1
|
Akinfiresoye LR, Newton J, Suman S, Datta K, N'Gouemo P. Targeted Inhibition of Upregulated Sodium-Calcium Exchanger in Rat Inferior Colliculus Suppresses Alcohol Withdrawal Seizures. Mol Neurobiol 2023; 60:292-302. [PMID: 36264435 PMCID: PMC10577795 DOI: 10.1007/s12035-022-03072-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/08/2022] [Indexed: 11/29/2022]
Abstract
The inferior colliculus (IC) is critical in initiating acoustically evoked alcohol withdrawal-induced seizures (AWSs). Recently, we reported that systemic inhibition of Ca2+ entry via the reverse mode activity of the Na+/Ca2+ exchanger (NCXrev) suppressed AWSs, suggesting remodeling of NCX expression and function, at least in the IC, the site of AWS initiation. Here, we probe putative changes in protein expression in the IC of NCX isoforms, including NCX type 1 (NCX1), 2 (NCX2), and 3 (NCX3). We also evaluated the efficacy of targeted inhibition of NCX1rev and NCX3rev activity in the IC on the occurrence and severity of AWSs using SN-6 and KB-R943, respectively. We used our well-characterized alcohol intoxication/withdrawal model associated with enhanced AWS susceptibility. IC tissues from the alcohol-treated group were collected 3 h (before the onset of AWS susceptibility), 24 h (when AWS susceptibility is maximal), and 48 h (when AWS susceptibility is resolved) following alcohol withdrawal; in comparison, IC tissues from the control-treated group were collected at 24 h after the last gavage. Analysis shows that NCX1 protein levels were markedly higher 3 and 24 h following alcohol withdrawal. However, NCX3 protein levels were only higher 3 h following alcohol withdrawal. The analysis also reveals that bilateral microinjections of SN-6 (but not KB-R7943) within the IC markedly suppressed the occurrence and severity of AWSs. Together, these findings indicate that NCX1 is a novel molecular target that may play an essential role in the pathogenesis and pathophysiology of AWSs.
Collapse
Affiliation(s)
- Luli R Akinfiresoye
- Department of Physiology and Biophysics, Howard University College of Medicine, Suite 2420, 520 W Street, NW, Washington, DC, 20059, USA
- Diversion Control Division, Drug Enforcement Administration, United States Department of Justice, Springfield, VA, USA
| | - Jamila Newton
- Department of Physiology and Biophysics, Howard University College of Medicine, Suite 2420, 520 W Street, NW, Washington, DC, 20059, USA
- California State University, Stanislaus, Turlock, CA, USA
| | - Shubhankar Suman
- Oncology and Department of Biochemistry and Molecular & Cellular Biology, Georgetown Lombardi Comprehensive Cancer Center (LCCC), Washington, DC, USA
| | - Kamal Datta
- Oncology and Department of Biochemistry and Molecular & Cellular Biology, Georgetown Lombardi Comprehensive Cancer Center (LCCC), Washington, DC, USA
| | - Prosper N'Gouemo
- Department of Physiology and Biophysics, Howard University College of Medicine, Suite 2420, 520 W Street, NW, Washington, DC, 20059, USA.
