1
|
Grant KA, Newman N, Lynn C, Davenport C, Gonzales S, Cuzon Carlson VC, Kroenke CD. Brain Functional Connectivity Mapping of Behavioral Flexibility in Rhesus Monkeys. J Neurosci 2022; 42:4867-4878. [PMID: 35552233 PMCID: PMC9188385 DOI: 10.1523/jneurosci.0816-21.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/21/2022] [Accepted: 05/02/2022] [Indexed: 11/21/2022] Open
Abstract
The predisposition to engage in autonomous habitual behaviors has been associated with behavioral disorders, such as obsessive-compulsive disorder and addiction. Attentional set-shifting tasks (ASSTs), which incorporate changes governing the association of discriminative stimuli with contingent reinforcement, are commonly used to measure underlying processes of cognitive/behavioral flexibility. The purpose of this study was to identify primate brain networks that mediate trait-like deficits in ASST performance using resting-state fMRI. A self-pacing ASST was administered to three cohorts of rhesus monkeys (total n = 35, 18 female). Increased performance over 30 consecutive sessions segregated the monkeys into two populations, termed High Performers (HP, n = 17) and Low Performers (LP, n = 17), with one anomaly. Compared with LPs, HPs had higher rates of improving performance over sessions and completed the 8 sets/sessions with fewer errors. LP monkeys, on the other hand, spent most of each session in the first set and often did not acquire the first reversal. A whole-brain independent components analysis of resting-state fMRI under isoflurane identified four strong networks. Of these, a dual regression analysis revealed that a designated "executive control network," differed between HPs and LPs. Specific areas of connectivity in the rhesus executive control network, including frontal cortices (ventrolateral, ventromedial, and orbital) and the dorsal striatum (caudate, putamen) correlated with perseverative errors and response latency. Overall, the results identify trait-like characteristics of behavioral flexibility that are associated with correlated brain activity involving specific nuclei of frontostriatal networks.SIGNIFICANCE STATEMENT Resting state functional connectivity MRI in rhesus monkeys identified specific nuclei in frontostriatal circuitry that were associated with population differences in perseverative and impulsive aspects of cognitive flexibility.
Collapse
Affiliation(s)
- Kathleen A Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
- Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon 97239
| | - Natali Newman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006
| | - Colton Lynn
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006
| | - Conor Davenport
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006
| | - Steven Gonzales
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006
| | - Verginia C Cuzon Carlson
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
- Portland Alcohol Research Center, Oregon Health & Science University, Portland, Oregon 97239
| | - Christopher D Kroenke
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon 97006
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
2
|
Wither RG, Boehnke SE, Lablans A, Armitage-Brown B, Munoz DP. Behavioral shaping of rhesus macaques using the Cambridge neuropsychological automated testing battery. J Neurosci Methods 2020; 342:108803. [PMID: 32534008 DOI: 10.1016/j.jneumeth.2020.108803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND The Cambridge neuropsychological test automated battery (CANTAB) is a set of computerized visuospatial tests used to probe cognition in humans. The non-human primate (NHP) version of the battery is a valuable translational research tool to quantify cognitive changes in NHP models of disease by allowing direct comparison with performance data from human patient populations. One limitation is the long training times required for NHPs to reach appropriate levels of task performance, which is prohibitive for high throughput experimental designs. NEW METHOD We report a new training regimen to teach NHPs a subset of CANTAB cognitive tasks using a method of successive approximations (shaping), where rewarded behaviors progressively approximate the goal behavior, and sequential task learning is used to build upon previously learned rules. Using this refined method, we taught 9 adult rhesus macaques to perform three tasks: the self-ordered spatial search (SOSS), delayed match-to-sample (DMTS), and paired associative learning (PAL) tasks. RESULTS AND COMPARISON WITH EXISTING METHODS NHPs learned all three cognitive tasks in approximately 130 training sessions, roughly 200 sessions faster than previously published training times. NHPs were able to perform each task to a stable level of performance (>80 % correct) enabling their use in future cognitive experiments. CONCLUSIONS Our approach of behavioral shaping reduced the time to train NHPs to performance criteria on SOSS, DMTS, and PAL tasks. This allows efficient use of the NHP-adapted CANTAB to compare cognitive changes in NHP models of neurological disease with those observed in human patient populations.
