1
|
Mignogna KM, Tatom Z, Macleod L, Sergi Z, Nguyen A, Michenkova M, Smith ML, Miles MF. Identification of novel genetic loci and candidate genes for progressive ethanol consumption in diversity outbred mice. Neuropsychopharmacology 2024; 49:1892-1904. [PMID: 38951586 PMCID: PMC11473901 DOI: 10.1038/s41386-024-01902-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024]
Abstract
Mouse behavioral genetic mapping studies can identify genomic intervals modulating complex traits under well-controlled environmental conditions and have been used to study ethanol behaviors to aid in understanding genetic risk and the neurobiology of alcohol use disorder (AUD). However, historically such studies have produced large confidence intervals, thus complicating identification of potential causal candidate genes. Diversity Outbred (DO) mice offer the ability to perform high-resolution quantitative trait loci (QTL) mapping on a very genetically diverse background, thus facilitating identification of candidate genes. Here, we studied a population of 636 male DO mice with four weeks of intermittent ethanol access via a three-bottle choice procedure, producing a progressive ethanol consumption phenotype. QTL analysis identified 3 significant (Chrs 3, 4, and 12) and 13 suggestive loci for ethanol-drinking behaviors with narrow confidence intervals (1-4 Mbp for significant QTLs). Results suggested that genetic influences on initial versus progressive ethanol consumption were localized to different genomic intervals. A defined set of positional candidate genes were prioritized using haplotype analysis, identified coding polymorphisms, prefrontal cortex transcriptomics data, human GWAS data and prior rodent gene set data for ethanol or other misused substances. These candidates included Car8, the lone gene with a significant cis-eQTL within a Chr 4 QTL for week four ethanol consumption. These results represent the highest-resolution genetic mapping of ethanol consumption behaviors in mice to date, providing identification of novel loci and candidate genes for study in relation to the neurobiology of AUD.
Collapse
Affiliation(s)
- Kristin M Mignogna
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Zachary Tatom
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Lorna Macleod
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Zachary Sergi
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Angel Nguyen
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Marie Michenkova
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Maren L Smith
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael F Miles
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA.
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, USA.
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
2
|
Hitzemann R, Gao L, Fei SS, Ray K, Vigh-Conrad KA, Phillips TJ, Searles R, Cervera-Juanes RP, Khadka R, Carlson TL, Gonzales SW, Newman N, Grant KA. Effects of repeated alcohol abstinence on within-subject prefrontal cortical gene expression in rhesus macaques. ADVANCES IN DRUG AND ALCOHOL RESEARCH 2024; 4:12528. [PMID: 38737578 PMCID: PMC11082748 DOI: 10.3389/adar.2024.12528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/12/2024] [Indexed: 05/14/2024]
Abstract
Male rhesus monkeys (n = 24) had a biopsy of prefrontal cortical area 46 prior to chronic ethanol self-administration (n = 17) or caloric control (n = 7). Fourteen months of daily self-administration (water vs. 4% alcohol, 22 h access/day termed "open-access") was followed by two cycles of prolonged abstinence (5 weeks) each followed by 3 months of open-access alcohol and a final abstinence followed by necropsy. At necropsy, a biopsy of Area 46, contralateral to the original biopsy, was obtained. Gene expression data (RNA-Seq) were collected comparing biopsy/necropsy samples. Monkeys were categorized by drinking status during the final post-abstinent drinking phase as light (LD), binge (BD), heavy (HD) and very heavy (VHD drinkers). Comparing pre-ethanol to post-abstinent biopsies, four animals that converted from HD to VHD status had significant ontology enrichments in downregulated genes (necropsy minus biopsy n = 286) that included immune response (FDR < 9 × 10-7) and plasma membrane changes (FDR < 1 × 10-7). Genes in the immune response category included IL16 and 18, CCR1, B2M, TLR3, 6 and 7, SP2 and CX3CR1. Upregulated genes (N = 388) were particularly enriched in genes associated with the negative regulation of MAP kinase activity (FDR < 3 × 10-5), including DUSP 1, 4, 5, 6 and 18, SPRY 2, 3, and 4, SPRED2, BMP4 and RGS2. Overall, these data illustrate the power of the NHP model and the within-subject design of genomic changes due to alcohol and suggest new targets for treating severe escalated drinking following repeated alcohol abstinence attempts.
