1
|
Hou Y, Zuo Y, Song S, Zhang T. Long-term variable photoperiod exposure impairs hippocampal synapse involving of the glutamate system and leads to memory deficits in male Wistar rats. Exp Neurol 2025; 387:115191. [PMID: 39971149 DOI: 10.1016/j.expneurol.2025.115191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/07/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
Excessive artificial light at night can induce the human circadian misalignment, potentially impairing memory consolidation and the rhythms of hippocampal clock genes. To investigate the impact of circadian misalignment on hippocampal function, we measured various field excitatory postsynaptic potentials (fEPSP) and golgi staining in the CA1 and dentate gyrus (DG) regions in Wistar rats. Our findings revealed that circadian misalignment resulted in a leftward shift in the input-output (I-O) curve within the CA1 region, decreased long-term potentiation (LTP), multi-time interval paired-pulse ratio (PPR), as well as dendritic spines and complexity across both CA1 and DG regions. Additionally, magnetic resonance spectroscopy (MRS) showed that circadian misalignment downregulated glutamate-related neurotransmitters (Glu + Gln) in the hippocampus, contributing to impaired synaptic function. Furthermore, disruptions to glutamate receptor subunits due to circadian misalignment led to reduced expression of AMPA receptor and NMDA receptor subunits in the hippocampus. In summary, our results suggest that memory impairments resulting from circadian misalignment are associated with diminished functionality within the glutamatergic system; this includes reductions in both Glx levels and availability of glutamate receptor subunits-key factors contributing to compromised synaptic function within the hippocampus.
Collapse
Affiliation(s)
- Yuanyuan Hou
- Department of Rehabilitation Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, China
| | - Yao Zuo
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, 550004, China
| | - Shaofei Song
- Rehabilitation Medicine Center, West China Hospital, Sichuan University, 610041, China
| | - Tong Zhang
- Department of Neurological Rehabilitation, China Rehabilitation Research Center, Beijing Boai Hospital, Beijing, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China; School of Rehabilitation, Capital Medical University, Beijing 100068, China.
| |
Collapse
|
2
|
Dong B, Yue Y, Dong H, Wang Y. N-methyl-D-aspartate receptor hypofunction as a potential contributor to the progression and manifestation of many neurological disorders. Front Mol Neurosci 2023; 16:1174738. [PMID: 37396784 PMCID: PMC10308130 DOI: 10.3389/fnmol.2023.1174738] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDA) are glutamate-gated ion channels critical for synaptic transmission and plasticity. A slight variation of NMDAR expression and function can result in devastating consequences, and both hyperactivation and hypoactivation of NMDARs are detrimental to neural function. Compared to NMDAR hyperfunction, NMDAR hypofunction is widely implicated in many neurological disorders, such as intellectual disability, autism, schizophrenia, and age-related cognitive decline. Additionally, NMDAR hypofunction is associated with the progression and manifestation of these diseases. Here, we review the underlying mechanisms of NMDAR hypofunction in the progression of these neurological disorders and highlight that targeting NMDAR hypofunction is a promising therapeutic intervention in some neurological disorders.
