1
|
Li W, Li Y, Wang M, Liu H, Hong G, Jiang L, Liu Z, Wu Y, Yuan L, Zhao X, He Z, Guo S, Xiao Y, Bi X, Xia M, Zou G, Zhang L, Gao J, Fu X. TNFAIP8L2 maintains hair cell function and regulates age-related hearing loss via mTORC1 signaling. Mol Ther 2025:S1525-0016(25)00218-7. [PMID: 40165373 DOI: 10.1016/j.ymthe.2025.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/15/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
Age-related hearing loss (ARHL) is one of the most prevalent and complex disorders. Our previous study demonstrated that abnormal activation of mammalian target of rapamycin complex 1 (mTORC1) signaling in the cochlear neurosensory epithelium causes auditory hair cell (HC) damage and contributes to ARHL. However, the underlying mechanism of mTORC1 activation remains unclear. In this study, we identified tumor necrosis factor-alpha-induced protein 8-like 2 (TNFAIP8L2), an immune regulatory gene, as a potential candidate. To elucidate the effect of TNFAIP8L2 on mTORC1 signaling in the neurosensory epithelium and on hearing function, we generated a Tnfaip8l2-deficient (Tnfaip8l2-/-) mouse model. We discovered that Tnfaip8l2 deficiency led to features of oxidative stress in cochlear HCs and age-related hearing degeneration, exhibiting a similar phenotype to the mTORC1-over-activated Tsc1-cKO mice described previously. Furthermore, rapamycin, a well-known mTORC1 inhibitor, significantly mitigated the hearing dysfunction caused by Tnfaip8l2-deficiency. Mechanistically, we found that TNFAIP8L2 regulates mTORC1 signaling by simultaneously inhibiting the GTPase activity of Ras homolog enriched in brain (RHEB) and Ras-related C3 botulinum toxin substrate 1 (RAC1). Notably, both RHEB and RAC1 inhibitors alleviated the hearing phenotype observed in Tnfaip8l2-/- mice by inhibiting mTORC1 signaling. Collectively, our results provide insights into the activation of the mTORC1 pathway in aged mouse cochleae and positions TNFAIP8L2 as a valuable theoretical strategy.
Collapse
Affiliation(s)
- Wen Li
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yu Li
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Min Wang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Hao Liu
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Guodong Hong
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Luhan Jiang
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Ziyi Liu
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yunhao Wu
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Liangjie Yuan
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xiaoxu Zhao
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Zuhong He
- Department of Otorhinolaryngology-Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Siwei Guo
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yu Xiao
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xiuli Bi
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Ming Xia
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Guichang Zou
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Lining Zhang
- School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jiangang Gao
- School of Life Science, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaolong Fu
- School of Clinical and Basic Medical Sciences, Shandong Provincial Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
2
|
Wang Y, Huang L, Cen X, Liang Y, Chen K. Canonical MAPK signaling in auditory neuropathy. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167619. [PMID: 39662753 DOI: 10.1016/j.bbadis.2024.167619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Auditory neuropathy (AN) is an under-recognized form of hearing loss characterized by lesions in inner hair cells (IHCs), ribbon synapses and spiral ganglion neurons (SGNs). The lack of a targeted therapy for AN has increased the need for a better understanding of the pathogenic mechanism of AN. As mitogen-activated protein kinase (MAPK) signaling is ubiquitous in many biological processes, its alteration may facilitate the pathogenesis of multiple sites in AN. Here, we summaries the characteristics of AN under different molecular bases and first explore the mechanism of MAPK at different lesion sites. Alterations of extracellular signal-regulated kinase (ERK)/MAPK occur in IHCs and SGNs, whereas modulations of p38 and c-Jun NH2-terminal kinase (JNK) were found in ribbon synapses and SGNs. In conclusion, inductive MAPK alterations in the pathogenesis and development of AN are likely to represent a potential therapeutic target to guide the development of treatments.