Collapse
Affiliation(s)
- Robert Hitzemann
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, United States
- Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Lina Gao
- Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, United States
- Bioinformatics and Biostatistics Core, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Suzanne S. Fei
- Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, United States
- Bioinformatics and Biostatistics Core, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Karina Ray
- Bioinformatics and Biostatistics Core, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Katinka A. Vigh-Conrad
- Division of Genetics, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Tamara J. Phillips
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, United States
- Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Robert Searles
- Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, United States
- Integrated Genomics Laboratory, Oregon Health and Science University, Portland, OR, United States
| | - Rita P. Cervera-Juanes
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Rupak Khadka
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Timothy L. Carlson
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Steven W. Gonzales
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Natali Newman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Kathleen A. Grant
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States
- Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, United States
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| |
Collapse
|
3
|
Xia Y, Ding L, Zhang C, Xu Q, Shi M, Gao T, Zhou FQ, Deng DYB. Inflammatory Factor IL1α Induces Aberrant Astrocyte Proliferation in Spinal Cord Injury Through the Grin2c/Ca 2+/CaMK2b Pathway. Neurosci Bull 2024; 40:421-438. [PMID: 37864744 PMCID: PMC11003951 DOI: 10.1007/s12264-023-01128-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/11/2023] [Indexed: 10/23/2023] Open
Abstract
Spinal cord injury (SCI) is one of the most devastating traumas, and the aberrant proliferation of astrocytes usually causes neurological deficits. However, the mechanism underlying astrocyte over-proliferation after SCI is unclear. Grin2c (glutamate ionotropic receptor type 2c) plays an essential role in cell proliferation. Our bioinformatic analysis indicated that Grin2c and Ca2+ transport functions were inhibited in astrocytes after SCI. Suppression of Grin2c stimulated astrocyte proliferation by inhibiting the Ca2+/calmodulin-dependent protein kinase 2b (CaMK2b) pathway in vitro. By screening different inflammatory factors, interleukin 1α (IL1α) was further found to inhibit Grin2c/Ca2+/CaMK2b and enhance astrocyte proliferation in an oxidative damage model. Blockade of IL1α using neutralizing antibody resulted in increased Grin2c expression and the inhibition of astrocyte proliferation post-SCI. Overall, this study suggests that IL1α promotes astrocyte proliferation by suppressing the Grin2c/Ca2+/CaMK2b pathway after SCI, revealing a novel pathological mechanism of astrocyte proliferation, and may provide potential targets for SCI repair.
Collapse
Affiliation(s)
- Yu Xia
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Lu Ding
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Changlin Zhang
- Department of Gynecology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Pelvic Floor Disorders Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Qi Xu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Ming Shi
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Tianshun Gao
- Big Data Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Feng-Quan Zhou
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - David Y B Deng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
- Orthopaedic and Neurological Repair Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
4
|
Hitzemann R, Ozburn AR, Lockwood D, Phillips TJ. Modeling Brain Gene Expression in Alcohol Use Disorder with Genetic Animal Models. Curr Top Behav Neurosci 2023:10.1007/7854_2023_455. [PMID: 37982929 PMCID: PMC11566292 DOI: 10.1007/7854_2023_455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Animal genetic models have and will continue to provide important new information about the behavioral and physiological adaptations associated with alcohol use disorder (AUD). This chapter focuses on two models, ethanol preference and drinking in the dark (DID), their usefulness in interrogating brain gene expression data and the relevance of the data obtained to interpret AUD-related GWAS and TWAS studies. Both the animal and human data point to the importance for AUD of changes in synaptic transmission (particularly glutamate and GABA transmission), of changes in the extracellular matrix (specifically including collagens, cadherins and protocadherins) and of changes in neuroimmune processes. The implementation of new technologies (e.g., cell type-specific gene expression) is expected to further enhance the value of genetic animal models in understanding AUD.
Collapse
Affiliation(s)
- Robert Hitzemann
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, USA.