| |
Collapse
|
2
|
Steel TL, Afshar M, Edwards S, Jolley SE, Timko C, Clark BJ, Douglas IS, Dzierba AL, Gershengorn HB, Gilpin NW, Godwin DW, Hough CL, Maldonado JR, Mehta AB, Nelson LS, Patel MB, Rastegar DA, Stollings JL, Tabakoff B, Tate JA, Wong A, Burnham EL. Research Needs for Inpatient Management of Severe Alcohol Withdrawal Syndrome: An Official American Thoracic Society Research Statement. Am J Respir Crit Care Med 2021; 204:e61-e87. [PMID: 34609257 PMCID: PMC8528516 DOI: 10.1164/rccm.202108-1845st] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: Severe alcohol withdrawal syndrome (SAWS) is highly morbid, costly, and common among hospitalized patients, yet minimal evidence exists to guide inpatient management. Research needs in this field are broad, spanning the translational science spectrum. Goals: This research statement aims to describe what is known about SAWS, identify knowledge gaps, and offer recommendations for research in each domain of the Institute of Medicine T0-T4 continuum to advance the care of hospitalized patients who experience SAWS. Methods: Clinicians and researchers with unique and complementary expertise in basic, clinical, and implementation research related to unhealthy alcohol consumption and alcohol withdrawal were invited to participate in a workshop at the American Thoracic Society 2019 International Conference. The committee was subdivided into four groups on the basis of interest and expertise: T0-T1 (basic science research with translation to humans), T2 (research translating to patients), T3 (research translating to clinical practice), and T4 (research translating to communities). A medical librarian conducted a pragmatic literature search to facilitate this work, and committee members reviewed and supplemented the resulting evidence, identifying key knowledge gaps. Results: The committee identified several investigative opportunities to advance the care of patients with SAWS in each domain of the translational science spectrum. Major themes included 1) the need to investigate non-γ-aminobutyric acid pathways for alcohol withdrawal syndrome treatment; 2) harnessing retrospective and electronic health record data to identify risk factors and create objective severity scoring systems, particularly for acutely ill patients with SAWS; 3) the need for more robust comparative-effectiveness data to identify optimal SAWS treatment strategies; and 4) recommendations to accelerate implementation of effective treatments into practice. Conclusions: The dearth of evidence supporting management decisions for hospitalized patients with SAWS, many of whom require critical care, represents both a call to action and an opportunity for the American Thoracic Society and larger scientific communities to improve care for a vulnerable patient population. This report highlights basic, clinical, and implementation research that diverse experts agree will have the greatest impact on improving care for hospitalized patients with SAWS.
Collapse
|
3
|
Bordia T, Zahr NM. The Inferior Colliculus in Alcoholism and Beyond. Front Syst Neurosci 2020; 14:606345. [PMID: 33362482 PMCID: PMC7759542 DOI: 10.3389/fnsys.2020.606345] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022] Open
Abstract
Post-mortem neuropathological and in vivo neuroimaging methods have demonstrated the vulnerability of the inferior colliculus to the sequelae of thiamine deficiency as occurs in Wernicke-Korsakoff Syndrome (WKS). A rich literature in animal models ranging from mice to monkeys-including our neuroimaging studies in rats-has shown involvement of the inferior colliculi in the neural response to thiamine depletion, frequently accomplished with pyrithiamine, an inhibitor of thiamine metabolism. In uncomplicated alcoholism (i.e., absent diagnosable neurological concomitants), the literature citing involvement of the inferior colliculus is scarce, has nearly all been accomplished in preclinical models, and is predominately discussed in the context of ethanol withdrawal. Our recent work using novel, voxel-based analysis of structural Magnetic Resonance Imaging (MRI) has demonstrated significant, persistent shrinkage of the inferior colliculus using acute and chronic ethanol exposure paradigms in two strains of rats. We speculate that these consistent findings should be considered from the perspective of the inferior colliculi having a relatively high CNS metabolic rate. As such, they are especially vulnerable to hypoxic injury and may be provide a common anatomical link among a variety of disparate insults. An argument will be made that the inferior colliculi have functions, possibly related to auditory gating, necessary for awareness of the external environment. Multimodal imaging including diffusion methods to provide more accurate in vivo visualization and quantification of the inferior colliculi may clarify the roles of brain stem nuclei such as the inferior colliculi in alcoholism and other neuropathologies marked by altered metabolism.