Collapse
Affiliation(s)
- Yueying Wang
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Lusha Huang
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoqing Cen
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Yue Liang
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Kaitian Chen
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
3
|
Zhang K, Hou B, Yan T, Qiao R, Qu P, Xu X, Zhang H. Identification of therapeutic target genes for age-related hearing loss through systematic genome-wide mendelian randomization of druggable genes. Exp Gerontol 2025; 200:112676. [PMID: 39778696 DOI: 10.1016/j.exger.2025.112676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/21/2024] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
BACKGROUND Age-related hearing loss (ARHL) is a common sensory disorder with significant public health implications. However, few effective treatment options are available. Mendelian randomization (MR) has been used to repurpose existing drugs and identify new therapeutic targets. Therefore, we performed a systematic genome-wide MR of drug-eligible individuals to explore potential therapeutic targets for ARHL. METHODS We obtained data on the expression quantitative trait locis (eQTLs) of druggable genes, which were then subjected to two-sample MR analyses and co-localisation analyses with data from the ARHL genome-wide association study to identify genes highly associated with ARHL. Additionally, we conducted phenome-wide research, enrichment analysis, protein network construction, drug prediction, and molecular docking to help develop more effective and targeted therapeutic treatments. RESULTS Overall, the MR analysis of eQTL data showed that 14 drug targets were significantly associated with ARHL. GO analysis of 14 potential targets revealed their primary involvement in biological processes such as the endoplasmic reticulum unfolded protein response, ER-nucleus signaling pathway, and fibroblast apoptotic process. Additionally, important cellular components include the Bcl-2 family of proteins and the endoplasmic reticulum lumen. After filtering using methods such as phenome-wide research, enrichment analysis, protein network construction, drug prediction, and molecular docking, six potentially druggable genes (BAK1, AMFR, LAMP3, STK17B, ACP5, and CD9) and six drugs (beclomethasone, propyl pyrazole triol, momelotinib, monoisoamyl-2,3-dimercaptosuccinate, pterostilbene, and naftidrofuryl) that may affect ARHL outcomes were finally identified. CONCLUSIONS Our findings identified 14 potential drug targets for ARHL. These findings offer promising leads for more effective treatments for ARHL and help determine the priority of drug development, potentially reducing costs.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China; NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, Shandong, China
| | - Bo Hou
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China; NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, Shandong, China
| | - Tao Yan
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China; NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, Shandong, China
| | - Ruru Qiao
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China; NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, Shandong, China
| | - Peng Qu
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China; Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Xinbo Xu
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China; NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, Shandong, China.
| | - Hanbing Zhang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, Jinan, Shandong, China; NHC Key Laboratory of Otorhinolaryngology, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
4
|
Rogalla MM, Quass GL, Yardley H, Martinez-Voigt C, Ford AN, Wallace G, Dileepkumar D, Corfas G, Apostolides PF. Population coding of auditory space in the dorsal inferior colliculus persists with altered binaural cues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612867. [PMID: 39314270 PMCID: PMC11419156 DOI: 10.1101/2024.09.13.612867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Sound localization is critical for real-world hearing, such as segregating overlapping sound streams. For optimal flexibility, central representations of auditory space must adapt to peripheral changes in binaural cue availability, such as following asymmetric hearing loss in adulthood. However, whether the mature auditory system can reliably encode spatial auditory representations upon abrupt changes in binaural input is unclear. Here we use 2-photon Ca2+ imaging in awake head-fixed mice to determine how the higher-order "shell" layers of the inferior colliculus (IC) encode sound source location in the frontal azimuth, under binaural conditions and after acute monaural hearing loss induced by an ear plug ipsilateral to the imaged hemisphere. Spatial receptive fields were typically broad and not exclusively contralateral: Neurons responded reliably to multiple positions in the contra- and ipsi-lateral hemifields, with preferred positions tiling the entire frontal azimuth. Ear plugging broadened receptive fields and reduced spatial selectivity in a subset of neurons, in agreement with an inhibitory influence of ipsilateral sounds. However ear plugging also enhanced spatial tuning and/or unmasked receptive fields in other neurons, shifting the distribution of preferred angles ipsilaterally with minimal impact on the neuronal population's overall spatial resolution; these effects occurred within 2 hours of ear plugging. Consequently, linear classifiers trained on fluorescence data from control and ear-plugged conditions had similar classification accuracy when tested on held out data from within, but not across hearing conditions. Spatially informative neuronal population codes therefore arise rapidly following monaural hearing loss, in absence of overt experience.
