1
|
Mawdsley L, Eskandari R, Kamar F, Rajaram A, Yip LCM, Abayomi N, Milkovich S, Carson JJL, St. Lawrence K, Ellis CG, Diop M. In vivo optical assessment of cerebral and skeletal muscle microvascular response to phenylephrine. FASEB Bioadv 2024; 6:390-399. [PMID: 39399479 PMCID: PMC11467741 DOI: 10.1096/fba.2024-00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 10/15/2024] Open
Abstract
This study aimed to investigate the simultaneous response of the cerebral and skeletal muscle microvasculature to the same phenylephrine (PE) boluses. A hybrid optical system that combines hyperspectral near-infrared spectroscopy (hs-NIRS) and diffuse correlation spectroscopy (DCS) was used to monitor changes in tissue oxygenation and perfusion. Data were collected from the head and hind limb of seven male Sprague-Dawley rats while administering intravenous (IV) injections of PE or saline to all animals. The response to saline was used as a control. Skeletal muscle oxygenation decreased significantly after PE injection, while a statistically underpowered decrease in perfusion was observed, followed by an increase beyond baseline. Vascular conductance also decreased in the muscle reflecting the drug's vasoconstrictive effects. Tissue oxygenation and perfusion increased in the brain in response to PE. Initially, there was a sharp increase in cerebral perfusion but no changes in cerebral vascular conductance. Subsequently, cerebral flow and vascular conductance decreased significantly below baseline, likely reflecting autoregulatory mechanisms to manage the excess flow. Further, fitting an exponential function to the secondary decrease in cerebral perfusion and increase in muscular blood flow revealed a quicker kinetic response in the brain to adjust blood flow. In the skeletal muscle, PE caused a transient decrease in blood volume due to vasoconstriction, which resulted in an overall decrease in hemoglobin content and tissue oxygen saturation. Since PE does not directly affect cerebral vessels, this peripheral vasoconstriction shunted blood into the brain, resulting in an initial increase in oxygenated hemoglobin and oxygen saturation.
Collapse
Affiliation(s)
- Laura Mawdsley
- Department of Medical BiophysicsWestern UniversityLondonOntarioCanada
- Robarts Research InstituteWestern UniversityLondonOntarioCanada
| | - Rasa Eskandari
- Department of Medical BiophysicsWestern UniversityLondonOntarioCanada
- Imaging ProgramLawson Health Research InstituteLondonOntarioCanada
| | - Farah Kamar
- Department of Medical BiophysicsWestern UniversityLondonOntarioCanada
- Imaging ProgramLawson Health Research InstituteLondonOntarioCanada
| | - Ajay Rajaram
- Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Lawrence C. M. Yip
- Department of Medical BiophysicsWestern UniversityLondonOntarioCanada
- Imaging ProgramLawson Health Research InstituteLondonOntarioCanada
| | - Naomi Abayomi
- School of MedicineUniversity of OttawaOttawaOntarioCanada
| | | | - Jeffrey J. L. Carson
- Department of Medical BiophysicsWestern UniversityLondonOntarioCanada
- Imaging ProgramLawson Health Research InstituteLondonOntarioCanada
| | - Keith St. Lawrence
- Department of Medical BiophysicsWestern UniversityLondonOntarioCanada
- Imaging ProgramLawson Health Research InstituteLondonOntarioCanada
| | - Christopher G. Ellis
- Department of Medical BiophysicsWestern UniversityLondonOntarioCanada
- Robarts Research InstituteWestern UniversityLondonOntarioCanada
| | - Mamadou Diop
- Department of Medical BiophysicsWestern UniversityLondonOntarioCanada
- Imaging ProgramLawson Health Research InstituteLondonOntarioCanada
| |
Collapse
|
2
|
Ma H, Ahrens E, Wachtendorf LJ, Suleiman A, Shay D, Munoz-Acuna R, Tartler TM, Teja B, Wagner S, Subramaniam B, Rhee J, Schaefer MS. Intraoperative Use of Phenylephrine versus Ephedrine and Postoperative Delirium: A Multicenter Retrospective Cohort Study. Anesthesiology 2024; 140:657-667. [PMID: 37725759 DOI: 10.1097/aln.0000000000004774] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
BACKGROUND The treatment of intraoperative hypotension with phenylephrine may impair cerebral perfusion through vasoconstriction, which has been linked to postoperative delirium. The hypothesis was that intraoperative administration of phenylephrine, compared to ephedrine, is associated with higher odds of postoperative delirium. METHODS A total of 103,094 hospitalized adults undergoing general anesthesia for noncardiac, non-neurosurgical procedures between 2008 and 2020 at two tertiary academic healthcare networks in Massachusetts were included in this multicenter hospital registry study. The primary exposure was the administration of phenylephrine versus ephedrine during surgery, and the primary outcome was postoperative delirium within 7 days. Multivariable logistic regression analyses adjusted for a priori defined confounding variables including patient demographics, comorbidities, and procedural factors including magnitude of intraoperative hypotension were applied. RESULTS Between the two healthcare networks, 78,982 (76.6%) patients received phenylephrine, and 24,112 (23.4%) patients received ephedrine during surgery; 770 patients (0.8%) developed delirium within 7 days. The median (interquartile range) total intraoperative dose of phenylephrine was 1.0 (0.2 to 3.3) mg and 10.0 (10.0 to 20.0) mg for