Collapse
Affiliation(s)
- Bin Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Yue
- School of Psychology, Northeast Normal University, Changchun, China
| | - Han Dong
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yuehui Wang
- Department of Geriatrics, Jilin Geriatrics Clinical Research Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Sharma DR, Cheng B, Jaiswal MK, Zhang X, Kumar A, Parikh N, Singh D, Sheth H, Varghese M, Dobrenis K, Zhang X, Hof PR, Stanton PK, Ballabh P. Elevated insulin growth factor-1 in dentate gyrus induces cognitive deficits in pre-term newborns. Cereb Cortex 2023; 33:6449-6464. [PMID: 36646459 PMCID: PMC10183730 DOI: 10.1093/cercor/bhac516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/18/2023] Open
Abstract
Prematurely born infants are deprived of maternal hormones and cared for in the stressful environment of Neonatal Intensive Care Units (NICUs). They suffer from long-lasting deficits in learning and memory. Here, we show that prematurity and associated neonatal stress disrupt dentate gyrus (DG) development and induce long-term cognitive deficits and that these effects are mediated by insulin growth factor-1 (IGF1). Nonmaternal care of premature rabbits increased the number of granule cells and interneurons and reduced neurogenesis, suggesting accelerated premature maturation of DG. However, the density of glutamatergic synapses, mature dendritic spines, and synaptic transmission were reduced in preterm kits compared with full-term controls, indicating that premature synaptic maturation was abnormal. These findings were consistent with cognitive deficits observed in premature rabbits and appeared to be driven by transcriptomic changes in the granule cells. Preterm kits displayed reduced weight, elevated serum cortisol and growth hormone, and higher IGF1 expression in the liver and DG relative to full-term controls. Importantly, blocking IGF-1 receptor in premature kits restored cognitive deficits, increased the density of glutamatergic puncta, and rescued NR2B and PSD95 levels in the DG. Hence, IGF1 inhibition alleviates prematurity-induced cognitive dysfunction and synaptic changes in the DG through modulation of NR2B and PSD95. The study identifies a novel strategy to potentially rescue DG maldevelopment and cognitive dysfunction in premature infants under stress in NICUs.
Collapse
Affiliation(s)
- Deep R Sharma
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Bokun Cheng
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Manoj Kumar Jaiswal
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Xusheng Zhang
- Computational Genomics Core, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ajeet Kumar
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nirzar Parikh
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Divya Singh
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Hardik Sheth
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Merina Varghese
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kostantin Dobrenis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiaolei Zhang
- Departments of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Patric K Stanton
- Departments of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | - Praveen Ballabh
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
4
|
Rajão-Saraiva J, Dunot J, Ribera A, Temido-Ferreira M, Coelho JE, König S, Moreno S, Enguita FJ, Willem M, Kins S, Marie H, Lopes LV, Pousinha PA. Age-dependent NMDA receptor function is regulated by the amyloid precursor protein. Aging Cell 2023; 22:e13778. [PMID: 36704841 PMCID: PMC10014064 DOI: 10.1111/acel.13778] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/13/2022] [Accepted: 12/21/2022] [Indexed: 01/28/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are critical for the maturation and plasticity of glutamatergic synapses. In the hippocampus, NMDARs mainly contain GluN2A and/or GluN2B regulatory subunits. The amyloid precursor protein (APP) has emerged as a putative regulator of NMDARs, but the impact of this interaction to their function is largely unknown. By combining patch-clamp electrophysiology and molecular approaches, we unravel a dual mechanism by which APP controls GluN2B-NMDARs, depending on the life stage. We show that APP is highly abundant specifically at the postnatal postsynapse. It interacts with GluN2B-NMDARs, controlling its synaptic content and mediated currents, both in infant mice and primary neuronal cultures. Upon aging, the APP amyloidogenic-derived C-terminal fragments, rather than APP full-length, contribute to aberrant GluN2B-NMDAR currents. Accordingly, we found that the APP processing is increased upon aging, both in mice and human brain. Interfering with stability or production of the APP intracellular domain normalized the GluN2B-NMDARs currents. While the first mechanism might be essential for synaptic maturation during development, the latter could contribute to age-related synaptic impairments.
