1
|
Miliano C, Dong Y, Proffit M, Corvalan N, Natividad LA, Gregus AM, Buczynski MW. Chronic intermittent ethanol produces nociception through endocannabinoid-independent mechanisms in mice. Neuropharmacology 2025:110502. [PMID: 40360036 DOI: 10.1016/j.neuropharm.2025.110502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/18/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025]
Abstract
Alcohol use disorder (AUD) affects millions of people and represents a significant health and economic burden. Pain is a frequently under-treated aspect of hyperkatifeia during alcohol withdrawal, yet to date no drugs have received FDA approval for the treatment of this indication in AUD patients. This study aims to evaluate the potential of targeting bioactive lipid signaling pathways as a therapeutic approach for treating alcohol withdrawal-related pain hypersensitivity. We utilized a chronic intermittent ethanol (CIE) vapor exposure model in C57BL/6J mice of both sexes to establish alcohol dependence and demonstrated that CIE produced robust tactile allodynia and thermal hyperalgesia during withdrawal that was independent of prior blood alcohol levels. Next, we evaluated four drugs for their efficacy in reversing tactile allodynia during abstinence from CIE using a cross-over treatment design that included FDA-approved naltrexone as well as commercially available inhibitors targeting the inflammatory lipid signaling enzymes fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), and 15-Lipoxygenase (LOX). None of these compounds produced significant therapeutic benefit in reversing established CIE-induced tactile allodynia, despite attenuating pain-like behaviors at these doses in other chronic pain models. Additionally, we assessed plasma endocannabinoid levels in both sexes during withdrawal. We found that there was an inherent sex difference in the endogenous anti-inflammatory endocannabinoid tone in naive mice and that CIE treatment affected endocannabinoids levels in female mice only. These findings underscore the need to better understand the underlying causes of AUD-induced allodynia and to develop novel therapeutic approaches to mitigate pain hypersensitivity in AUD patients.
Collapse
Affiliation(s)
- C Miliano
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - Y Dong
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - M Proffit
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - N Corvalan
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - L A Natividad
- College of Pharmacy, Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, Texas, USA
| | - A M Gregus
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061.
| | - M W Buczynski
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061.
| |
Collapse
|
2
|
Basu D. Palmitoylethanolamide, an endogenous fatty acid amide, and its pleiotropic health benefits: A narrative review. J Biomed Res 2024; 38:1-15. [PMID: 39433509 DOI: 10.7555/jbr.38.20240053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
The global nutritional transition has led to high frequency and severity of chronic degenerative diseases worldwide, primarily driven by chronic inflammatory stress. At the mealtimes, various pharmaceutical products aim to prevent such an inflammatory stress, they usually cause various systemic side effects. Therefore, supplementation of natural and safe ingredients is a great strategy to reduce the risk and severity of inflammatory stress-related diseases. As a result, palmitoylethanolamide (PEA), an endocannabinoid-like mediator, has been extensively studied for its myriad of actions, including anti-inflammatory, anti-microbial, immunostimulatory, neuroprotective, and pain-reducing effects with high tolerability and safety of PEA in animals and humans. Because of the multiple molecular targets and mechanisms of action, PEA has shown therapeutic benefits in various diseases, including neurological, psychiatric, ophthalmic, metabolic, oncological, renal, hepatic, immunological, rheumatological, and gastrointestinal conditions. The current review highlights the roles and functions of PEA in various physiological and pathological conditions, further supporting the use of PEA as an important dietary agent.
Collapse
Affiliation(s)
- Debasis Basu
- Healious Global METTA Clinic, Kolkata, West Bengal 700029, India
| |
Collapse
|
3
|
Escudero B, López-Valencia L, Arias Horcajadas F, Orio L. Divergent Roles of APOAI and APOM in the Identification of Alcohol Use Disorder and Their Association With Inflammation and Cognitive Decline: A Pilot Study. Int J Neuropsychopharmacol 2024; 27:pyae029. [PMID: 38970624 PMCID: PMC11287869 DOI: 10.1093/ijnp/pyae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND Alcohol use disorder (AUD) courses with inflammation and cognitive decline. Apolipoproteins have emerged as novel target compounds related to inflammatory processes and cognition. METHODS A cross-sectional study was performed on abstinent AUD patients with at least 1 month of abstinence (n = 33; 72.7% men) and healthy controls (n = 34; 47.1% men). A battery of plasma apolipoproteins (APOAI, APOAII, APOB, APOCII, APOE, APOJ, and APOM), plasma inflammatory markers (LPS, LBP), and their influence on cognition and presence of the disorder were investigated. RESULTS Higher levels of plasma APOAI, APOB, APOE, and APOJ, as well as the proinflammatory LPS, were observed in the AUD group, irrespective of sex, whereas APOM levels were lower vs controls. Hierarchical logistic regression analyses, adjusting for covariates (age, sex, education), associated APOM with the absence of cognitive impairment in AUD and identified APOAI and APOM as strong predictors of the presence or absence of the disorder, respectively. APOAI and APOM did not correlate with alcohol abuse variables or liver status markers, but they showed an opposite profile in their associations with LPS (positive for APOAI; negative for APOM) and cognition (negative for APOAI; positive for APOM) in the entire sample. CONCLUSIONS The HDL constituents APOAI and APOM were differentially regulated in the plasma of AUD patients compared with controls, playing divergent roles in the disorder identification and associations with inflammation and cognitive decline.