Collapse
Affiliation(s)
- Robert G Wither
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
| | - Susan E Boehnke
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Ann Lablans
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | | | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
3
|
Van Skike CE, Goodlett C, Matthews DB. Acute alcohol and cognition: Remembering what it causes us to forget. Alcohol 2019; 79:105-125. [PMID: 30981807 DOI: 10.1016/j.alcohol.2019.03.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 03/14/2019] [Accepted: 03/18/2019] [Indexed: 12/17/2022]
Abstract
Addiction has been conceptualized as a specific form of memory that appropriates typically adaptive neural mechanisms of learning to produce the progressive spiral of drug-seeking and drug-taking behavior, perpetuating the path to addiction through aberrant processes of drug-related learning and memory. From that perspective, to understand the development of alcohol use disorders, it is critical to identify how a single exposure to alcohol enters into or alters the processes of learning and memory, so that involvement of and changes in neuroplasticity processes responsible for learning and memory can be identified early. This review characterizes the effects produced by acute alcohol intoxication as a function of brain region and memory neurocircuitry. In general, exposure to ethanol doses that produce intoxicating effects causes consistent impairments in learning and memory processes mediated by specific brain circuitry, whereas lower doses either have no effect or produce a facilitation of memory under certain task conditions. Therefore, acute ethanol does not produce a global impairment of learning and memory, and can actually facilitate particular types of memory, perhaps particular types of memory that facilitate the development of excessive alcohol use. In addition, the effects on cognition are dependent on brain region, task demands, dose received, pharmacokinetics, and tolerance. Additionally, we explore the underlying alterations in neurophysiology produced by acute alcohol exposure that help to explain these changes in cognition and highlight future directions for research. Through understanding the impact that acute alcohol intoxication has on cognition, the preliminary changes potentially causing a problematic addiction memory can better be identified.
Collapse
Affiliation(s)
- Candice E Van Skike
- Department of Cellular and Integrative Physiology and The Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78245, United States
| | - Charles Goodlett
- Department of Psychology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, United States
| | - Douglas B Matthews
- Division of Psychology, University of Wisconsin - Eau Claire, Eau Claire, WI, 54702, United States.
| |
Collapse
|
4
|
Yabumoto T, Yoshida F, Miyauchi H, Baba K, Tsuda H, Ikenaka K, Hayakawa H, Koyabu N, Hamanaka H, Papa SM, Hirata M, Mochizuki H. MarmoDetector: A novel 3D automated system for the quantitative assessment of marmoset behavior. J Neurosci Methods 2019; 322:23-33. [PMID: 30946879 DOI: 10.1016/j.jneumeth.2019.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 11/28/2022]
Abstract
BACKGROUND Callithrix jacchus, generally known as the common marmoset, has recently garnered interest as an experimental primate model for better understanding the basis of human social behavior, architecture and function. Modelling human neurological and psychological diseases in marmosets can enhance the knowledge obtained from rodent research for future pre-clinical studies. Hence, comprehensive and quantitative assessments of marmoset behaviors are crucial. However, systems for monitoring and analyzing marmoset behaviors have yet to be established. NEW METHOD In this paper, we present a novel multimodal system, MarmoDetector, for the automated 3D analysis of marmoset behavior under freely moving conditions. MarmoDetector allows the quantitative assessment of marmoset behaviors using computerised tracking analysis techniques that are based on a Kinect system equipped with video recordings, infrared images and depth analysis. RESULTS Using MarmoDetector, we assessed behavioral circadian rhythms continuously over several days in home cages. In addition, MarmoDetector detected acute, transient complex behaviors of alcohol injected marmosets. COMPARISON TO EXISTING METHOD Compared to 2D recording, MarmoDetector detects activities more precisely and is very sensitive as we could detect behavioral defects specifically induced by alcohol administration. CONCLUSION MarmoDetector facilitates the rapid and accurate analysis of marmoset behavior and will enhance research on the neural basis of brain disorders.
