1
|
Teschendorff AE, Horvath S. Epigenetic ageing clocks: statistical methods and emerging computational challenges. Nat Rev Genet 2025; 26:350-368. [PMID: 39806006 DOI: 10.1038/s41576-024-00807-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 01/16/2025]
Abstract
Over the past decade, epigenetic clocks have emerged as powerful machine learning tools, not only to estimate chronological and biological age but also to assess the efficacy of anti-ageing, cellular rejuvenation and disease-preventive interventions. However, many computational and statistical challenges remain that limit our understanding, interpretation and application of epigenetic clocks. Here, we review these computational challenges, focusing on interpretation, cell-type heterogeneity and emerging single-cell methods, aiming to provide guidelines for the rigorous construction of interpretable epigenetic clocks at cell-type and single-cell resolution.
Collapse
Affiliation(s)
- Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | | |
Collapse
|
2
|
Zhang C, Saurat N, Cornacchia D, Chung SY, Sikder T, Nemchik A, Minotti A, Studer L, Betel D. Identifying Age-Modulating Compounds Using a Novel Computational Framework for Evaluating Transcriptional Age. Aging Cell 2025:e70075. [PMID: 40307992 DOI: 10.1111/acel.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/03/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
The differentiation of human pluripotent stem cells (hPSCs) provides access to a wide range of cell types and tissues. However, hPSC-derived lineages typically represent a fetal stage of development, and methods to expedite the transition to an aged identity to improve modeling of late-onset disease are limited. In this study, we introduce RNAge, a transcriptome-based computational platform designed to enable the evaluation of an induced aging or a rejuvenated state. We validated this approach across independent datasets spanning different tissues and species, and show that it can be used to evaluate the effectiveness of existing age-retaining or age-modulating interventions. We also used RNAge to perform an in silico compound screen using the LINCS L1000 dataset. This approach led to the identification and experimental confirmation of several novel compounds capable of inducing aging or rejuvenation in primary fibroblasts or hPSC-derived neurons. Additionally, we observed that applying this novel induced aging strategy to an hPSC model of Alzheimer's disease (AD) accelerated neurodegeneration in a genotype-specific manner. Our study offers a robust method for quantifying age-related manipulations and unveils compounds that significantly broaden the toolkit for age-modifying strategies in hPSC-derived lineages.
Collapse
Affiliation(s)
- Chao Zhang
- Section of Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Nathalie Saurat
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, New York, USA
- Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, New York, USA
| | - Daniela Cornacchia
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, New York, USA
- Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, New York, USA
| | - Sun Young Chung
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, New York, USA
- Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, New York, USA
| | - Trisha Sikder
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, New York, USA
- Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, New York, USA
| | - Adrianne Nemchik
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, New York, USA
- Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, New York, USA
| | - Andrew Minotti
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, New York, USA
- Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, New York, USA
- Weill Graduate School of Medical Sciences of Cornell University, New York, New York, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, New York, USA
- Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, New York, USA
| | - Doron Betel
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
3
|
Belenguer Á, Naya-Català F, Calduch-Giner JÀ, Pérez-Sánchez J. Exploring Multifunctional Markers of Biological Age in Farmed Gilthead Sea Bream ( Sparus aurata): A Transcriptomic and Epigenetic Interplay for an Improved Fish Welfare Assessment Approach. Int J Mol Sci 2024; 25:9836. [PMID: 39337324 PMCID: PMC11432111 DOI: 10.3390/ijms25189836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
DNA methylation clocks provide information not only about chronological but also biological age, offering a high-resolution and precise understanding of age-related pathology and physiology. Attempts based on transcriptomic and epigenetic approaches arise as integrative biomarkers linking the quantification of stress responses with specific fitness traits and may help identify biological age markers, which are also considered welfare indicators. In gilthead sea bream, targeted gene expression and DNA methylation analyses in white skeletal muscle proved sirt1 as a reliable marker of age-mediated changes in energy metabolism. To complete the list of welfare auditing biomarkers, wide analyses of gene expression and DNA methylation in one- and three-year-old fish were combined. After discriminant analysis, 668 differentially expressed transcripts were matched with those containing differentially methylated (DM) regions (14,366), and 172 were overlapping. Through enrichment analyses and selection, two sets of genes were retained: 33 showing an opposite trend for DNA methylation and expression, and 57 down-regulated and hypo-methylated. The first set displayed an apparently more reproducible and reliable pattern and 10 multifunctional genes with DM CpG in regulatory regions (sirt1, smad1, ramp1, psmd2-up-regulated; col5a1, calcrl, bmp1, thrb, spred2, atp1a2-down-regulated) were deemed candidate biological age markers for improved welfare auditing in gilthead sea bream.
