1
|
Jamal T, Yan X, Lantyer ADS, Ter Horst JG, Celikel T. Experience-dependent regulation of dopaminergic signaling in the somatosensory cortex. Prog Neurobiol 2024; 239:102630. [PMID: 38834131 DOI: 10.1016/j.pneurobio.2024.102630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 06/06/2024]
Abstract
Dopamine critically influences reward processing, sensory perception, and motor control. Yet, the modulation of dopaminergic signaling by sensory experiences is not fully delineated. Here, by manipulating sensory experience using bilateral single-row whisker deprivation, we demonstrated that gene transcription in the dopaminergic signaling pathway (DSP) undergoes experience-dependent plasticity in both granular and supragranular layers of the primary somatosensory (barrel) cortex (S1). Sensory experience and deprivation compete for the regulation of DSP transcription across neighboring cortical columns, and sensory deprivation-induced changes in DSP are topographically constrained. These changes in DSP extend beyond cortical map plasticity and influence neuronal information processing. Pharmacological regulation of D2 receptors, a key component of DSP, revealed that D2 receptor activation suppresses excitatory neuronal excitability, hyperpolarizes the action potential threshold, and reduces the instantaneous firing rate. These findings suggest that the dopaminergic drive originating from midbrain dopaminergic neurons, targeting the sensory cortex, is subject to experience-dependent regulation and might create a regulatory feedback loop for modulating sensory processing. Finally, using topological gene network analysis and mutual information, we identify the molecular hubs of experience-dependent plasticity of DSP. These findings provide new insights into the mechanisms by which sensory experience shapes dopaminergic signaling in the brain and might help unravel the sensory deficits observed after dopamine depletion.
Collapse
Affiliation(s)
- Tousif Jamal
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Xuan Yan
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | | | - Judith G Ter Horst
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Tansu Celikel
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, the Netherlands; School of Psychology, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
2
|
Ahmad MH, Rizvi MA, Ali M, Mondal AC. Neurobiology of depression in Parkinson's disease: Insights into epidemiology, molecular mechanisms and treatment strategies. Ageing Res Rev 2023; 85:101840. [PMID: 36603690 DOI: 10.1016/j.arr.2022.101840] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 12/25/2022] [Accepted: 12/31/2022] [Indexed: 01/03/2023]
Abstract
Parkinson's disease (PD) is characterized mainly by motor dysfunctions due to the progressive loss of dopaminergic neurons. However, PD patients experience a multitude of debilitating non-motor symptoms, including depression, which may have deleteriously detrimental effects on life. Depression is multifactorial and exhibits a bimodal progression in PD, but its underlying molecular mechanisms are poorly understood. Studies demonstrating the pathophysiology of depression in PD and the specific treatment strategies for depression-like symptoms in PD patients are largely lacking, often underrated, under-recognized and, consequently, inadequately/under-treated. Nevertheless, reports suggest that the incidence of depression is approximately 20-30% of PD patients and may precede the onset of motor symptoms. Diagnosing depression in PD becomes difficult due to the clinical overlap in symptomatology between the two diseases, and the nigrostriatal dysfunction alone is insufficient to explain depressive symptoms in PD. Therefore, the current study provides an overview of the molecular mechanisms underlying the development of depression in PD and new insights into developing current antidepressant strategies to treat depression in PD. This review will identify and understand the molecular pathological mechanisms of depression in PD that will fundamentally help tailoring therapeutic interventions for depressive symptoms in PD.
Collapse
Affiliation(s)
- Mir Hilal Ahmad
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Moshahid Alam Rizvi
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mansoor Ali
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Amal Chandra Mondal
- Laboratory of Cellular and Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
3
|
Gong S, Fayette N, Heinsbroek JA, Ford CP. Cocaine shifts dopamine D2 receptor sensitivity to gate conditioned behaviors. Neuron 2021; 109:3421-3435.e5. [PMID: 34506723 PMCID: PMC8571051 DOI: 10.1016/j.neuron.2021.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/16/2021] [Accepted: 08/11/2021] [Indexed: 12/21/2022]
Abstract
Cocaine addiction is a chronic, relapsing disorder characterized by maladaptation in the brain mesolimbic and nigrostriatal dopamine system. Although changes in the properties of D2-receptor-expressing medium spiny neurons (D2-MSNs) and connected striatal circuits following cocaine treatment are known, the contributions of altered D2-receptor (D2R) function in mediating the rewarding properties of cocaine remain unclear. Here, we describe how a 7-day exposure to cocaine alters dopamine signaling by selectively reducing the sensitivity, but not the expression, of nucleus accumbens D2-MSN D2Rs via an alteration in the relative expression and coupling of G protein subunits. This cocaine-induced reduction of D2R sensitivity facilitated the development of the rewarding effects of cocaine as blocking the reduction in G protein expression was sufficient to prevent cocaine-induced behavioral adaptations. These findings identify an initial maladaptive change in sensitivity by which mesolimbic dopamine signals are encoded by D2Rs following cocaine exposure.