Collapse
Affiliation(s)
- Tanuja Bordia
- Neuroscience Program, SRI International, Menlo Park, CA, United States
| | - Natalie M. Zahr
- Neuroscience Program, SRI International, Menlo Park, CA, United States
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
4
|
Trujillo V, Macchione AF, Albrecht PA, Virgolini MB, Molina JC. Learning experiences comprising central ethanol exposure in rat neonates: Impact upon respiratory plasticity and the activity of brain catalase. Alcohol 2020; 88:11-27. [PMID: 32615265 DOI: 10.1016/j.alcohol.2020.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 01/29/2023]
Abstract
Fetal ethanol exposure represents a risk factor for sudden infant death syndrome, and the respiratory effects of fetal ethanol exposure promote hypoxic ischemic consequences. This study analyzes central ethanol's effects upon breathing plasticity during an ontogenetic stage equivalent to the human third gestational trimester. Ethanol's unconditioned breathing effects and their intervention in learning processes were examined. Since central ethanol is primarily metabolized via the catalase system, we also examined the effects of early history with the drug upon this system. During postnatal days 3, 5, and 7 (PDs 3-7), pups were intracisternally administered with vehicle or ethanol (300 mg%). They were tested in a plethysmograph scented or not scented with ethanol odor. The state of intoxication attenuated the onset of apneas, a phenomenon that is suggestive of ethanol's anxiolytic effects given the state of arousal caused by the novel environment and the stress of ethanol administration. At PD9, pups were evaluated when sober under sequential air conditions (initial-normoxia, hypoxia, and recovery-normoxia), with or without the presence of ethanol odor. Initial apneic episodes increased when ethanol intoxication was previously associated with the odor. Pups then ingested ethanol, and brain catalase activity was determined. Pre-exposure to ethanol intoxication paired with the odor of the drug resulted in heightened enzymatic activity. Central ethanol exposure appears to exert antianxiety effects that attenuate apneic disruptions. However, during withdrawal, the cues associated with such effects elicit an opposite reaction. The activity of the catalase system was also dependent upon learning processes that involved the association of environmental stimuli and ethanol intoxication.
Collapse
|
5
|
Newton J, Suman S, Akinfiresoye LR, Datta K, Lovinger DM, N'Gouemo P. Alcohol withdrawal upregulates mRNA encoding for Ca V2.1-α1 subunit in the rat inferior colliculus. Alcohol 2018; 66:21-26. [PMID: 29277284 DOI: 10.1016/j.alcohol.2017.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 10/18/2022]
Abstract
We previously reported increased current density through P-type voltage-gated Ca2+ channels in inferior colliculus (IC) neurons during alcohol withdrawal. However, the molecular correlate of this increased P-type channel current is currently unknown. Here, we probe changes in mRNA and protein expression of the pore-forming CaV2.1-α1 (P/Q-type) subunits in IC neurons during the course of alcohol withdrawal-induced seizures (AWSs). Rats received three daily doses of ethanol or the vehicle every 8 h for 4 consecutive days. The IC was dissected at various time intervals following alcohol withdrawal, and the mRNA and protein levels of the CaV2.1-α1 subunits were measured. In separate experiments, rats were tested for acoustically evoked seizure susceptibility 3, 24, and 48 h after alcohol withdrawal. AWSs were observed 24 h after withdrawal; no seizures were observed at 3 or 48 h or in the control-treated rats. Compared to control-treated rats, the mRNA levels of the CaV2.1-α1 subunit were increased 1.9-fold and 2.1-fold at 3 and 24 h, respectively; change in mRNA expression was nonsignificant at 48 h following alcohol withdrawal. Western blot analyses revealed that protein levels of the CaV2.1-α1 subunits were not altered in IC neurons following alcohol withdrawal. We conclude that expression of the Cacna1a mRNA increased before the onset of AWS susceptibility, suggesting that altered CaV2.1 channel expression may play a role in AWS pathogenesis.
Collapse
|
6
|
N'Gouemo P. Voltage-Sensitive Calcium Channels in the Brain: Relevance to Alcohol Intoxication and Withdrawal. Handb Exp Pharmacol 2018; 248:263-280. [PMID: 29500720 DOI: 10.1007/164_2018_93] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Voltage-sensitive Ca2+ (CaV) channels are the primary route of depolarization-induced Ca2+ entry in neurons and other excitable cells, leading to an increase in intracellular Ca2+ concentration ([Ca2+]i). The resulting increase in [Ca2+]i activates a wide range of Ca2+-dependent processes in neurons, including neurotransmitter release, gene transcription, activation of Ca2+-dependent enzymes, and activation of certain K+ channels and chloride channels. In addition to their key roles under physiological conditions, CaV channels are also an important target of alcohol, and alcohol-induced changes in Ca2+ signaling can disturb neuronal homeostasis, Ca2+-mediated gene transcription, and the function of neuronal circuits, leading to various neurological and/or neuropsychiatric symptoms and disorders, including alcohol withdrawal induced-seizures and alcoholism.
Collapse
Affiliation(s)
- Prosper N'Gouemo
- Department of Pediatrics, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|