Collapse
Affiliation(s)
- Álvaro Belenguer
- Instituto de Acuicultura Torre de la Sal (IATS, CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | - Fernando Naya-Català
- Instituto de Acuicultura Torre de la Sal (IATS, CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| | | | - Jaume Pérez-Sánchez
- Instituto de Acuicultura Torre de la Sal (IATS, CSIC), 12595 Ribera de Cabanes, Castellón, Spain
| |
Collapse
|
4
|
Arcos Hodar J, Jung S, Soudy M, Barvaux S, del Sol A. The cell rejuvenation atlas: leveraging network biology to identify master regulators of rejuvenation strategies. Aging (Albany NY) 2024; 16:12168-12190. [PMID: 39264584 PMCID: PMC11424581 DOI: 10.18632/aging.206105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/19/2024] [Indexed: 09/13/2024]
Abstract
Current rejuvenation strategies, which range from calorie restriction to in vivo partial reprogramming, only improve a few specific cellular processes. In addition, the molecular mechanisms underlying these approaches are largely unknown, which hinders the design of more holistic cellular rejuvenation strategies. To address this issue, we developed SINGULAR (Single-cell RNA-seq Investigation of Rejuvenation Agents and Longevity), a cell rejuvenation atlas that provides a unified system biology analysis of diverse rejuvenation strategies across multiple organs at single-cell resolution. In particular, we leverage network biology approaches to characterize and compare the effects of each strategy at the level of intracellular signaling, cell-cell communication, and transcriptional regulation. As a result, we identified master regulators orchestrating the rejuvenation response and propose that targeting a combination of them leads to a more holistic improvement of age-dysregulated cellular processes. Thus, the interactive database accompanying SINGULAR is expected to facilitate the future design of synthetic rejuvenation interventions.
Collapse
Affiliation(s)
- Javier Arcos Hodar
- Computational Biology Group, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Bizkaia Technology Park, Derio, Spain
| | - Sascha Jung
- Computational Biology Group, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Bizkaia Technology Park, Derio, Spain
| | - Mohamed Soudy
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
- Biomedical Data Science Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
| | - Sybille Barvaux
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
| | - Antonio del Sol
- Computational Biology Group, CIC bioGUNE-BRTA (Basque Research and Technology Alliance), Bizkaia Technology Park, Derio, Spain
- Computational Biology Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4362, Luxembourg
- Ikerbasque, Basque Foundation for Science, Bilbao, Bizkaia 48012, Spain
| |
Collapse
|
5
|
Jagaraj CJ, Shadfar S, Kashani SA, Saravanabavan S, Farzana F, Atkin JD. Molecular hallmarks of ageing in amyotrophic lateral sclerosis. Cell Mol Life Sci 2024; 81:111. [PMID: 38430277 PMCID: PMC10908642 DOI: 10.1007/s00018-024-05164-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/21/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, severely debilitating and rapidly progressing disorder affecting motor neurons in the brain, brainstem, and spinal cord. Unfortunately, there are few effective treatments, thus there remains a critical need to find novel interventions that can mitigate against its effects. Whilst the aetiology of ALS remains unclear, ageing is the major risk factor. Ageing is a slowly progressive process marked by functional decline of an organism over its lifespan. However, it remains unclear how ageing promotes the risk of ALS. At the molecular and cellular level there are specific hallmarks characteristic of normal ageing. These hallmarks are highly inter-related and overlap significantly with each other. Moreover, whilst ageing is a normal process, there are striking similarities at the molecular level between these factors and neurodegeneration in ALS. Nine ageing hallmarks were originally proposed: genomic instability, loss of telomeres, senescence, epigenetic modifications, dysregulated nutrient sensing, loss of proteostasis, mitochondrial dysfunction, stem cell exhaustion, and altered inter-cellular communication. However, these were recently (2023) expanded to include dysregulation of autophagy, inflammation and dysbiosis. Hence, given the latest updates to these hallmarks, and their close association to disease processes in ALS, a new examination of their relationship to pathophysiology is warranted. In this review, we describe possible mechanisms by which normal ageing impacts on neurodegenerative mechanisms implicated in ALS, and new therapeutic interventions that may arise from this.
