1
|
Torres-Arciga K, Flores-León M, Ruiz-Pérez S, Trujillo-Pineda M, González-Barrios R, Herrera LA. Histones and their chaperones: Adaptive remodelers of an ever-changing chromatinic landscape. Front Genet 2022; 13:1057846. [PMID: 36468032 PMCID: PMC9709290 DOI: 10.3389/fgene.2022.1057846] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/02/2022] [Indexed: 07/29/2023] Open
Abstract
Chromatin maintenance and remodeling are processes that take place alongside DNA repair, replication, or transcription to ensure the survival and adaptability of a cell. The environment and the needs of the cell dictate how chromatin is remodeled; particularly where and which histones are deposited, thus changing the canonical histone array to regulate chromatin structure and gene expression. Chromatin is highly dynamic, and histone variants and their chaperones play a crucial role in maintaining the epigenetic regulation at different genomic regions. Despite the large number of histone variants reported to date, studies on their roles in physiological processes and pathologies are emerging but continue to be scarce. Here, we present recent advances in the research on histone variants and their chaperones, with a focus on their importance in molecular mechanisms such as replication, transcription, and DNA damage repair. Additionally, we discuss the emerging role they have in transposable element regulation, aging, and chromatin remodeling syndromes. Finally, we describe currently used methods and their limitations in the study of these proteins and highlight the importance of improving the experimental approaches to further understand this epigenetic machinery.
Collapse
Affiliation(s)
- Karla Torres-Arciga
- Doctorado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Manuel Flores-León
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Samuel Ruiz-Pérez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Magalli Trujillo-Pineda
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología (INCan)-Instituto de Investigaciones Biomédicas (IIBO), Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
- Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| |
Collapse
|
2
|
DNA methylation and histone variants in aging and cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:1-110. [PMID: 34507780 DOI: 10.1016/bs.ircmb.2021.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aging-related diseases such as cancer can be traced to the accumulation of molecular disorder including increased DNA mutations and epigenetic drift. We provide a comprehensive review of recent results in mice and humans on modifications of DNA methylation and histone variants during aging and in cancer. Accumulated errors in DNA methylation maintenance lead to global decreases in DNA methylation with relaxed repression of repeated DNA and focal hypermethylation blocking the expression of tumor suppressor genes. Epigenetic clocks based on quantifying levels of DNA methylation at specific genomic sites is proving to be a valuable metric for estimating the biological age of individuals. Histone variants have specialized functions in transcriptional regulation and genome stability. Their concentration tends to increase in aged post-mitotic chromatin, but their effects in cancer are mainly determined by their specialized functions. Our increased understanding of epigenetic regulation and their modifications during aging has motivated interventions to delay or reverse epigenetic modifications using the epigenetic clocks as a rapid readout for efficacity. Similarly, the knowledge of epigenetic modifications in cancer is suggesting new approaches to target these modifications for cancer therapy.
Collapse
|
3
|
Chen Y, Bravo JI, Son JM, Lee C, Benayoun BA. Remodeling of the H3 nucleosomal landscape during mouse aging. TRANSLATIONAL MEDICINE OF AGING 2020; 4:22-31. [PMID: 32462102 DOI: 10.1016/j.tma.2019.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In multi-cellular organisms, the control of gene expression is key not only for development, but also for adult cellular homeostasis, and deregulation of gene expression correlates with aging. A key layer in the study of gene regulation mechanisms lies at the level of chromatin: cellular chromatin states (i.e. the 'epigenome') can tune transcriptional profiles, and, in line with the prevalence of transcriptional alterations with aging, accumulating evidence suggests that the chromatin landscape is altered with aging across cell types and species. However, although alterations in the chromatin make-up of cells are considered to be a hallmark of aging, little is known of the genomic loci that are specifically affected by age-related chromatin state remodeling and of their biological significance. Here, we report the analysis of genome-wide profiles of core histone H3 occupancy in aging male mouse tissues (i.e. heart, liver, cerebellum and olfactory bulb) and primary cultures of neural stem cells. We find that, although no drastic changes in H3 levels are observed, local changes in H3 occupancy occur with aging across tissues and cells with both regions of increased or decreased occupancy. These changes are compatible with a general increase in chromatin accessibility at pro-inflammatory genes and may thus mechanistically underlie known shift in gene expression programs during aging.