Collapse
Affiliation(s)
- Sheng Gong
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Nicholas Fayette
- Department of Anesthesiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jasper A Heinsbroek
- Department of Anesthesiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Christopher P Ford
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
4
|
Neuroplasticity and Multilevel System of Connections Determine the Integrative Role of Nucleus Accumbens in the Brain Reward System. Int J Mol Sci 2021; 22:ijms22189806. [PMID: 34575969 PMCID: PMC8471564 DOI: 10.3390/ijms22189806] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 12/27/2022] Open
Abstract
A growing body of evidence suggests that nucleus accumbens (NAc) plays a significant role not only in the physiological processes associated with reward and satisfaction but also in many diseases of the central nervous system. Summary of the current state of knowledge on the morphological and functional basis of such a diverse function of this structure may be a good starting point for further basic and clinical research. The NAc is a part of the brain reward system (BRS) characterized by multilevel organization, extensive connections, and several neurotransmitter systems. The unique role of NAc in the BRS is a result of: (1) hierarchical connections with the other brain areas, (2) a well-developed morphological and functional plasticity regulating short- and long-term synaptic potentiation and signalling pathways, (3) cooperation among several neurotransmitter systems, and (4) a supportive role of neuroglia involved in both physiological and pathological processes. Understanding the complex function of NAc is possible by combining the results of morphological studies with molecular, genetic, and behavioral data. In this review, we present the current views on the NAc function in physiological conditions, emphasizing the role of its connections, neuroplasticity processes, and neurotransmitter systems.
Collapse
|
5
|
Porter‐Stransky KA, Petko AK, Karne SL, Liles LC, Urs NM, Caron MG, Paladini CA, Weinshenker D. Loss of β-arrestin2 in D2 cells alters neuronal excitability in the nucleus accumbens and behavioral responses to psychostimulants and opioids. Addict Biol 2020; 25:e12823. [PMID: 31441201 DOI: 10.1111/adb.12823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/14/2019] [Accepted: 07/22/2019] [Indexed: 01/11/2023]
Abstract
Psychostimulants and opioids increase dopamine (DA) neurotransmission, activating D1 and D2 G protein-coupled receptors. β-arrestin2 (βarr2) desensitizes and internalizes these receptors and initiates G protein-independent signaling. Previous work revealed that mice with a global or cell-specific knockout of βarr2 have altered responses to certain drugs; however, the effects of βarr2 on the excitability of medium spiny neurons (MSNs), and its role in mediating the rewarding effects of drugs of abuse are unknown. D1-Cre and D2-Cre transgenic mice were crossed with floxed βarr2 mice to eliminate βarr2 specifically in cells containing either D1 (D1βarr2-KO ) or D2 (D2βarr2-KO ) receptors. We used slice electrophysiology to characterize the role of βarr2 in modulating D1 and D2 nucleus accumbens MSN intrinsic excitability in response to DA and tested the locomotor-activating and rewarding effects of cocaine and morphine in these mice. Eliminating βarr2 attenuated the ability of DA to inhibit D2-MSNs and altered the DA-induced maximum firing rate in D1-MSNs. While D1βarr2-KO mice had mostly normal drug responses, D2βarr2-KO mice showed dose-dependent reductions in acute locomotor responses to cocaine and morphine, attenuated locomotor sensitization to cocaine, and blunted cocaine reward measured with conditioned place preference. Both D2βarr2-KO and D1βarr2-KO mice displayed an enhanced conditioned place preference for the highest dose of morphine. These results indicate that D1- and D2-derived βarr2 functionally contribute to DA-induced changes in MSN intrinsic excitability and behavioral responses to psychostimulants and opioids dose-dependently.