Collapse
Affiliation(s)
- Cyril Jones Jagaraj
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Sina Shadfar
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Sara Assar Kashani
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Sayanthooran Saravanabavan
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Fabiha Farzana
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Julie D Atkin
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
6
|
Cui X, Mi T, Zhang H, Gao P, Xiao X, Lee J, Guelakis M, Gu X. Glutathione amino acid precursors protect skin from UVB-induced damage and improve skin tone. J Eur Acad Dermatol Venereol 2024; 38 Suppl 3:12-20. [PMID: 38189671 DOI: 10.1111/jdv.19718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/21/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND UV radiation exposure causes skin irritation, erythema, darkening and barrier disruption by inducing oxidative stress and inflammation. Glutathione, a master antioxidant, plays an important role in the antioxidant defence network of the skin. OBJECTIVE This study aimed to assess the in vitro protective effects of the glutathione amino acid precursors blend (GAP) on transcriptomic and phenotypic endpoints against UVB-induced challenges. METHODS Normal human epidermal melanocytes (NHEMs) were exposed to GAP, ascorbic acid (AA) and its derivatives. Viability was assessed using the CCK8 method. Melakutis®, a pigmented living skin equivalent (pLSE) model, underwent repeated 50 mJ/cm2 UVB irradiation with or without GAP treatment. Images of the model were captured with consistent camera parameters, and the model's light intensity was measured using a spectrophotometer. Melanin content was determined by measuring absorbance at 405 nm. Confirmation of melanin deposition and distribution was achieved through Fontana-Masson staining. Transcriptomic analysis was conducted using RNA sequencing (RNA-Seq), and a machine learning approach was employed for transcriptomic aging clock analysis. RESULTS In NHEMs, all tested compounds exhibited over 85% viability compared to the vehicle control, indicating no heightened risk of cytotoxicity. Notably, GAP demonstrated greater efficacy in inhibiting melanin production than AA derivatives at equivalent concentrations. In pLSE models, GAP notably enhanced model lightness, and reduced melanin content and deposition following the UVB challenge, whereas AA showed minimal impact. GAP effectively counteracted UVB-induced alterations in gene expression linked to pigmentation, inflammation and aging. Moreover, recurrent UVB exposure substantially elevated the biological age of pLSE models, a phenomenon mitigated by GAP treatment. CONCLUSIONS In NHEMs, GAP exhibited enhanced effectiveness in inhibiting melanin production at identical tested doses in comparison to AA derivatives. Noteworthy protective effects of GAP against UVB irradiation were observed in the pLSE models, as evidenced by skin pigmentation measurements and transcriptomic changes.
Collapse
Affiliation(s)
- Xiao Cui
- Unilever R&D Shanghai, Shanghai, China
| | | | | | - Ping Gao
- Unilever R&D Shanghai, Shanghai, China
| | - Xue Xiao
- Unilever R&D Shanghai, Shanghai, China
| | - Jianming Lee
- Unilever R&D Trumbull, Trumbull, Connecticut, USA
| | | | - Xuelan Gu
- Unilever R&D Shanghai, Shanghai, China
| |
Collapse
|
7
|
Dutta S, Goodrich JM, Dolinoy DC, Ruden DM. Biological Aging Acceleration Due to Environmental Exposures: An Exciting New Direction in Toxicogenomics Research. Genes (Basel) 2023; 15:16. [PMID: 38275598 PMCID: PMC10815440 DOI: 10.3390/genes15010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Biological clock technologies are designed to assess the acceleration of biological age (B-age) in diverse cell types, offering a distinctive opportunity in toxicogenomic research to explore the impact of environmental stressors, social challenges, and unhealthy lifestyles on health impairment. These clocks also play a role in identifying factors that can hinder aging and promote a healthy lifestyle. Over the past decade, researchers in epigenetics have developed testing methods that predict the chronological and biological age of organisms. These methods rely on assessing DNA methylation (DNAm) levels at specific CpG sites, RNA levels, and various biomolecules across multiple cell types, tissues, and entire organisms. Commonly known as 'biological clocks' (B-clocks), these estimators hold promise for gaining deeper insights into the pathways contributing to the development of age-related disorders. They also provide a foundation for devising biomedical or social interventions to prevent, reverse, or mitigate these disorders. This review article provides a concise overview of various epigenetic clocks and explores their susceptibility to environmental stressors.
Collapse
Affiliation(s)
- Sudipta Dutta
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.G.); (D.C.D.)