Collapse
Affiliation(s)
- Meike M. Rogalla
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Gunnar L. Quass
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Harry Yardley
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Clara Martinez-Voigt
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Alexander N. Ford
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Gunseli Wallace
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Deepak Dileepkumar
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Gabriel Corfas
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
| | - Pierre F. Apostolides
- Kresge Hearing Research Institute & Department of Otolaryngology – Head & Neck Surgery, University of Michigan Medical School, Ann Arbor, United States
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
5
|
Wu Q, Liu M, Ma T, Hu Q, Yuan C, Zhang X, Zhang T. Research trends and hotspot analysis of age-related hearing loss: A bibliometric analysis from 2019 to 2023. Exp Gerontol 2024; 194:112489. [PMID: 38936439 DOI: 10.1016/j.exger.2024.112489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Age-related hearing loss (ARHL) - also termed presbycusis - is prevalent among older adults, leading to a range of issues. Although considerable progress in the understanding of ARHL over the decades, available reports lack data from recent years and do not comprehensively reflect the latest advancements and trends. Therefore, our study sought to assess research hotspots and trends in ARHL over the past 5 years to provide the basis for future research. MATERIALS AND METHODS The Web of Science Core Collection database was searched and screened from January 1, 2019 to October 21, 2023, according to the inclusion criteria. CiteSpace (5.8.R3), VOSviewer (1.6.19), and Microsoft Excel 2019 were employed for bibliometric analysis and visualization. RESULTS 3084 articles from 92 countries led by the United States and China were included. There has been a steady upward trend in the number of publications from 2019 to 2023. The most productive institutions, authors, and journals are Johns Hopkins University (n = 113), Lin FR (n = 66), and Ear and Hearing (n = 135), respectively. Trend topic analyses revealed that "cochlear synaptopathy" and "dementia" were the predominant foci. Keywords, including "individuals" and "national health", began to appear. CONCLUSION Over the past 5 years, the annual number of publications has increased significantly and will continue to do so. Research on the mechanism of ARHL, represented by "oxidative stress", is a continuing focus. Emerging topics such as "individual differences" and "national health" may be potential future hotspots in this field.
Collapse
Affiliation(s)
- Qilong Wu
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Mengting Liu
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Tianyu Ma
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Qi Hu
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Chenyang Yuan
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Xiaopeng Zhang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Tianhong Zhang
- Department of Otolaryngology Head and Neck Surgery, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China.
| |
Collapse
|
6
|
Ji L, Borges BC, Martel DT, Wu C, Liberman MC, Shore SE, Corfas G. From hidden hearing loss to supranormal auditory processing by neurotrophin 3-mediated modulation of inner hair cell synapse density. PLoS Biol 2024; 22:e3002665. [PMID: 38935589 PMCID: PMC11210788 DOI: 10.1371/journal.pbio.3002665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/07/2024] [Indexed: 06/29/2024] Open
Abstract
Loss of synapses between spiral ganglion neurons and inner hair cells (IHC synaptopathy) leads to an auditory neuropathy called hidden hearing loss (HHL) characterized by normal auditory thresholds but reduced amplitude of sound-evoked auditory potentials. It has been proposed that synaptopathy and HHL result in poor performance in challenging hearing tasks despite a normal audiogram. However, this has only been tested in animals after exposure to noise or ototoxic drugs, which can cause deficits beyond synaptopathy. Furthermore, the impact of supernumerary synapses on auditory processing has not been evaluated. Here, we studied mice in which IHC synapse counts were increased or decreased by altering neurotrophin 3 (Ntf3) expression in IHC supporting cells. As we previously showed, postnatal Ntf3 knockdown or overexpression reduces or increases, respectively, IHC synapse density and suprathreshold amplitude of sound-evoked auditory potentials without changing cochlear thresholds. We now show that IHC synapse density does not influence the magnitude of the acoustic startle reflex or its prepulse inhibition. In contrast, gap-prepulse inhibition, a behavioral test for auditory temporal processing, is reduced or enhanced according to Ntf3 expression levels. These results indicate that IHC synaptopathy causes temporal processing deficits predicted in HHL. Furthermore, the improvement in temporal acuity achieved by increasing Ntf3 expression and synapse density suggests a therapeutic strategy for improving hearing in noise for individuals with synaptopathy of various etiologies.