Collapse
Affiliation(s)
- Joana Rajão-Saraiva
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Jade Dunot
- University Côte d' Azur, Centre National de la Recherche Scientifique (CNRS) UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Aurore Ribera
- University Côte d' Azur, Centre National de la Recherche Scientifique (CNRS) UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Mariana Temido-Ferreira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Joana E Coelho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Svenja König
- Division of Human Biology and Human Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Sébastien Moreno
- University Côte d' Azur, Centre National de la Recherche Scientifique (CNRS) UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Michael Willem
- Biomedical Center (BMC), Division of Metabolic Biochemistry, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefan Kins
- Division of Human Biology and Human Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Hélène Marie
- University Côte d' Azur, Centre National de la Recherche Scientifique (CNRS) UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Luísa V Lopes
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Lisboa, Portugal
| | - Paula A Pousinha
- University Côte d' Azur, Centre National de la Recherche Scientifique (CNRS) UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| |
Collapse
|
5
|
Lee HJ, Park JH, Trotter JH, Maher JN, Keenoy KE, Jang YM, Lee Y, Kim JI, Weeber EJ, Hoe HS. Reelin and APP Cooperatively Modulate Dendritic Spine Formation In Vitro and In Vivo. Exp Neurobiol 2023; 32:42-55. [PMID: 36919335 PMCID: PMC10017845 DOI: 10.5607/en22044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/09/2023] [Accepted: 02/08/2023] [Indexed: 03/16/2023] Open
Abstract
Amyloid precursor protein (APP) plays an important role in the pathogenesis of Alzheimer's disease (AD), but the normal function of APP at synapses is poorly understood. We and others have found that APP interacts with Reelin and that each protein is individually important for dendritic spine formation, which is associated with learning and memory, in vitro. However, whether Reelin acts through APP to modulate dendritic spine formation or synaptic function remains unknown. In the present study, we found that Reelin treatment significantly increased dendritic spine density and PSD-95 puncta number in primary hippocampal neurons. An examination of the molecular mechanisms by which Reelin regulates dendritic spinogenesis revealed that Reelin enhanced hippocampal dendritic spine formation in a Ras/ERK/CREB signaling-dependent manner. Interestingly, Reelin did not increase dendritic spine number in primary hippocampal neurons when APP expression was reduced or in vivo in APP knockout (KO) mice. Taken together, our data are the first to demonstrate that Reelin acts cooperatively with APP to modulate dendritic spine formation and suggest that normal APP function is critical for Reelin-mediated dendritic spinogenesis at synapses.
Collapse
Affiliation(s)
- Hyun-Ju Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Jin-Hee Park
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu 41062, Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea
| | - Justin H Trotter
- Department of Molecular Pharmacology and Physiology, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA
| | - James N Maher
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Kathleen E Keenoy
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - You Mi Jang
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu 41062, Korea
| | - Youngeun Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Jae-Ick Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Edwin J Weeber
- Department of Molecular Pharmacology and Physiology, USF Health Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu 41062, Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Korea.,Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
6
|
Potier M, Maitre M, Leste-Lasserre T, Marsicano G, Chaouloff F, Marighetto A. Age-dependent effects of estradiol on temporal memory: A role for the type 1 cannabinoid receptor? Psychoneuroendocrinology 2023; 148:106002. [PMID: 36521252 DOI: 10.1016/j.psyneuen.2022.106002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
This study investigated in male mice how age modulates the effects of acute 17β-estradiol (E2) on dorsal CA1 (dCA1)-dependent retention of temporal associations, which are critical for declarative memory. E2 was systemically injected to young (3-4 months old) and aged (22-24 months old) adult mice either (i) 1 h before the acquisition of an auditory trace fear conditioning (TFC) procedure allowing the assessment of temporal memory retention 24 h later or (ii) during in vivo electrophysiological recordings of CA3 to dCA1 synaptic efficacy under anesthesia. In young mice, E2 induced parallel dose-dependent reductions in memory and synaptic efficacy, i.e. an impairment in TFC retention and a long-term (NMDA receptor-dependent) depression of dCA1 synaptic efficacy as assessed by field excitatory postsynaptic potentials. In contrast, E2 tended to improved TFC retention whilst failing to change synaptic efficacy in aged mice. Age-dependent effects of E2 treatment were confirmed by immunohistochemical analyses of TFC acquisition-elicited dCA1 Fos activation. Thus, such an activation was respectively reduced and enhanced in young and aged E2-treated mice, compared to vehicle treatments. Hippocampal mRNA expression of estrogen receptors by RT-PCR analyses revealed an age-related increase in each receptor mRNA expression. In keeping with the key role of the endocannabinoid system in memory processes and CA3 to dCA1 synaptic plasticity, we next examined the role of cannabinoid type 1 receptors (CB1-R) in the aforementioned age-dependent effects of E2. Having confirmed that mRNA expression of CB1-R diminishes with age, we then observed that the deleterious effects of E2 on both memory and synaptic efficacy were both prevented by the CB1-R antagonist Rimonabant whilst being absent in CB1-R knock out mice. This study (i) reveals age-dependent effects of acute E2 on temporal memory and CA3 to dCA1 synaptic efficacy and (ii) suggests a key role of CB1-R in mediating E2 deleterious effects in young adulthood. Aging-related reductions in CB1-R might thus underlie E2 paradoxical effects across age.
