/2024] [Indexed: 09/20/2024] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs), a group of proteins that control gene expression, have been implicated in many post-transcriptional processes. SYNCRIP (also known as hnRNP Q), a subtype of hnRNPs, has been reported to be involved in mRNA splicing and translation. In addition, the deregulation of SYNCRIP was found in colorectal cancer (CRC). However, the role of SYNCRIP in regulating CRC growth remains largely unknown. Here, we found that SYNCRIP was highly expressed in colorectal cancer by analyzing TCGA and GEPIA database. Furthermore, we confirmed the expression of SYNCRIP expression in CRC tumor and CRC cell lines. Functionally, SYNCRIP depletion using shRNA in CRC cell lines (SW480 and HCT 116) resulted in increased caspase3/7 activity and decreased cell proliferation, as well as migration. Meanwhile, overexpression of SYNCRIP showed opposite results. Mechanistically, SYNCRIP regulated the expression of DNA methyltransferases (DNMT) 3A, but not DNMT1 or DNMT3B, which affected the expression of tumor suppressor, p16. More importantly, our in vivo experiments showed that SYNCRIP depletion significantly inhibited colorectal tumor growth. Taken all together, our results suggest SYNCRIP as a potent therapeutic target in colorectal cancer.
Collapse
Affiliation(s)
- Chenglong Li
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, China
| | - Tailiang Lu
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, China
| | - Hongxi Chen
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, China
| | - Zhige Yu
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, China.
| | - Chaowu Chen
- Department of Gastrointestinal Surgery, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha, 410005, Hunan Province, China.
| |
Collapse
|
8
|
Bose D, Banerjee N, Roy A, Sengupta P, Chatterjee S. Switchable tetraplex elements in the heterogeneous nuclear ribonucleoprotein K promoter: micro-environment dictated structural transitions of G/C rich elements. J Biomol Struct Dyn 2024:1-18. [PMID: 38235706 DOI: 10.1080/07391102.2024.2303378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
We have elucidated the hnRNP K promoter as a hotspot for tetraplex-based molecular switches receptive to micro-environmental stimuli. We have characterised the structural features of four tetraplex-forming loci and identified them as binding sites of transcription factors. These segments form either G-quadruplex or i-motif structures, the structural dynamicity of which has been studied in depth via several biophysical techniques. The tetraplexes display high dynamicity and are influenced by both pH and KCl concentrations in vitro. The loci complementary to these sequences form additional non-canonical secondary structures. In the cellular context, the most eminent observation of this study is the binding of hnRNP K to the i-motif forming sequences in its own promoter. We are the first to report a probable transcriptional autoregulatory function of hnRNP K in coordination with higher-order DNA structures. Herein, we also report the positive interaction of the endogenous tetraplexes with Sp1, a well-known transcriptional regulator. Treatment with tetraplex-specific small molecule ligands further uncovered G-quadruplexes' functioning as repressors and i-motifs as activators in this context. Together, our findings strongly indicate the critical regulatory role of the identified tetraplex elements in the hnRNP K promoter.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Debopriya Bose
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, India
| | - Nilanjan Banerjee
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, India
| | - Ananya Roy
- Department of Biological Sciences, Bose Institute, Kolkata, West Bengal, India
| | - Pallabi Sengupta
- Department of Medical Biochemistry and Biophysics, Kemihuset (K), Campus, Umeå, Umeå universitet, Umeå, Sweden
| | | |
Collapse
|
9
|
Lee S, Ochoa E, Badura-Stronka M, Donnelly D, Lederer D, Lynch SA, Gardham A, Morton J, Stewart H, Docquier F, Rodger F, Martin E, Toribio A, Maher ER, Balasubramanian M. Germline pathogenic variants in HNRNPU are associated with alterations in blood methylome. Eur J Hum Genet 2023; 31:1040-1047. [PMID: 37407733 PMCID: PMC10474128 DOI: 10.1038/s41431-023-01422-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/24/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
HNRNPU encodes a multifunctional RNA-binding protein that plays critical roles in regulating pre-mRNA splicing, mRNA stability, and translation. Aberrant expression and dysregulation of HNRNPU have been implicated in various human diseases, including cancers and neurological disorders. We applied a next generation sequencing based assay (EPIC-NGS) to investigate genome-wide methylation profiling for >2 M CpGs for 7 individuals with a neurodevelopmental disorder associated with HNRNPU germline pathogenic loss-of-function variants. Compared to healthy individuals, 227 HNRNPU-associated differentially methylated positions were detected. Both hyper- and hypomethylation alterations were identified but the former predominated. The identification of a methylation episignature for HNRNPU-associated neurodevelopmental disorder (NDD) implicates HNPRNPU-related chromatin alterations in the aetiopathogenesis of this disorder and suggests that episignature profiling should have clinical utility as a predictor for the pathogenicity of HNRNPU variants of uncertain significance. The detection of a methylation episignaure for HNRNPU-associated NDD is consistent with a recent report of a methylation episignature for HNRNPK-associated NDD.
Collapse
Affiliation(s)
- Sunwoo Lee
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Eguzkine Ochoa
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | | | - Deirdre Donnelly
- Northern Ireland Regional Genetics Centre, Belfast Health and Social Care Trust/City Hospital, Belfast, Northern Ireland, UK
| | | | - Sally A Lynch
- Department of Clinical Genetics, Our Lady's Children's Hospital, Crumlin, Dublin, Republic of Ireland
| | - Alice Gardham
- London North West University Healthcare NHS Trust Genetics Service, Middlesex, UK
| | - Jenny Morton
- West Midlands Regional Clinical Genetics Service and Birmingham Health Partners, Birmingham Women's and Children's Hospitals NHS Foundation Trust, Birmingham, UK
| | - Helen Stewart
- Oxford Centre for Genomic Medicine, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - France Docquier
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Cambridge Biomedical Campus, Cambridge, UK
| | - Fay Rodger
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Cambridge Biomedical Campus, Cambridge, UK
| | - Ezequiel Martin
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Cambridge Biomedical Campus, Cambridge, UK
| | - Ana Toribio
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stratified Medicine Core Laboratory NGS Hub, Cambridge Biomedical Campus, Cambridge, UK
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge, CB2 0QQ, UK.
| | - Meena Balasubramanian
- Department of Oncology & Metabolism, University of Sheffield, Sheffield, UK.
- Sheffield Clinical Genetics Service, Sheffield Children's NHS Foundation Trust, Sheffield, UK.
| |
Collapse
|