Collapse
Affiliation(s)
- Kirsten A. Porter‐Stransky
- Department of Biomedical Sciences Western Michigan University Homer Stryker M.D. School of Medicine Kalamazoo MI USA
- Department of Human Genetics Emory University School of Medicine Atlanta GA USA
| | - Alyssa K. Petko
- University of Texas at San Antonio Neuroscience Institute, Department ofBiology University of Texas at San Antonio San Antonio TX USA
| | - Saumya L. Karne
- Department of Human Genetics Emory University School of Medicine Atlanta GA USA
| | - L. Cameron Liles
- Department of Human Genetics Emory University School of Medicine Atlanta GA USA
| | - Nikhil M. Urs
- Duke University Medical Center Department of Cell Biology Durham NC USA
- Department of Pharmacology and Therapeutics University of Florida College of Medicine Gainesville FL USA
| | - Marc G. Caron
- Duke University Medical Center Department of Cell Biology Durham NC USA
| | - Carlos A. Paladini
- University of Texas at San Antonio Neuroscience Institute, Department ofBiology University of Texas at San Antonio San Antonio TX USA
| | - David Weinshenker
- Department of Human Genetics Emory University School of Medicine Atlanta GA USA
| |
Collapse
|
6
|
Crawford CA, Teran A, Ramirez GI, Katz CG, Mohd-Yusof A, Eaton SE, Real V, McDougall SA. Age-dependent effects of dopamine receptor inactivation on cocaine-induced behaviors in male rats: Evidence of dorsal striatal D2 receptor supersensitivity. J Neurosci Res 2019; 97:1546-1558. [PMID: 31304635 DOI: 10.1002/jnr.24491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/09/2019] [Accepted: 06/14/2019] [Indexed: 12/21/2022]
Abstract
N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ), which irreversibly inactivates dopamine (DA) receptors, causes pronounced age-dependent behavioral effects in rats. For example, EEDQ either augments or does not affect the DA agonist-induced locomotor activity of preweanling rats while attenuating the locomotion of adolescent and adult rats. The twofold purpose of this study was to determine whether EEDQ would: (a) potentiate or attenuate the cocaine-induced locomotor activity of preweanling, adolescent, and adult rats; and (b) alter the sensitivity of surviving D2 receptors. Rats were treated with vehicle or EEDQ (2.5 or 7.5 mg/kg) on postnatal day (PD) 17, PD 39, and PD 84. In the behavioral experiments, saline- or cocaine-induced locomotion was assessed 24 hr later. In the biochemical experiments, dorsal striatal samples were taken 24 hr after vehicle or EEDQ treatment and later assayed for NPA-stimulated GTPγS receptor binding, G protein-coupled receptor kinase 6 (GRK6), and β-arrestin-2 (ARRB2). GTPγS binding is a direct measure of ligand-induced G protein activation, while GRK6 and ARRB2 modulate the internalization and desensitization of D2 receptors. Results showed that EEDQ potentiated the locomotor activity of preweanling rats, while attenuating the locomotion of older rats. NPA-stimulated GTPγS binding was elevated in EEDQ-treated preweanling rats, relative to adults, indicating enhanced functional coupling between the G protein and receptor. EEDQ also reduced ARRB2 levels in all age groups, which is indicative of increased D2 receptor sensitivity. In sum, the present results support the hypothesis that D2 receptor supersensitivity is a critical factor mediating the locomotor potentiating effects of EEDQ in cocaine-treated preweanling rats.