Collapse
Affiliation(s)
- Lingchao Ji
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Beatriz C. Borges
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David T. Martel
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Calvin Wu
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - M. Charles Liberman
- Mass Eye and Ear Infirmary and Harvard Medical School. Boston, Massachusetts, United States of America
| | - Susan E. Shore
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gabriel Corfas
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
7
|
Sakai Y, Yamada M, Watanabe T, Yamazaki A, Furukawa M, Izumo N, Matsuzaki H. Eurycomanone from Eurycoma longifolia Jack upregulates neurotrophin-3 gene expression in retinal Müller cells in vitro. J Clin Biochem Nutr 2024; 74:199-206. [PMID: 38799139 PMCID: PMC11111470 DOI: 10.3164/jcbn.23-73] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 12/08/2023] [Indexed: 05/29/2024] Open
Abstract
Photoreceptor degeneration decreases light sensitivity and leads to vision loss and various retinal diseases. Neurotrophin-3, originating from Müller glial cells in the retina, plays a key role in protecting photoreceptors from damage induced by light or hypoxia. This neuroprotective approach is important because there are no established methods to regenerate lost photoreceptors. Dietary supplements are one of the useful methods for improving eye health. Eurycoma longifolia (E. longifolia) Jack, which is native to the tropical forest of Malaysia and other Southeast Asian countries, exhibits several medicinal properties. In the present study, we demonstrated that the water extract of E. longifolia roots enhanced neurotrophin-3 gene expression in primary rat Müller cells. Using a stepwise bioassay-guided fractionation and purification of E. longifolia root extracts, we isolated the active compound underlying neurotrophin-3 gene-enhancing activities. Mass spectrometry and nuclear magnetic resonance spectral data identified the compound as eurycomanone. This study provides evidence for the efficacy of E. longifolia and eurycomanone in enhancing neurotrophin-3 expression in Müller cells in vitro. Although the biological significance of this effect and its underlying mechanism remain to be elucidated, this study suggests that E. longifolia may be promising for improving eye health and must be further investigated.
Collapse
Affiliation(s)
- Yumi Sakai
- General Health Medical Research Center, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, Kanagawa 245-0066, Japan
- Department of Functional Brain Activities, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Research Center for Child Mental Development, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Masayoshi Yamada
- Research Institute, FANCL Corporation, 12-13 Kamishinano, Totsuka-ku, Yokohama, Kanagawa 244-0806, Japan
| | - Tomomichi Watanabe
- General Health Medical Research Center, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, Kanagawa 245-0066, Japan
| | - Arisa Yamazaki
- Research Institute, FANCL Corporation, 12-13 Kamishinano, Totsuka-ku, Yokohama, Kanagawa 244-0806, Japan
| | - Megumi Furukawa
- Department of Functional Brain Activities, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Research Center for Child Mental Development, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
- Pharmaceutical Education Center, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, Kanagawa 245-0066, Japan
| | - Nobuo Izumo
- General Health Medical Research Center, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, Kanagawa 245-0066, Japan
- Laboratory of Pharmacotherapy, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, Kanagawa 245-0066, Japan
| | - Hideo Matsuzaki
- Department of Functional Brain Activities, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Research Center for Child Mental Development, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
- Life Science Innovation Center, University of Fukui, 23-3, Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| |
Collapse
|
8
|
Saidia AR, François F, Casas F, Mechaly I, Venteo S, Veechi JT, Ruel J, Puel JL, Wang J. Oxidative Stress Plays an Important Role in Glutamatergic Excitotoxicity-Induced Cochlear Synaptopathy: Implication for Therapeutic Molecules Screening. Antioxidants (Basel) 2024; 13:149. [PMID: 38397748 PMCID: PMC10886292 DOI: 10.3390/antiox13020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
The disruption of the synaptic connection between the sensory inner hair cells (IHCs) and the auditory nerve fiber terminals of the type I spiral ganglion neurons (SGN) has been observed early in several auditory pathologies (e.g., noise-induced or ototoxic drug-induced or age-related hearing loss). It has been suggested that glutamate excitotoxicity may be an inciting element in the degenerative cascade observed in these pathological cochlear conditions. Moreover, oxidative damage induced by free hydroxyl radicals and nitric oxide may dramatically enhance cochlear damage induced by glutamate excitotoxicity. To investigate the underlying molecular mechanisms involved in cochlear excitotoxicity, we examined the molecular basis responsible for kainic acid (KA, a full agonist of AMPA/KA-preferring glutamate receptors)-induced IHC synapse loss and degeneration of the terminals of the type I spiral ganglion afferent neurons using a cochlear explant culture from P3 mouse pups. Our results demonstrated that disruption of the synaptic connection between IHCs and SGNs induced increased levels of oxidative stress, as well as altered both mitochondrial function and neurotrophin signaling pathways. Additionally, the application of exogenous antioxidants and neurotrophins (NT3, BDNF, and small molecule TrkB agonists) clearly increases synaptogenesis. These results suggest that understanding the molecular pathways involved in cochlear excitotoxicity is of crucial importance for the future clinical trials of drug interventions for auditory synaptopathies.