| | - Angela R Ozburn
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, USA
| | - Denesa Lockwood
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, USA
| | - Tamara J Phillips
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, USA
- Veterans Affairs Portland Health Care System, Portland, OR, USA
| |
Collapse
|
5
|
Anderson JQ, Darakjian P, Hitzemann R, Lockwood DR, Phillips TJ, Ozburn AR. Brain gene expression differences related to ethanol preference in the collaborative cross founder strains. Front Behav Neurosci 2022; 16:992727. [PMID: 36212197 PMCID: PMC9539754 DOI: 10.3389/fnbeh.2022.992727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022] Open
Abstract
The collaborative cross (CC) founder strains include five classical inbred laboratory strains [129S1/SvlmJ (S129), A/J (AJ), C57BL/6J (B6), NOD/ShiLtJ (NOD), and NZO/HILtJ (NZO)] and three wild-derived strains [CAST/EiJ (CAST), PWK/PhJ (PWK), and WSB/EiJ (WSB)]. These strains encompass 89% of the genetic diversity available in Mus musculus and ∼10-20 times more genetic diversity than found in Homo sapiens. For more than 60 years the B6 strain has been widely used as a genetic model for high ethanol preference and consumption. However, another of the CC founder strains, PWK, has been identified as a high ethanol preference/high consumption strain. The current study determined how the transcriptomes of the B6 and PWK strains differed from the 6 low preference CC strains across 3 nodes of the brain addiction circuit. RNA-Seq data were collected from the central nucleus of the amygdala (CeA), the nucleus accumbens core (NAcc) and the prelimbic cortex (PrL). Differential expression (DE) analysis was performed in each of these brain regions for all 28 possible pairwise comparisons of the CC founder strains. Unique genes for each strain were identified by selecting for genes that differed significantly [false discovery rate (FDR) < 0.05] from all other strains in the same direction. B6 was identified as the most distinct classical inbred laboratory strain, having the highest number of total differently expressed genes (DEGs) and DEGs with high log fold change, and unique genes compared to other CC strains. Less than 50 unique DEGs were identified in common between B6 and PWK within all three brain regions, indicating the strains potentially represent two distinct genetic signatures for risk for high ethanol-preference. 338 DEGs were found to be commonly different between B6, PWK and the average expression of the remaining CC strains within all three regions. The commonly different up-expressed genes were significantly enriched (FDR < 0.001) among genes associated with neuroimmune function. These data compliment findings showing that neuroimmune signaling is key to understanding alcohol use disorder (AUD) and support use of these 8 strains and the highly heterogeneous mouse populations derived from them to identify alcohol-related brain mechanisms and treatment targets.
Collapse
Affiliation(s)
- Justin Q. Anderson
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| | - Priscila Darakjian
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| | - Robert Hitzemann
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| | - Denesa R. Lockwood
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| | - Tamara J. Phillips
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| | - Angela R. Ozburn
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health and Science University, Portland, OR, United States
- VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
6
|
Cuzon Carlson VC, Aylwin CF, Carlson TL, Ford M, Mesnaoui H, Lomniczi A, Ferguson B, Cervera‐Juanes RP. Neurobeachin, a promising target for use in the treatment of alcohol use disorder. Addict Biol 2022; 27:e13107. [PMID: 34699111 DOI: 10.1111/adb.13107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/23/2021] [Accepted: 09/24/2021] [Indexed: 11/29/2022]
Abstract
Hazardous, heavy drinking increases risk for developing alcohol use disorder (AUD), which affects ~7% of adult Americans. Thus, understanding the molecular mechanisms promoting risk for heavy drinking is essential to developing more effective AUD pharmacotherapies than those currently approved by the FDA. Using genome-wide bisulfate sequencing, we identified DNA methylation (DNAm) signals within the nucleus accumbens core (NAcC) that differentiate nonheavy and heavy ethanol-drinking rhesus macaques. One differentially DNAm region (D-DMR) located within the gene neurobeachin (NBEA), which promotes synaptic membrane protein trafficking, was hypermethylated in heavy drinking macaques. A parallel study identified a similar NBEA D-DMR in human NAcC that distinguished alcoholic and nonalcoholic individuals. To investigate the role of NBEA in heavy ethanol drinking, we engineered a viral vector carrying a short hairpin RNA (shRNA) to reduce the expression of NBEA. Using two murine models of ethanol consumption: 4 days of drinking-in-the-dark and 4 weeks of chronic intermittent access, the knockdown of NBEA expression did not alter average ethanol consumption in either model. However, it did lead to a significant increase in the ethanol preference ratio. Following withdrawal, whole-cell patch clamp electrophysiological experiments revealed that Nbea knockdown led to an increase in spontaneous excitatory postsynaptic current amplitude with no alteration in spontaneous inhibitory postsynaptic currents, suggesting a specific role of NBEA in trafficking of glutamatergic receptors. Together, our findings suggest that NBEA could be targeted to modulate the preference for alcohol use.