Collapse
Affiliation(s)
- Cynthia A Crawford
- Department of Psychology, California State University, San Bernardino, California
| | - Angie Teran
- Department of Psychology, California State University, San Bernardino, California
| | - Goretti I Ramirez
- Department of Psychology, California State University, San Bernardino, California
| | - Caitlin G Katz
- Department of Psychology, California State University, San Bernardino, California
| | - Alena Mohd-Yusof
- Department of Psychology, California State University, San Bernardino, California
| | - Shannon E Eaton
- Department of Psychology, California State University, San Bernardino, California
- Department of Psychology, University of Kentucky, Lexington, Kentucky
| | - Vanessa Real
- Department of Psychology, California State University, San Bernardino, California
| | - Sanders A McDougall
- Department of Psychology, California State University, San Bernardino, California
| |
Collapse
|
7
|
Weinshenker D. Long Road to Ruin: Noradrenergic Dysfunction in Neurodegenerative Disease. Trends Neurosci 2018; 41:211-223. [PMID: 29475564 PMCID: PMC5878728 DOI: 10.1016/j.tins.2018.01.010] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 01/09/2023]
Abstract
It has been known for decades that degeneration of the locus coeruleus (LC), the major noradrenergic nucleus in the brain, occurs in both Alzheimer's disease (AD) and Parkinson's disease (PD), but it was given scant attention. It is now recognized that hyperphosphorylated tau in the LC is the first detectable AD-like neuropathology in the human brain, α-synuclein inclusions in the LC represent an early step in PD, and experimental LC lesions exacerbate neuropathology and cognitive/behavioral deficits in animal models. The purpose of this review is to consider the causes and consequences of LC pathology, dysfunction, and degeneration, as well as their implications for early detection and treatment.
Collapse
Affiliation(s)
- David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
8
|
Porter-Stransky KA, Weinshenker D. Arresting the Development of Addiction: The Role of β-Arrestin 2 in Drug Abuse. J Pharmacol Exp Ther 2017; 361:341-348. [PMID: 28302862 PMCID: PMC5443318 DOI: 10.1124/jpet.117.240622] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 03/15/2017] [Indexed: 01/01/2023] Open
Abstract
The protein β-arrestin (βarr) 2 directly interacts with receptors and signaling pathways that mediate the behavioral effects of drugs of abuse, making it a prime candidate for therapeutic interventions. βarr2 drives desensitization and internalization of G protein-coupled receptors, including dopamine, opioid, and cannabinoid receptors, and it can also trigger G protein-independent intracellular signaling. βarr2 mediates several drug-induced behaviors, but the relationship is complex and dependent on the type of behavior (e.g., psychomotor versus reward), the class of drug (e.g., psychostimulant versus opioid), and the circuit being interrogated (e.g., brain region, cell type, and specific receptor ligand). Here we discuss the current state of research concerning the contribution of βarr2 to the psychomotor and rewarding effects of addictive drugs. Next we identify key knowledge gaps and suggest new tools and approaches needed to further elucidate the neuroanatomical substrates and neurobiological mechanisms to explain how βarr2 modulates behavioral responses to drugs of abuse, as well as its potential as a therapeutic target.
Collapse
Affiliation(s)
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
9
|
Dobbs LK, Kaplan AR, Lemos JC, Matsui A, Rubinstein M, Alvarez VA. Dopamine Regulation of Lateral Inhibition between Striatal Neurons Gates the Stimulant Actions of Cocaine. Neuron 2016; 90:1100-13. [PMID: 27181061 DOI: 10.1016/j.neuron.2016.04.031] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/11/2016] [Accepted: 04/13/2016] [Indexed: 12/29/2022]
Abstract
Striatal medium spiny neurons (MSNs) form inhibitory synapses on neighboring striatal neurons through axon collaterals. The functional relevance of this lateral inhibition and its regulation by dopamine remains elusive. We show that synchronized stimulation of collateral transmission from multiple indirect-pathway MSNs (iMSNs) potently inhibits action potentials in direct-pathway MSNs (dMSNs) in the nucleus accumbens. Dopamine D2 receptors (D2Rs) suppress lateral inhibition from iMSNs to disinhibit dMSNs, which are known to facilitate locomotion. Surprisingly, D2R inhibition of synaptic transmission was larger at axon collaterals from iMSNs than their projections to the ventral pallidum. Targeted deletion of D2Rs from iMSNs impaired cocaine's ability to suppress lateral inhibition and increase locomotion. These impairments were rescued by chemogenetic activation of Gi-signaling in iMSNs. These findings shed light on the functional significance of lateral inhibition between MSNs and offer a novel synaptic mechanism by which dopamine gates locomotion and cocaine exerts its canonical stimulant response. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Lauren K Dobbs
- Section on Neuronal Structure, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Alanna R Kaplan
- Section on Neuronal Structure, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Julia C Lemos
- Section on Neuronal Structure, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Aya Matsui
- Section on Neuronal Structure, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, C1428ADN, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428ADN, Argentina; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Veronica A Alvarez
- Section on Neuronal Structure, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|