Collapse
Affiliation(s)
- Yilin Chen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.,Master of Science in Nutrition, Healthspan, and Longevity, University of Southern California, Los Angeles, CA 90089, USA
| | - Juan I Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.,Graduate program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089, USA
| | - Jyung Mean Son
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.,USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089, USA.,Biomedical Sciences, Graduate School, Ajou University, Suwon 16499, Republic of Korea
| | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.,USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089, USA.,USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| |
Collapse
|
4
|
Abstract
Cardiac ageing manifests as a decline in function leading to heart failure. At the cellular level, ageing entails decreased replicative capacity and dysregulation of cellular processes in myocardial and nonmyocyte cells. Various extrinsic parameters, such as lifestyle and environment, integrate important signalling pathways, such as those involving inflammation and oxidative stress, with intrinsic molecular mechanisms underlying resistance versus progression to cellular senescence. Mitigation of cardiac functional decline in an ageing organism requires the activation of enhanced maintenance and reparative capacity, thereby overcoming inherent endogenous limitations to retaining a youthful phenotype. Deciphering the molecular mechanisms underlying dysregulation of cellular function and renewal reveals potential interventional targets to attenuate degenerative processes at the cellular and systemic levels to improve quality of life for our ageing population. In this Review, we discuss the roles of extrinsic and intrinsic factors in cardiac ageing. Animal models of cardiac ageing are summarized, followed by an overview of the current and possible future treatments to mitigate the deleterious effects of cardiac ageing.
Collapse
|
5
|
Kong Q, Banaszynski LA, Geng F, Zhang X, Zhang J, Zhang H, O'Neill CL, Yan P, Liu Z, Shido K, Palermo GD, Allis CD, Rafii S, Rosenwaks Z, Wen D. Histone variant H3.3-mediated chromatin remodeling is essential for paternal genome activation in mouse preimplantation embryos. J Biol Chem 2018; 293:3829-3838. [PMID: 29358330 DOI: 10.1074/jbc.ra117.001150] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/02/2018] [Indexed: 12/22/2022] Open
Abstract
Derepression of chromatin-mediated transcriptional repression of paternal and maternal genomes is considered the first major step that initiates zygotic gene expression after fertilization. The histone variant H3.3 is present in both male and female gametes and is thought to be important for remodeling the paternal and maternal genomes for activation during both fertilization and embryogenesis. However, the underlying mechanisms remain poorly understood. Using our H3.3B-HA-tagged mouse model, engineered to report H3.3 expression in live animals and to distinguish different sources of H3.3 protein in embryos, we show here that sperm-derived H3.3 (sH3.3) protein is removed from the sperm genome shortly after fertilization and extruded from the zygotes via the second polar bodies (PBII) during embryogenesis. We also found that the maternal H3.3 (mH3.3) protein is incorporated into the paternal genome as early as 2 h postfertilization and is detectable in the paternal genome until the morula stage. Knockdown of maternal H3.3 resulted in compromised embryonic development both of fertilized embryos and of androgenetic haploid embryos. Furthermore, we report that mH3.3 depletion in oocytes impairs both activation of the Oct4 pluripotency marker gene and global de novo transcription from the paternal genome important for early embryonic development. Our results suggest that H3.3-mediated paternal chromatin remodeling is essential for the development of preimplantation embryos and the activation of the paternal genome during embryogenesis.