Collapse
Affiliation(s)
- Verginia C. Cuzon Carlson
- Division of Neuroscience, Oregon National Primate Research Center Oregon Health & Science University Beaverton Oregon USA
| | - Carlos F. Aylwin
- Division of Genetics, Oregon National Primate Research Center Oregon Health & Science University Beaverton Oregon USA
| | - Timothy L. Carlson
- Division of Neuroscience, Oregon National Primate Research Center Oregon Health & Science University Beaverton Oregon USA
| | - Matthew Ford
- Division of Neuroscience, Oregon National Primate Research Center Oregon Health & Science University Beaverton Oregon USA
| | - Houda Mesnaoui
- Division of Genetics, Oregon National Primate Research Center Oregon Health & Science University Beaverton Oregon USA
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center Oregon Health & Science University Beaverton Oregon USA
| | - Betsy Ferguson
- Division of Genetics, Oregon National Primate Research Center Oregon Health & Science University Beaverton Oregon USA
| | - Rita P. Cervera‐Juanes
- Division of Genetics, Oregon National Primate Research Center Oregon Health & Science University Beaverton Oregon USA
| |
Collapse
|
7
|
Hitzemann R, Lockwood DR, Ozburn AR, Phillips TJ. On the Use of Heterogeneous Stock Mice to Map Transcriptomes Associated With Excessive Ethanol Consumption. Front Psychiatry 2021; 12:725819. [PMID: 34712155 PMCID: PMC8545898 DOI: 10.3389/fpsyt.2021.725819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/30/2021] [Indexed: 01/11/2023] Open
Abstract
We and many others have noted the advantages of using heterogeneous (HS) animals to map genes and gene networks associated with both behavioral and non-behavioral phenotypes. Importantly, genetically complex Mus musculus crosses provide substantially increased resolution to examine old and new relationships between gene expression and behavior. Here we report on data obtained from two HS populations: the HS/NPT derived from eight inbred laboratory mouse strains and the HS-CC derived from the eight collaborative cross inbred mouse strains that includes three wild-derived strains. Our work has focused on the genes and gene networks associated with risk for excessive ethanol consumption, individual variation in ethanol consumption and the consequences, including escalation, of long-term ethanol consumption. Background data on the development of HS mice is provided, including advantages for the detection of expression quantitative trait loci. Examples are also provided of using HS animals to probe the genes associated with ethanol preference and binge ethanol consumption.
Collapse
Affiliation(s)
- Robert Hitzemann
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Denesa R. Lockwood
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Angela R. Ozburn
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR, United States
- Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Tamara J. Phillips
- Department of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR, United States
- Veterans Affairs Portland Health Care System, Portland, OR, United States
| |
Collapse
|
8
|
Kisby BR, Farris SP, McManus MM, Varodayan FP, Roberto M, Harris RA, Ponomarev I. Alcohol Dependence in Rats Is Associated with Global Changes in Gene Expression in the Central Amygdala. Brain Sci 2021; 11:1149. [PMID: 34573170 PMCID: PMC8468792 DOI: 10.3390/brainsci11091149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/06/2021] [Accepted: 08/21/2021] [Indexed: 12/20/2022] Open
Abstract
Alcohol dependence is associated with adverse consequences of alcohol (ethanol) use and is evident in most severe cases of alcohol use disorder (AUD). The central nucleus of the amygdala (CeA) plays a critical role in the development of alcohol dependence and escalation of alcohol consumption in dependent subjects. Molecular mechanisms underlying the CeA-driven behavioral changes are not well understood. Here, we examined the effects of alcohol on global gene expression in the CeA using a chronic intermittent ethanol (CIE) vapor model in rats and RNA sequencing (RNA-Seq). The CIE procedure resulted in robust changes in CeA gene expression during intoxication, as the number of differentially expressed genes (DEGs) was significantly greater than those expected by chance. Over-representation analysis of cell types, functional groups and molecular pathways revealed biological categories potentially important for the development of alcohol dependence in our model. Genes specific for astrocytes, myelinating oligodendrocytes, and endothelial cells were over-represented in the DEG category, suggesting that these cell types were particularly affected by the CIE procedure. The majority of the over-represented functional groups and molecular pathways were directly related to the functions of glial and endothelial cells, including extracellular matrix (ECM) organization, myelination, and the regulation of innate immune response. A coordinated regulation of several ECM metalloproteinases (e.g., Mmp2; Mmp14), their substrates (e.g., multiple collagen genes and myelin basic protein; Mbp), and a metalloproteinase inhibitor, Reck, suggests a specific mechanism for ECM re-organization in response to chronic alcohol, which may modulate neuronal activity and result in behavioral changes, such as an escalation of alcohol drinking. Our results highlight the importance of glial and endothelial cells in the effects of chronic alcohol exposure on the CeA, and demonstrate further insight into the molecular mechanisms of alcohol dependence in rats. These molecular targets may be used in future studies to develop therapeutics to treat AUD.
Collapse
Affiliation(s)
- Brent R. Kisby
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (B.R.K.); (M.M.M.)
| | - Sean P. Farris
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78715, USA; (S.P.F.); (R.A.H.)
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206, USA
| | - Michelle M. McManus
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (B.R.K.); (M.M.M.)
| | - Florence P. Varodayan
- Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902, USA;
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA;
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA;
| | - R. Adron Harris
- Department of Neuroscience, University of Texas at Austin, Austin, TX 78715, USA; (S.P.F.); (R.A.H.)
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78741, USA
| | - Igor Ponomarev
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (B.R.K.); (M.M.M.)
| |
Collapse
|