Collapse
Affiliation(s)
- Anissa Rym Saidia
- Institute for Neurosciences of Montpellier (INM), INSERM U1298, University Montpellier, 34295 Montpellier, France; (F.F.); (I.M.); (S.V.); (J.T.V.); (J.-L.P.)
| | - Florence François
- Institute for Neurosciences of Montpellier (INM), INSERM U1298, University Montpellier, 34295 Montpellier, France; (F.F.); (I.M.); (S.V.); (J.T.V.); (J.-L.P.)
| | - François Casas
- INRA, UMR 866 Dynamique Musculaire et Métabolisme, 34060 Montpellier, France;
| | - Ilana Mechaly
- Institute for Neurosciences of Montpellier (INM), INSERM U1298, University Montpellier, 34295 Montpellier, France; (F.F.); (I.M.); (S.V.); (J.T.V.); (J.-L.P.)
| | - Stéphanie Venteo
- Institute for Neurosciences of Montpellier (INM), INSERM U1298, University Montpellier, 34295 Montpellier, France; (F.F.); (I.M.); (S.V.); (J.T.V.); (J.-L.P.)
| | - Joseph T. Veechi
- Institute for Neurosciences of Montpellier (INM), INSERM U1298, University Montpellier, 34295 Montpellier, France; (F.F.); (I.M.); (S.V.); (J.T.V.); (J.-L.P.)
| | - Jérôme Ruel
- Centre de Recherche en CardioVasculaire et Nutrition, Aix-Marseille Université-INSERM, 1263-INRAE 1260, 13385 Marseille, France;
| | - Jean-Luc Puel
- Institute for Neurosciences of Montpellier (INM), INSERM U1298, University Montpellier, 34295 Montpellier, France; (F.F.); (I.M.); (S.V.); (J.T.V.); (J.-L.P.)
| | - Jing Wang
- Institute for Neurosciences of Montpellier (INM), INSERM U1298, University Montpellier, 34295 Montpellier, France; (F.F.); (I.M.); (S.V.); (J.T.V.); (J.-L.P.)
| |
Collapse
|
9
|
Gross J, Knipper M, Mazurek B. Candidate Key Proteins in Tinnitus: A Bioinformatic Study of Synaptic Transmission in Spiral Ganglion Neurons. Cell Mol Neurobiol 2023; 43:4189-4207. [PMID: 37736859 PMCID: PMC10661836 DOI: 10.1007/s10571-023-01405-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023]
Abstract
To study key proteins associated with changes in synaptic transmission in the spiral ganglion in tinnitus, we build three gene lists from the GeneCard database: 1. Perception of sound (PoS), 2. Acoustic stimulation (AcouStim), and 3. Tinnitus (Tin). Enrichment analysis by the DAVID database resulted in similar Gene Ontology (GO) terms for cellular components in all gene lists, reflecting synaptic structures known to be involved in auditory processing. The STRING protein-protein interaction (PPI) network and the Cytoscape data analyzer were used to identify the top two high-degree proteins (HDPs) and their high-score interaction proteins (HSIPs) identified by the combined score (CS) of the corresponding edges. The top two protein pairs (key proteins) for the PoS are BDNF-GDNF and OTOF-CACNA1D and for the AcouStim process BDNF-NTRK2 and TH-CALB1. The Tin process showed BDNF and NGF as HDPs, with high-score interactions with NTRK1 and NGFR at a comparable level. Compared to the PoS and AcouStim process, the number of HSIPs of key proteins (CS > 90. percentile) increases strongly in Tin. In the PoS and AcouStim networks, BDNF receptor signaling is the dominant pathway, and in the Tin network, the NGF-signaling pathway is of similar importance. Key proteins and their HSIPs are good indicators of biological processes and of signaling pathways characteristic for the normal hearing on the one hand and tinnitus on the other.