Collapse
Affiliation(s)
- Mylène Potier
- Pathophysiology of Declarative Memory, INSERM U1215, Neurocentre Magendie, Bordeaux, France; University of Bordeaux, Bordeaux, France.
| | - Marlène Maitre
- PUMA, INSERM U1215, Neurocentre Magendie, Bordeaux, France
| | | | - Giovanni Marsicano
- Endocannabinoids & NeuroAdaptation, INSERM U1215, Neurocentre Magendie, Bordeaux, France; University of Bordeaux, Bordeaux, France
| | - Francis Chaouloff
- Endocannabinoids & NeuroAdaptation, INSERM U1215, Neurocentre Magendie, Bordeaux, France; University of Bordeaux, Bordeaux, France.
| | - Aline Marighetto
- Pathophysiology of Declarative Memory, INSERM U1215, Neurocentre Magendie, Bordeaux, France; University of Bordeaux, Bordeaux, France
| |
Collapse
|
7
|
Lin C, Oh MM, Disterhoft JF. Aging-Related Alterations to Persistent Firing in the Lateral Entorhinal Cortex Contribute to Deficits in Temporal Associative Memory. Front Aging Neurosci 2022; 14:838513. [PMID: 35360205 PMCID: PMC8963507 DOI: 10.3389/fnagi.2022.838513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
With aging comes a myriad of different disorders, and cognitive decline is one of them. Studies have consistently shown a decline amongst aged subjects in their ability to acquire and maintain temporal associative memory. Defined as the memory of the association between two objects that are separated in time, temporal associative memory is dependent on neocortical structures such as the prefrontal cortex and temporal lobe structures. For this memory to be acquired, a mental trace of the first stimulus is necessary to bridge the temporal gap so the two stimuli can be properly associated. Persistent firing, the ability of the neuron to continue to fire action potentials even after the termination of a triggering stimulus, is one mechanism that is posited to support this mental trace. A recent study demonstrated a decline in persistent firing ability in pyramidal neurons of layer III of the lateral entorhinal cortex with aging, contributing to learning impairments in temporal associative memory acquisition. In this work, we explore the potential ways persistent firing in lateral entorhinal cortex (LEC) III supports temporal associative memory, and how aging may disrupt this mechanism within the temporal lobe system, resulting in impairment in this crucial behavior.
Collapse
|
8
|
Kreis A, Desloovere J, Suelves N, Pierrot N, Yerna X, Issa F, Schakman O, Gualdani R, de Clippele M, Tajeddine N, Kienlen-Campard P, Raedt R, Octave JN, Gailly P. Overexpression of wild-type human amyloid precursor protein alters GABAergic transmission. Sci Rep 2021; 11:17600. [PMID: 34475508 PMCID: PMC8413381 DOI: 10.1038/s41598-021-97144-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
The function of the amyloid precursor protein (APP) is not fully understood, but its cleavage product amyloid beta (Aβ) together with neurofibrillary tangles constitute the hallmarks of Alzheimer's disease (AD). Yet, imbalance of excitatory and inhibitory neurotransmission accompanied by loss of synaptic functions, has been reported much earlier and independent of any detectable pathological markers. Recently, soluble APP fragments have been shown to bind to presynaptic GABAB receptors (GABABRs), subsequently decreasing the probability of neurotransmitter release. In this body of work, we were able to show that overexpression of wild-type human APP in mice (hAPPwt) causes early cognitive impairment, neuronal loss, and electrophysiological abnormalities in the absence of amyloid plaques and at very low levels of Aβ. hAPPwt mice exhibited neuronal overexcitation that was evident in EEG and increased long-term potentiation (LTP). Overexpression of hAPPwt did not alter GABAergic/glutamatergic receptor components or GABA production ability. Nonetheless, we detected a decrease of GABA but not glutamate that could be linked to soluble APP fragments, acting on presynaptic GABABRs and subsequently reducing GABA release. By using a specific presynaptic GABABR antagonist, we were able to rescue hyperexcitation in hAPPwt animals. Our results provide evidence that APP plays a crucial role in regulating inhibitory neurotransmission.