Collapse
Affiliation(s)
- Qingran Kong
- From the Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and.,Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China, and
| | - Laura A Banaszynski
- Laboratory of Chromatin Biology and Epigenetics, Rockefeller University, New York, New York 10065
| | - Fuqiang Geng
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Xiaolei Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China, and
| | - Jiaming Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China, and
| | - Heng Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China, and
| | - Claire L O'Neill
- From the Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and
| | - Peidong Yan
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China, and
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin 150030, China, and
| | - Koji Shido
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Gianpiero D Palermo
- From the Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and
| | - C David Allis
- Laboratory of Chromatin Biology and Epigenetics, Rockefeller University, New York, New York 10065
| | - Shahin Rafii
- Department of Medicine, Weill Cornell Medical College, New York, New York 10065
| | - Zev Rosenwaks
- From the Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and
| | - Duancheng Wen
- From the Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine and
| |
Collapse
|
6
|
Piazzesi A, Papić D, Bertan F, Salomoni P, Nicotera P, Bano D. Replication-Independent Histone Variant H3.3 Controls Animal Lifespan through the Regulation of Pro-longevity Transcriptional Programs. Cell Rep 2017; 17:987-996. [PMID: 27760329 PMCID: PMC5081402 DOI: 10.1016/j.celrep.2016.09.074] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/11/2016] [Accepted: 09/22/2016] [Indexed: 01/06/2023] Open
Abstract
Chromatin structure orchestrates the accessibility to the genetic material. Replication-independent histone variants control transcriptional plasticity in postmitotic cells. The life-long accumulation of these histones has been described, yet the implications on organismal aging remain elusive. Here, we study the importance of the histone variant H3.3 in Caenorhabditis elegans longevity pathways. We show that H3.3-deficient nematodes have negligible lifespan differences compared to wild-type animals. However, H3.3 is essential for the lifespan extension of C. elegans mutants in which pronounced transcriptional changes control longevity programs. Notably, H3.3 loss critically affects the expression of a very large number of genes in long-lived nematodes, resulting in transcriptional profiles similar to wild-type animals. We conclude that H3.3 positively contributes to diverse lifespan-extending signaling pathways, with potential implications on age-related processes in multicellular organisms. H3.3 expression increases over time in C. elegans H3.3 positively regulates the lifespan extension of long-lived nematodes H3.3 deficiency affects gene expression patterns in long-lived C. elegans mutants
Collapse
Affiliation(s)
- Antonia Piazzesi
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Dražen Papić
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Fabio Bertan
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Paolo Salomoni
- Samantha Dickson Brain Cancer Unit, University College London Cancer Institute (UCL), 72 Huntley Street, London WC1E 6DD, UK
| | - Pierluigi Nicotera
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Ludwig-Erhard-Allee 2, 53175 Bonn, Germany.
| |
Collapse
|
7
|
Tvardovskiy A, Schwämmle V, Kempf SJ, Rogowska-Wrzesinska A, Jensen ON. Accumulation of histone variant H3.3 with age is associated with profound changes in the histone methylation landscape. Nucleic Acids Res 2017; 45:9272-9289. [PMID: 28934504 PMCID: PMC5766163 DOI: 10.1093/nar/gkx696] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 07/26/2017] [Indexed: 12/20/2022] Open
Abstract
Deposition of replication-independent histone variant H3.3 into chromatin is essential for many biological processes, including development and reproduction. Unlike replication-dependent H3.1/2 isoforms, H3.3 is expressed throughout the cell cycle and becomes enriched in postmitotic cells with age. However, lifelong dynamics of H3 variant replacement and the impact of this process on chromatin organization remain largely undefined. Using quantitative middle-down proteomics we demonstrate that H3.3 accumulates to near saturation levels in the chromatin of various mouse somatic tissues by late adulthood. Accumulation of H3.3 is associated with profound changes in global levels of both individual and combinatorial H3 methyl modifications. A subset of these modifications exhibit distinct relative abundances on H3 variants and remain stably enriched on H3.3 throughout the lifespan, suggesting a causal relationship between H3 variant replacement and age-dependent changes in H3 methylation. Furthermore, the H3.3 level is drastically reduced in human hepatocarcinoma cells as compared to nontumoral hepatocytes, suggesting the potential utility of the H3.3 relative abundance as a biomarker of abnormal cell proliferation activity. Overall, our study provides the first quantitative characterization of dynamic changes in H3 proteoforms throughout lifespan in mammals and suggests a role for H3 variant replacement in modulating H3 methylation landscape with age.