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.G.); (D.C.D.)
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Douglas M. Ruden
- C. S. Mott Center for Human Health and Development, Department of Obstetrics and Gynecology, Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
8
|
Baumann C, Zhang X, Kandasamy MK, Mei X, Chen S, Tehrani KF, Mortensen LJ, Watford W, Lall A, De La Fuente R. Acute irradiation induces a senescence-like chromatin structure in mammalian oocytes. Commun Biol 2023; 6:1258. [PMID: 38086992 PMCID: PMC10716162 DOI: 10.1038/s42003-023-05641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The mechanisms leading to changes in mesoscale chromatin organization during cellular aging are unknown. Here, we used transcriptional activator-like effectors, RNA-seq and superresolution analysis to determine the effects of genotoxic stress on oocyte chromatin structure. Major satellites are organized into tightly packed globular structures that coalesce into chromocenters and dynamically associate with the nucleolus. Acute irradiation significantly enhanced chromocenter mobility in transcriptionally inactive oocytes. In transcriptionally active oocytes, irradiation induced a striking unfolding of satellite chromatin fibers and enhanced the expression of transcripts required for protection from oxidative stress (Fermt1, Smg1), recovery from DNA damage (Tlk2, Rad54l) and regulation of heterochromatin assembly (Zfp296, Ski-oncogene). Non-irradiated, senescent oocytes exhibit not only high chromocenter mobility and satellite distension but also a high frequency of extra chromosomal satellite DNA. Notably, analysis of biological aging using an oocyte-specific RNA clock revealed cellular communication, posttranslational protein modifications, chromatin and histone dynamics as the top cellular processes that are dysregulated in both senescent and irradiated oocytes. Our results indicate that unfolding of heterochromatin fibers following acute genotoxic stress or cellular aging induced the formation of distended satellites and that abnormal chromatin structure together with increased chromocenter mobility leads to chromosome instability in senescent oocytes.
Collapse
Affiliation(s)
- Claudia Baumann
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, USA
| | - Xiangyu Zhang
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, USA
| | | | - Xiaohan Mei
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Division of Surgical Research, University of Missouri, School of Medicine, Columbia, MO, USA
- Weill Cornell Medical College, New York, NY, USA
| | - Shiyou Chen
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Division of Surgical Research, University of Missouri, School of Medicine, Columbia, MO, USA
| | - Kayvan F Tehrani
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, USA
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA, USA
- University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Luke J Mortensen
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, USA
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA, USA
| | - Wendy Watford
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Ashley Lall
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, USA
| | - Rabindranath De La Fuente
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
- Regenerative Biosciences Center (RBC), University of Georgia, Athens, GA, USA.
| |
Collapse
|
9
|
Zhang C, Saurat N, Cornacchia D, Chung SY, Sikder T, Minotti A, Studer L, Betel D. Identifying novel age-modulating compounds and quantifying cellular aging using novel computational framework for evaluating transcriptional age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547539. [PMID: 37461485 PMCID: PMC10349953 DOI: 10.1101/2023.07.03.547539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
The differentiation of human pluripotent stem cells (hPSCs) provides access to most cell types and tissues. However, hPSC-derived lineages capture a fetal-stage of development and methods to accelerate progression to an aged identity are limited. Understanding the factors driving cellular age and rejuvenation is also essential for efforts aimed at extending human life and health span. A prerequisite for such studies is the development of methods to score cellular age and simple readouts to assess the relative impact of various age modifying strategies. Here we established a transcriptional score (RNAge) in young versus old primary fibroblasts, frontal cortex and substantia nigra tissue. We validated the score in independent RNA-seq datasets and demonstrated a strong cell and tissue specificity. In fibroblasts we observed a reset of RNAge during iPSC reprogramming while direct reprogramming of aged fibroblasts to induced neurons (iN) resulted in the maintenance of both a neuronal and a fibroblast aging signature. Increased RNAge in hPSC-derived neurons was confirmed for several age-inducing strategies such as SATB1 loss, progerin expression or chemical induction of senescence (SLO). Using RNAge as a probe set, we next performed an in-silico screen using the LINCS L1000 dataset. We identified and validated several novel age-inducing and rejuvenating compounds, and we observed that RNAage captures age-related changes associated with distinct cellular hallmarks of age. Our study presents a simple tool to score age manipulations and identifies compounds that greatly expand the toolset of age-modifying strategies in hPSC derived lineages.
Collapse
|