Collapse
Affiliation(s)
- Johann Gross
- Tinnitus Center, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Leibniz Society of Science Berlin, Berlin, Germany.
| | - Marlies Knipper
- Department of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
- Leibniz Society of Science Berlin, Berlin, Germany
| | - Birgit Mazurek
- Tinnitus Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
10
|
Wu PZ, O'Malley JT, Liberman MC. Neural Degeneration in Normal-Aging Human Cochleas: Machine-Learning Counts and 3D Mapping in Archival Sections. J Assoc Res Otolaryngol 2023; 24:499-511. [PMID: 37957485 PMCID: PMC10695900 DOI: 10.1007/s10162-023-00909-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/03/2023] [Indexed: 11/15/2023] Open
Abstract
Quantifying the survival patterns of spiral ganglion cells (SGCs), the cell bodies of auditory-nerve fibers, is critical to studies of sensorineural hearing loss, especially in human temporal bones. The classic method of manual counting is tedious, and, although stereology approaches can be faster, they can only be used to estimate total cell numbers per cochlea. Here, a machine-learning algorithm that automatically identifies, counts, and maps the SGCs in digitized images of semi-serial human temporal-bone sections not only speeds the analysis, with no loss of accuracy, but also allows 3D visualization of the SGCs and fine-grained mapping to cochlear frequency. Applying the algorithm to 62 normal-aging human ears shows significantly faster degeneration of SGCs in the basal than the apical half of the cochlea. Comparison to fiber counts in the same ears shows that the fraction of surviving SGCs lacking a peripheral axon steadily increases with age, reaching more than 50% in the apical cochlea and almost 66% in basal regions.
Collapse
Affiliation(s)
- Pei-Zhe Wu
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114-3096, USA.
- Department of Otolaryngology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Jennifer T O'Malley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114-3096, USA
- Department of Otolaryngology, Harvard Medical School, Boston, MA, 02115, USA
| | - M Charles Liberman
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, 243 Charles St., Boston, MA, 02114-3096, USA
- Department of Otolaryngology, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
11
|
Yang W, Zhao X, Chai R, Fan J. Progress on mechanisms of age-related hearing loss. Front Neurosci 2023; 17:1253574. [PMID: 37727326 PMCID: PMC10505809 DOI: 10.3389/fnins.2023.1253574] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Age-related hearing loss, or presbycusis, is a common cause of hearing loss in elderly people worldwide. It typically presents as progressive, irreversible, and usually affects the high frequencies of hearing, with a tremendous impact on the quality of life. Presbycusis is a complex multidimensional disorder, in addition to aging, multiple factors including exposure to noise, or ototoxic agents, genetic susceptibility, metabolic diseases and lifestyle can influence the onset and severity of presbycusis. With the aging of the body, its ability to clean up deleterious substances produced in the metabolic process is weakened, and the self-protection and repair function of the body is reduced, which in turn leads to irreversible damage to the cochlear tissue, resulting in the occurrence of presbycusis. Presently, oxidative stress (OS), mitochondrial DNA damage, low-grade inflammation, decreased immune function and stem cell depletion have been demonstrated to play a critical role in developing presbycusis. The purpose of this review is to illuminate the various mechanisms underlying this age-related hearing loss, with the goal of advancing our understanding, prevention, and treatment of presbycusis.