ephedrine. In adjusted analyses, the administration of phenylephrine, compared to ephedrine, was associated with higher odds of developing postoperative delirium within 7 days (adjusted odds ratio, 1.35; 95% CI, 1.06 to 1.71; and adjusted absolute risk difference, 0.2%; 95% CI, 0.1 to 0.3%; P = 0.015). A keyword and manual chart review-based approach in a subset of 45,465 patients further validated these findings (delirium incidence, 3.2%; adjusted odds ratio, 1.88; 95% CI, 1.49 to 2.37; P < 0.001). Fractional polynomial regression analysis further indicated a dose-dependent effect of phenylephrine (adjusted coefficient, 0.08; 95% CI, 0.02 to 0.14; P = 0.013, per each μg/kg increase in the cumulative phenylephrine dose). CONCLUSIONS The administration of phenylephrine compared to ephedrine during general anesthesia was associated with higher odds of developing postoperative delirium. Based on these data, clinical trials are warranted to determine whether favoring ephedrine over phenylephrine for treatment of intraoperative hypotension can reduce delirium after surgery. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Haobo Ma
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Elena Ahrens
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Luca J Wachtendorf
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Aiman Suleiman
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Boston, Massachusetts; and Department of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, University of Jordan, Amman, Jordan
| | - Denys Shay
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Boston, Massachusetts; and Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Ricardo Munoz-Acuna
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Tim M Tartler
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; and Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Bijan Teja
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Soeren Wagner
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Balachundhar Subramaniam
- Department of Anesthesia, Critical Care and Pain Medicine and Sadhguru Center for a Conscious Planet, Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - James Rhee
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Maximilian S Schaefer
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Center for Anesthesia Research Excellence (CARE), Beth Israel Deaconess Medical Center, Boston, Massachusetts; and Department of Anesthesiology, University Hospital Duesseldorf, Düsseldorf, Germany
| |
Collapse
|
3
|
Salvagno M, Geraldini F, Coppalini G, Robba C, Gouvea Bogossian E, Annoni F, Vitali E, Sterchele ED, Balestra C, Taccone FS. The Impact of Inotropes and Vasopressors on Cerebral Oxygenation in Patients with Traumatic Brain Injury and Subarachnoid Hemorrhage: A Narrative Review. Brain Sci 2024; 14:117. [PMID: 38391692 PMCID: PMC10886736 DOI: 10.3390/brainsci14020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
Traumatic brain injury (TBI) and subarachnoid hemorrhage (SAH) are critical neurological conditions that necessitate specialized care in the Intensive Care Unit (ICU). Managing cerebral perfusion pressure (CPP) and mean arterial pressure (MAP) is of primary importance in these patients. To maintain targeted MAP and CPP, vasopressors and/or inotropes are commonly used. However, their effects on cerebral oxygenation are not fully understood. The aim of this review is to provide an up-to date review regarding the current uses and pathophysiological issues related to the use of vasopressors and inotropes in TBI and SAH patients. According to our findings, despite achieving similar hemodynamic parameters and CPP, the effects of various vasopressors and inotropes on cerebral oxygenation, local CBF and metabolism are heterogeneous. Therefore, a more accurate understanding of the cerebral activity of these medications is crucial for optimizing patient management in the ICU setting.
Collapse
Affiliation(s)
- Michele Salvagno
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium
| | - Federico Geraldini
- Department of Anesthesia and Intensive Care, Ospedale Università di Padova, 35128 Padova, Italy
| | - Giacomo Coppalini
- Department of Anesthesia and Intensive Care, Humanitas Clinical and Research Center, 20089 Milano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milano, Italy
| | - Chiara Robba
- Anaesthesia and Intensive Care, IRCCS Policlinico San Martino, 16132 Genova, Italy
- Dipartimento di Scienze Chirurgiche Diagnostiche e Integrate, Università di Genova, 16132 Genova, Italy
| | - Elisa Gouvea Bogossian
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium
| | - Filippo Annoni
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium
| | - Eva Vitali
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium
| | - Elda Diletta Sterchele
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium
| | - Costantino Balestra
- Department Environmental, Occupational, Aging (Integrative) Physiology Laboratory, Haute Ecole Bruxelles-Brabant (HE2B), 1160 Brussels, Belgium
- Anatomical Research and Clinical Studies, Vrije Universiteit Brussels (VUB), 1090 Brussels, Belgium
- DAN Europe Research Division (Roseto-Brussels), 1160 Brussels, Belgium
- Motor Sciences Department, Physical Activity Teaching Unit, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium
| |
Collapse
|