Collapse
Affiliation(s)
- Taiki Yabumoto
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Fumiaki Yoshida
- Department of Neurological Diagnosis and Restoration, Graduat School of Medicine, Osaka University, Suita, Osaka, Japan; Department of Neurosurgery, Osaka University Medical School, Suita, Osaka, Japan; Department of Anatomy & Physiology, Faculty of Medicine, Saga University, Saga, Japan; Japan Science and Technology Agency, PRESTO, Japan
| | | | - Kousuke Baba
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Department of Advanced Hybrid Medicine, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hiroshi Tsuda
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kensuke Ikenaka
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hideki Hayakawa
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Nozomu Koyabu
- The Institute of Large Laboratory Animal Sciences, Center of Medical Innovation and Translational Research, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hiroki Hamanaka
- Department of Neurological Diagnosis and Restoration, Graduat School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Stella M Papa
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Masayuki Hirata
- Department of Neurological Diagnosis and Restoration, Graduat School of Medicine, Osaka University, Suita, Osaka, Japan; Department of Neurosurgery, Osaka University Medical School, Suita, Osaka, Japan; Center for Information and Neural Networks, National Institute of Information and Communications Technology and Osaka University, Osaka, Japan.
| | - Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
5
|
Sun W, Li X, Tang C, An L. Acute Low Alcohol Disrupts Hippocampus-Striatum Neural Correlate of Learning Strategy by Inhibition of PKA/CREB Pathway in Rats. Front Pharmacol 2018; 9:1439. [PMID: 30574089 PMCID: PMC6291496 DOI: 10.3389/fphar.2018.01439] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/22/2018] [Indexed: 11/30/2022] Open
Abstract
The hippocampus and striatum guide place-strategy and response-strategy learning, respectively, and they have dissociable roles in memory systems, which could compensate in case of temporary or permanent damage. Although acute alcohol (AA) treatment had been shown to have adverse effects on hippocampal function, whether it causes the functional compensation and the underlying mechanisms is unknown. In this study, rats treated with a low dose of AA avoided a hippocampus-dependent spatial strategy, instead preferring a striatum-dependent response strategy. Consistently, the learning-induced increase in hippocampal, but not striatal, pCREB was rendered less pronounced due to diminished activity of pPKA, but not pERK or pCaMKII. As rats approached the turn-decision area, Sp-cAMP, a PKA activator, was found to mitigate the inhibitory effect of AA on intra- and cross-structure synchronized neuronal oscillations, and rescue response-strategy bias and spatial learning deficits. Our study provides strong evidence of the critical link between neural couplings and strategy selection. Moreover, the PKA/CREB-signaling pathway is involved in the suppressive effect of AA on neural correlates of place-learning strategy. The novel important evidence provided here shows the functional couplings between the hippocampus and striatum in spatial learning processing and suggests possible avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Wei Sun
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoliang Li
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunzhi Tang
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lei An
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.,College of Acupuncture-Moxibustion and Orthopedics, Guiyang University of Chinese Medicine, Guiyang, China.,Department of Physiology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
6
|
Chandler CM, Follett ME, Porter NJ, Liang KY, Vallender EJ, Miller GM, Rowlett JK, Platt DM. Persistent negative effects of alcohol drinking on aspects of novelty-directed behavior in male rhesus macaques. Alcohol 2017; 63:19-26. [PMID: 28847378 DOI: 10.1016/j.alcohol.2017.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/04/2017] [Accepted: 03/05/2017] [Indexed: 11/19/2022]
Abstract
Humans with histories of prolonged heavy alcohol use exhibit poorer performance on cognitive tasks associated with problem solving, short-term memory, and visuospatial reasoning, even following the cessation of drinking, when compared with healthy controls. It is unclear, however, whether the cognitive problems are a consequence of alcohol exposure or a contributing factor to alcohol-use disorders. Here, we examined the relationship between performance on a novel object recognition (NOR) task and total alcohol consumption (TAC) in adult male rhesus macaques (n = 12; ETH group; trained to self-administer alcohol). NOR performance in this group was assessed prior to induction of alcohol drinking ("pre") and, again, after a 1-year abstinence period ("post") and was compared to the performance of a second group (n = 6; Control group), which was alcohol-naïve. In the NOR task, difficulty was manipulated across three phases by varying specific object features and/or by varying duration of access to objects. For each monkey, we measured aspects of novelty-related behavior including novelty detection, novelty reactivity, and perseverative behavior. TAC during induction and a "free" access period in which the monkey could choose between water and a 4% w/v ethanol solution also was determined. We found that performance deficits in the NOR task were a consequence of high total alcohol intake instead of a predictor of subsequent high intake. Poor NOR performance in drinkers with the highest intakes was characterized by increased perseverative behavior rather than an inability to detect or react to novelty. Finally, the observed deficits are long-lasting - persisting even after a year of abstinence. Given the prevalent and persistent nature of alcohol-induced cognitive deficits in patients in treatment settings, understanding the nature of the deficit and its neural basis could ultimately offer novel treatment approaches based on the reversal of alcohol-induced impairment.