Collapse
Affiliation(s)
- Wen Yang
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaolong Zhao
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Renjie Chai
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jiangang Fan
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
12
|
Uribe PM, Hudson AM, Lockard G, Jiang M, Harding J, Steyger PS, Coffin AB. Hepatocyte growth factor mimetic confers protection from aminoglycoside-induced hair cell death in vitro. Hear Res 2023; 434:108786. [PMID: 37192594 DOI: 10.1016/j.heares.2023.108786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/18/2023] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
Loss of sensory hair cells from exposure to certain licit drugs, such as aminoglycoside antibiotics, can result in permanent hearing damage. Exogenous application of the neurotrophic molecule hepatocyte growth factor (HGF) promotes neuronal cell survival in a variety of contexts, including protecting hair cells from aminoglycoside ototoxicity. HGF itself is not an ideal therapeutic due to a short half-life and limited blood-brain barrier permeability. MM-201 is a chemically stable, blood-brain barrier permeable, synthetic HGF mimetic that serves as a functional ligand to activate the HGF receptor and its downstream signaling cascade. We previously demonstrated that MM-201 robustly protects zebrafish lateral line hair cells from aminoglycoside ototoxicity. Here, we examined the ability of MM-201 to protect mammalian sensory hair cells from aminoglycoside damage to further evaluate MM-201's clinical potential. We found that MM-201 exhibited dose-dependent protection from neomycin and gentamicin ototoxicity in mature mouse utricular explants. MM-201's protection was reduced following inhibition of mTOR, a downstream target of HGF receptor activation, implicating the activation of endogenous intracellular substrates by MM-201 as critical for the observed protection. We then asked if MM-201 altered the bactericidal properties of aminoglycosides. Using either plate or liquid growth assays we found that MM-201 did not alter the bactericidal efficacy of aminoglycoside antibiotics at therapeutically relevant concentrations. We therefore assessed the protective capacity of MM-201 in an in vivo mouse model of kanamycin ototoxicity. In contrast to our in vitro data, MM-201 did not attenuate kanamycin ototoxicity in vivo. Further, we found that MM-201 was ototoxic to mice across the dose range tested here. These data suggest species- and tissue-specific differences in otoprotective capacity. Next generation HGF mimetics are in clinical trials for neurodegenerative diseases and show excellent safety profiles, but neither preclinical studies nor clinical trials have examined hearing loss as a potential consequence of pharmaceutical HGF activation. Further research is needed to determine the consequences of systemic MM-201 application on the auditory system.
Collapse
Affiliation(s)
- Phillip M Uribe
- Department of Integrative Physiology and Neuroscience, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA
| | - Alexandria M Hudson
- Department of Integrative Physiology and Neuroscience, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA
| | - Gavin Lockard
- Department of Integrative Physiology and Neuroscience, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA
| | - Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Joseph Harding
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164 USA
| | - Peter S Steyger
- Translational Hearing Center, Creighton University, Omaha, NE, 68178, USA
| | - Allison B Coffin
- Department of Integrative Physiology and Neuroscience, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686 USA.
| |
Collapse
|
13
|
Smith-Cortinez N, Tan AK, Stokroos RJ, Versnel H, Straatman LV. Regeneration of Hair Cells from Endogenous Otic Progenitors in the Adult Mammalian Cochlea: Understanding Its Origins and Future Directions. Int J Mol Sci 2023; 24:ijms24097840. [PMID: 37175547 PMCID: PMC10177935 DOI: 10.3390/ijms24097840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Sensorineural hearing loss is caused by damage to sensory hair cells and/or spiral ganglion neurons. In non-mammalian species, hair cell regeneration after damage is observed, even in adulthood. Although the neonatal mammalian cochlea carries regenerative potential, the adult cochlea cannot regenerate lost hair cells. The survival of supporting cells with regenerative potential after cochlear trauma in adults is promising for promoting hair cell regeneration through therapeutic approaches. Targeting these cells by manipulating key signaling pathways that control mammalian cochlear development and non-mammalian hair cell regeneration could lead to regeneration of hair cells in the mammalian cochlea. This review discusses the pathways involved in the development of the cochlea and the impact that trauma has on the regenerative capacity of the endogenous progenitor cells. Furthermore, it discusses the effects of manipulating key signaling pathways targeting supporting cells with progenitor potential to promote hair cell regeneration and translates these findings to the human situation. To improve hearing recovery after hearing loss in adults, we propose a combined approach targeting (1) the endogenous progenitor cells by manipulating signaling pathways (Wnt, Notch, Shh, FGF and BMP/TGFβ signaling pathways), (2) by manipulating epigenetic control, and (3) by applying neurotrophic treatments to promote reinnervation.
Collapse
Affiliation(s)
- Natalia Smith-Cortinez
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - A Katherine Tan
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Robert J Stokroos
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Huib Versnel
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Louise V Straatman
- Department of Otorhinolaryngology and Head & Neck Surgery, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- UMC Utrecht Brain Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|