Collapse
Affiliation(s)
- Anna Kreis
- Laboratory of Cell Physiology, Institute of Neuroscience, Université Catholique de Louvain, av. Mounier 53/B1.53.17, 1200, Brussels, Belgium
| | - Jana Desloovere
- Faculty of Medicine and Health Sciences, Universiteit Gent, C. Heymanslaan 10, 9000, Gent, Belgium
| | - Nuria Suelves
- Alzheimer Dementia Group, Institute of Neuroscience, Université Catholique de Louvain, av. Mounier 53, 1200, Brussels, Belgium
| | - Nathalie Pierrot
- Alzheimer Dementia Group, Institute of Neuroscience, Université Catholique de Louvain, av. Mounier 53, 1200, Brussels, Belgium
| | - Xavier Yerna
- Laboratory of Cell Physiology, Institute of Neuroscience, Université Catholique de Louvain, av. Mounier 53/B1.53.17, 1200, Brussels, Belgium
| | - Farah Issa
- Laboratory of Cell Physiology, Institute of Neuroscience, Université Catholique de Louvain, av. Mounier 53/B1.53.17, 1200, Brussels, Belgium
| | - Olivier Schakman
- Laboratory of Cell Physiology, Institute of Neuroscience, Université Catholique de Louvain, av. Mounier 53/B1.53.17, 1200, Brussels, Belgium
| | - Roberta Gualdani
- Laboratory of Cell Physiology, Institute of Neuroscience, Université Catholique de Louvain, av. Mounier 53/B1.53.17, 1200, Brussels, Belgium
| | - Marie de Clippele
- Laboratory of Cell Physiology, Institute of Neuroscience, Université Catholique de Louvain, av. Mounier 53/B1.53.17, 1200, Brussels, Belgium
| | - Nicolas Tajeddine
- Laboratory of Cell Physiology, Institute of Neuroscience, Université Catholique de Louvain, av. Mounier 53/B1.53.17, 1200, Brussels, Belgium
| | - Pascal Kienlen-Campard
- Alzheimer Dementia Group, Institute of Neuroscience, Université Catholique de Louvain, av. Mounier 53, 1200, Brussels, Belgium
| | - Robrecht Raedt
- Faculty of Medicine and Health Sciences, Universiteit Gent, C. Heymanslaan 10, 9000, Gent, Belgium
| | - Jean-Noël Octave
- Alzheimer Dementia Group, Institute of Neuroscience, Université Catholique de Louvain, av. Mounier 53, 1200, Brussels, Belgium
| | - Philippe Gailly
- Laboratory of Cell Physiology, Institute of Neuroscience, Université Catholique de Louvain, av. Mounier 53/B1.53.17, 1200, Brussels, Belgium.
| |
Collapse
|
9
|
Al Abed AS, Reynolds NJ, Dehorter N. A Second Wave for the Neurokinin Tac2 Pathway in Brain Research. Biol Psychiatry 2021; 90:156-164. [PMID: 33867115 DOI: 10.1016/j.biopsych.2021.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/19/2022]
Abstract
Despite promising advances in basic research of the neurokinin B/Tac2 pathway in both animals and humans, clinical applications are yet to be implemented. This is likely because of our limited understanding of the action of the pathway in the brain. While this system controls neuronal activity in multiple regions, the precise impact of Tac2-induced cellular responses on behavior remains unclear. Recently, elegant studies revealed a key contribution to stress-related behaviors and memory. Here, we discuss the crucial importance of bridging the gap between the Tac2 pathway's involvement in cell physiology and cognition to comprehend its role in health and disease. We propose that a better understanding of the Tac2 pathway in the brain could provide an essential perspective for basic investigations, which in turn will feed clinical research.
Collapse
Affiliation(s)
- A Shaam Al Abed
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Nathan J Reynolds
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Nathalie Dehorter
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| |
Collapse
|