Collapse
Affiliation(s)
- Cassie M Chandler
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Meagan E Follett
- Department of Psychiatry & Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | - Kevin Y Liang
- Harvard Medical School/NEPRC, Southborough, MA 01772, USA
| | - Eric J Vallender
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, USA; Department of Psychiatry & Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA; Harvard Medical School/NEPRC, Southborough, MA 01772, USA
| | - Gregory M Miller
- Harvard Medical School/NEPRC, Southborough, MA 01772, USA; Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - James K Rowlett
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, USA; Department of Psychiatry & Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA; Department of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA; Harvard Medical School/NEPRC, Southborough, MA 01772, USA
| | - Donna M Platt
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS 39216, USA; Department of Psychiatry & Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA; Department of Neurobiology & Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA; Harvard Medical School/NEPRC, Southborough, MA 01772, USA.
| |
Collapse
|
7
|
Kromrey SA, Gould RW, Nader MA, Czoty PW. Effects of prior cocaine self-administration on cognitive performance in female cynomolgus monkeys. Psychopharmacology (Berl) 2015; 232:2007-16. [PMID: 25633093 PMCID: PMC4426227 DOI: 10.1007/s00213-015-3865-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 11/25/2014] [Indexed: 12/26/2022]
Abstract
Cocaine use has been associated with cognitive impairments that may contribute to poor treatment outcomes. However, the degree to which these deficits extend into periods of abstinence has not been completely elucidated. This study tested whether prior experience self-administering cocaine affected acquisition of two cognitive tasks in 16 adult female cynomolgus monkeys. Seven monkeys had previously self-administered cocaine but had not had access to cocaine for 2 months at the start of this study. After monkeys were trained to respond on a touchscreen, associative learning and behavioral flexibility were assessed using a stimulus discrimination (SD) and reversal (SDR) task from the CANTAB battery. Performance on this task was monitored over the subsequent 3 months. Additionally, working memory was assessed with a delayed match-to-sample (DMS) task. Cocaine-naïve monkeys required fewer total trials and made fewer errors and omissions before acquiring the SD and SDR tasks compared with monkeys who had previously self-administered cocaine; two monkeys in the latter group did not acquire the task. However, this cognitive impairment dissipated over several months of exposure to the task. The number of sessions for touch training and delays required to establish a performance-based curve on the DMS task did not differ between groups. Results suggest that cocaine exposure can impair the ability to learn a novel task requiring behavioral inhibition and flexibility, even after an extended period of abstinence. However, this deficit did not extend to maintenance of the task or to acquisition of a working memory task.
Collapse
Affiliation(s)
- Sarah A Kromrey
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1083, USA
| | | | | | | |
Collapse
|
8
|
Kromrey SA, Czoty PW, Nader MA. Relationship between estradiol and progesterone concentrations and cognitive performance in normally cycling female cynomolgus monkeys. Horm Behav 2015; 72:12-9. [PMID: 25921587 PMCID: PMC4466063 DOI: 10.1016/j.yhbeh.2015.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 01/27/2023]
Abstract
Preclinical research has demonstrated that cognitive function may be influenced by estradiol (E2) and progesterone (P4) concentrations, although few cognition studies involve normally cycling females. The present study examined cognitive performance in normally cycling female cynomolgus macaques (n = 14), a species with similarities to humans in brain organization and a nearly identical menstrual cycle to women. Initial assessments compared cognitive measures to circulating concentrations of E2 and P4 (n = 12). Once a relationship was characterized between hormones and cognitive performance, the menstrual cycle was divided into four distinct phases: early follicular (EF), late follicular (LF), early luteal (EL) and late luteal (LL), verified by the onset of menses and serum concentrations of E2 and P4. Concentrations of E2 were highest during the LF phase and P4 concentrations peaked during the EL phase. All monkeys were trained on two cognitive tasks: reversal learning, involving simple discrimination (SD) and reversal (SDR), which measured associative learning and behavioral flexibility, respectively (n = 3-4 per phase) and a delayed match-to-sample (DMS) task which assessed working memory (n = 11). P4 concentrations were positively correlated with number of trials and errors during acquisition of SD performance, but not during acquisition of the SDR task or maintenance of the reversal-learning task. Across the menstrual cycle, significantly fewer errors were made in the SDR task during the LF phase, when E2 concentrations were high and P4 concentrations low. Working memory, assessed with the DMS task, was not consistently altered based on previously characterized menstrual cycle phases. These findings demonstrate a relationship between P4, E2 and cognitive performance in normally cycling cynomolgus monkeys that is task dependent. Knowledge of these interactions may lead to a better understanding of sex-specific cognitive performance.