Collapse
Affiliation(s)
- Andrey Tvardovskiy
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.,Center for Epigenetics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Veit Schwämmle
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.,Center for Epigenetics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Stefan J Kempf
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Adelina Rogowska-Wrzesinska
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.,Center for Epigenetics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.,Center for Epigenetics, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
8
|
Dong Z, Kennedy E, Hokmabadi M, Timp G. Discriminating Residue Substitutions in a Single Protein Molecule Using a Sub-nanopore. ACS NANO 2017; 11:5440-5452. [PMID: 28538092 DOI: 10.1021/acsnano.6b08452] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
It is now possible to create, in a thin inorganic membrane, a single, sub-nanometer-diameter pore (i.e., a sub-nanopore) about the size of an amino acid residue. To explore the prospects for sequencing protein with it, measurements of the force and current were performed as two denatured histones, which differed by four amino acid residue substitutions, were impelled systematically through the sub-nanopore one at a time using an atomic force microscope. The force measurements revealed that once the denatured protein, stabilized by sodium dodecyl sulfate (SDS), translocated through the sub-nanopore, a disproportionately large force was required to pull it back. This was interpreted to mean that the SDS was cleaved from the protein during the translocation. The force measurements also exposed a dichotomy in the translocation kinetics: either the molecule slid nearly frictionlessly through the pore or it slipped-and-stuck. When it slid frictionlessly, regardless of whether the molecule was pulled N-terminus or C-terminus first through the pore, regular patterns were observed intermittently in the force and blockade current fluctuations that corresponded to the distance between stretched residues. Furthermore, the amplitude of the fluctuations in the current blockade were correlated with the occluded volume associated with the amino acid residues in the pore. Finally, a comparison of the patterns in the current fluctuations associated with the two practically identical histones supported the conclusion that a sub-nanopore was sensitive enough to discriminate amino acid substitutions in the sequence of a single protein molecule by measuring volumes of 0.1 nm3 per read.
Collapse
Affiliation(s)
- Zhuxin Dong
- Department of Electrical Engineering and ‡Departments of Electrical Engineering and Biological Science, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Eamonn Kennedy
- Department of Electrical Engineering and ‡Departments of Electrical Engineering and Biological Science, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Mohammad Hokmabadi
- Department of Electrical Engineering and ‡Departments of Electrical Engineering and Biological Science, University of Notre Dame , Notre Dame, Indiana 46556, United States
| | - Gregory Timp
- Department of Electrical Engineering and ‡Departments of Electrical Engineering and Biological Science, University of Notre Dame , Notre Dame, Indiana 46556, United States
| |
Collapse
|
9
|
Abstract
Histone variants are an important part of the histone contribution to chromatin epigenetics. In this review, we describe how the known structural differences of these variants from their canonical histone counterparts impart a chromatin signature ultimately responsible for their epigenetic contribution. In terms of the core histones, H2A histone variants are major players while H3 variant CenH3, with a controversial role in the nucleosome conformation, remains the genuine epigenetic histone variant. Linker histone variants (histone H1 family) haven’t often been studied for their role in epigenetics. However, the micro-heterogeneity of the somatic canonical forms of linker histones appears to play an important role in maintaining the cell-differentiated states, while the cell cycle independent linker histone variants are involved in development. A picture starts to emerge in which histone H2A variants, in addition to their individual specific contributions to the nucleosome structure and dynamics, globally impair the accessibility of linker histones to defined chromatin locations and may have important consequences for determining different states of chromatin metabolism.
Collapse
Affiliation(s)
- Manjinder S Cheema
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W-3P6, Canada.
| | - Juan Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W-3P6, Canada.
| |
Collapse
|