Collapse
Affiliation(s)
- Sarah A Kromrey
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157-1083, United States
| | - Paul W Czoty
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157-1083, United States
| | - Michael A Nader
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157-1083, United States; Department of Radiology, Wake Forest School of Medicine, Winston-Salem, NC 27157-1083, United States.
| |
Collapse
|
9
|
The effect of ethanol on reversal learning in honey bees (Apis mellifera anatolica): Response inhibition in a social insect model. Alcohol 2015; 49:245-58. [PMID: 25837483 DOI: 10.1016/j.alcohol.2015.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 02/24/2015] [Accepted: 02/28/2015] [Indexed: 11/23/2022]
Abstract
We investigated the effects of ethanol on reversal learning in honey bees (Apis mellifera anatolica). The rationale behind the present experiment was to determine the species generality of the effect of ethanol on response inhibition. Subjects were originally trained to associate either a cinnamon or lavender odor with a sucrose feeding before a reversal of the conditioned stimuli. We administered 15 μL of ethanol at varying doses (0%, 2.5%, 5%, 10%, or 20%) according to group assignment. Ethanol was either administered 5 min before original discrimination training or 5 min before the stimuli reversal. We analyzed the effects of these three manipulations via a recently developed individual analysis that eschews aggregate assessments in favor of a model that conceptualizes learning as occurring in individual organisms. We measured responding in the presence of conditioned stimuli associated with a sucrose feeding, responding in the presence of conditioned stimuli associated with distilled water, and responding in the presence of the unconditioned stimulus (sucrose). Our analyses revealed the ethanol dose manipulation lowered responding for all three measures at increasingly higher doses, which suggests ethanol served as a general behavioral suppressor. Consistent with previous ethanol reversal literature, we found administering ethanol before the original discrimination phase or before the reversal produced inconsistent patterns of responding at varying ethanol doses.
Collapse
|
10
|
Wright MJ, Taffe MA. Chronic periadolescent alcohol consumption produces persistent cognitive deficits in rhesus macaques. Neuropharmacology 2014; 86:78-87. [PMID: 25018042 DOI: 10.1016/j.neuropharm.2014.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 06/25/2014] [Accepted: 07/01/2014] [Indexed: 11/15/2022]
Abstract
Although human alcoholics exhibit lasting cognitive deficits, it can be difficult to definitively rule out pre-alcohol performance differences. For example, individuals with a family history of alcoholism are at increased risk for alcoholism and are also behaviorally impaired. Animal models of controlled alcohol exposure permit balanced group assignment, thereby ruling out the effects of pre-existing differences. Periadolescent male rhesus macaques (N = 5) consumed alcohol during 200 drinking sessions (M-F) across a 10-month period (mean daily alcohol consumption: 1.38 g/kg/day). A control group (N = 5) consumed a fruit-flavored vehicle during the same period. Spatial working memory, visual discrimination learning and retention and response time behavioral domains were assessed with subtests of the Monkey CANTAB (CAmbridge Neuropsychological Test Automated Battery). Spatial working memory performance was impaired in the alcohol group after 120 drinking sessions (6 mo) in a manner that depended on retention interval. The chronic alcohol animals were also impaired in retaining a visual discrimination over 24 hrs when assessed 6-8 weeks after cessation of alcohol drinking. Finally, the presentation of distractors in the response time task impaired the response time and accuracy of the chronic alcohol group more than controls after 6 months of alcohol cessation. Chronic alcohol consumption over as little as 6 months produces cognitive deficits, with some domains still affected after acute (6-8 wks) and lasting (6 mo) discontinuation from drinking. Animals were matched on alcohol preference and behavioral performance prior to exposure, thus providing strong evidence for the causal role of chronic alcohol in these deficits.
Collapse
Affiliation(s)
- M Jerry Wright
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, SP30-2400, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Michael A Taffe
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, SP30-2400, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
11
|
Wright MJ, Vandewater SA, Parsons LH, Taffe MA. Δ(9)Tetrahydrocannabinol impairs reversal learning but not extra-dimensional shifts in rhesus macaques. Neuroscience 2013; 235:51-8. [PMID: 23333671 DOI: 10.1016/j.neuroscience.2013.01.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 12/19/2012] [Accepted: 01/05/2013] [Indexed: 11/24/2022]
Abstract
Expansion of medical marijuana use in the US and the recently successful decriminalization of recreational marijuana in two States elevates interest in the specific cognitive effects of Δ(9)tetrahydrocannabinol (Δ(9)THC), the major psychoactive constituent of marijuana. Controlled laboratory studies in nonhuman primates provide mixed evidence for specific effects of Δ(9)THC in learning and memory tasks, with a suggestion that frontal-mediated tasks may be the most sensitive. In this study, adult male rhesus monkeys were trained on tasks which assess reversal learning, extradimensional attentional shift learning and spatial delayed-response. Subjects were challenged with 0.1-0.5mg/kg Δ(9)THC, i.m., in randomized order and evaluated on the behavioral measures. Peak plasma levels of Δ(9)THC were observed 30min after 0.2mg/kg (69±29ng/ml) and 60min after 0.5mg/kg (121±23ng/ml) was administered and behavioral effects on a bimanual motor task persisted for up to 2h after injection. An increase in errors-to-criterion (ETC) associated with reversal learning was further increased by Δ(9)THC in a dose-dependent manner. The increase in ETC associated with extradimensional shifts was not affected by Δ(9)THC. Spatial delayed-response performance was impaired by Δ(9)THC in a retention-interval-dependent manner. Overall the pattern of results suggests a more profound effect of Δ(9)THC on tasks mediated by orbitofrontal (reversal learning) versus dorsolateral (extradimensional shifts) prefrontal mechanisms.
Collapse
Affiliation(s)
- M J Wright
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
12
|
Wright MJ, Vandewater SA, Taffe MA. The influence of acute and chronic alcohol consumption on response time distribution in adolescent rhesus macaques. Neuropharmacology 2013; 70:12-8. [PMID: 23321688 DOI: 10.1016/j.neuropharm.2013.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/19/2012] [Accepted: 01/04/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND Analysis of the distribution of reaction times (RTs) in behavioral tasks can illustrate differences attributable to changes in attention, even when no change in mean RT is observed. Detrimental attentional effects of both acute and chronic exposure to alcohol may therefore be revealed by fitting RT data to an ex-Gaussian probability density function which identifies the proportion of long-RT responses. METHODS Adolescent male rhesus macaques completed a 5-choice serial reaction time task (5CSRT) after acute alcohol consumption (up to 0.0, 1.0 and 1.5 g/kg). Monkeys were next divided into chronic alcohol (N = 5) and control groups (N = 5); the experimental group consumed 1.5-3.0 g/kg alcohol for 200 drinking sessions. Unintoxicated performance in the 5CSRT task was determined systematically across the study period and the effect of acute alcohol was redetermined after the 180th drinking session. The effect of extended abstinence from chronic alcohol was determined across 90 days. RESULTS Acute alcohol exposure dose-dependently reduced the probability of longer RT responses without changing the mean or the standard deviation of the RT distribution. The RT distribution of control monkeys tightened across 10 months whereas that of the chronic alcohol group was unchanged. Discontinuation from chronic alcohol increased the probability of long RT responses with a difference from control animals observed after 30 days of discontinuation. CONCLUSIONS Alcohol consumption selectively affected attention as reflected in the probability of long RT responses. Acute alcohol consumption focused attention, chronic alcohol consumption impaired the maturation of attention across the study period and alcohol discontinuation impaired attention.
Collapse
Affiliation(s)
- M Jerry Wright
- Committee on the Neurobiology of Addictive Disorders, SP30-2400; 10550 North Torrey Pines Road, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | |
Collapse
|