Collapse
Affiliation(s)
- Berta Escudero
- Instituto de investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Spain
| | - Leticia López-Valencia
- Instituto de investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Spain
| | - Francisco Arias Horcajadas
- Instituto de investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
- Riapad: Research Network in Primary Care in Addictions, Spain
| | - Laura Orio
- Instituto de investigación Sanitaria Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
- Department of Psychobiology and Behavioral Sciences Methods, Faculty of Psychology, Complutense University of Madrid, Pozuelo de Alarcón, Spain
- Riapad: Research Network in Primary Care in Addictions, Spain
| |
Collapse
|
4
|
Pérez-Martín E, Pérez-Revuelta L, Barahona-López C, Pérez-Boyero D, Alonso JR, Díaz D, Weruaga E. Oleoylethanolamide Treatment Modulates Both Neuroinflammation and Microgliosis, and Prevents Massive Leukocyte Infiltration to the Cerebellum in a Mouse Model of Neuronal Degeneration. Int J Mol Sci 2023; 24:ijms24119691. [PMID: 37298639 DOI: 10.3390/ijms24119691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Neurodegenerative diseases involve an exacerbated neuroinflammatory response led by microglia that triggers cytokine storm and leukocyte infiltration into the brain. PPARα agonists partially dampen this neuroinflammation in some models of brain insult, but neuronal loss was not the triggering cause in any of them. This study examines the anti-inflammatory and immunomodulatory properties of the PPARα agonist oleoylethanolamide (OEA) in the Purkinje Cell Degeneration (PCD) mouse, which exhibits striking neuroinflammation caused by aggressive loss of cerebellar Purkinje neurons. Using real-time quantitative polymerase chain reaction and immunostaining, we quantified changes in pro- and anti-inflammatory markers, microglial density and marker-based phenotype, and overall leukocyte recruitment at different time points after OEA administration. OEA was found to modulate cerebellar neuroinflammation by increasing the gene expression of proinflammatory mediators at the onset of neurodegeneration and decreasing it over time. OEA also enhanced the expression of anti-inflammatory and neuroprotective factors and the Pparα gene. Regarding microgliosis, OEA reduced microglial density-especially in regions where it is preferentially located in PCD mice-and shifted the microglial phenotype towards an anti-inflammatory state. Finally, OEA prevented massive leukocyte infiltration into the cerebellum. Overall, our findings suggest that OEA may change the environment to protect neurons from degeneration caused by exacerbated inflammation.
Collapse
Affiliation(s)
- Ester Pérez-Martín
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Laura Pérez-Revuelta
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Cristina Barahona-López
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
| | - David Pérez-Boyero
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José R Alonso
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - David Díaz
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Eduardo Weruaga
- Laboratory of Neuronal Plasticity and Neurorepair, Institute of Neuroscience of Castile and Leon (INCyL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
5
|
Herrera-Imbroda J, Flores-López M, Requena-Ocaña N, Araos P, Ropero J, García-Marchena N, Bordallo A, Suarez J, Pavón-Morón FJ, Serrano A, Mayoral F, Rodríguez de Fonseca F. Antipsychotic Medication Influences the Discriminative Value of Acylethanolamides as Biomarkers of Substance Use Disorder. Int J Mol Sci 2023; 24:ijms24119371. [PMID: 37298321 DOI: 10.3390/ijms24119371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/01/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Plasma acylethanolamides (NAEs), including the endocannabinoid anandamide (AEA), have been proposed as circulating biomarkers of substance use disorders. However, the concentration of these lipid transmitters might be influenced by the use of drugs prescribed for either the treatment of addiction or the associated psychiatric co-morbidities such as psychosis. As an example, neuroleptics, used for attenuation of psychotic symptoms and sedation, might theoretically interfere with the monoamine-mediated production of NAEs, obstructing the interpretation of plasma NAEs as clinical biomarkers. To solve the lack of information on the impact of neuroleptics on the concentration of NAEs, we evaluated the concentrations of NAEs in a control group and compared them to those present in (a) substance use disorders (SUD) patients that are not prescribed with neuroleptics, and (b) SUD patients (both alcohol use disorder and cocaine use disorder patients) using neuroleptics. The results demonstrate that SUD patients exhibited greater concentrations of NAEs than the control population, affecting all species with the exception of stearoylethanolamide (SEA) and palmitoleoylethanolamide (POEA). Neuroleptic treatment enhanced the concentrations of NAEs, especially those of AEA, linoleoylethanolamide (LEA), and oleoylethanolamide (OEA). This effect of neuroleptic treatment was observed independently of the drug addiction that motivated the demand for treatment (either alcohol or cocaine). This study remarks the need to control the current use of psychotropic medication as a potential confounding variable when considering the use of NAEs as biomarkers in SUD.
Collapse
Affiliation(s)
- Jesús Herrera-Imbroda
- Grupo de Neuropsicofarmacología, IBIMA-Plataforma BIONAND, 29590 Málaga, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Facultad de Medicina, Universidad de Málaga, Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - María Flores-López
- Grupo de Neuropsicofarmacología, IBIMA-Plataforma BIONAND, 29590 Málaga, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Nerea Requena-Ocaña
- Grupo de Neuropsicofarmacología, IBIMA-Plataforma BIONAND, 29590 Málaga, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Pedro Araos
- Grupo de Neuropsicofarmacología, IBIMA-Plataforma BIONAND, 29590 Málaga, Spain
- Departamento de Psicología Básica, Facultad de Psicología, Universidad de Málaga, 29071 Málaga, Spain
| | - Jessica Ropero
- Grupo de Neuropsicofarmacología, IBIMA-Plataforma BIONAND, 29590 Málaga, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Nuria García-Marchena
- Grupo de Neuropsicofarmacología, IBIMA-Plataforma BIONAND, 29590 Málaga, Spain
- Departamento de Psicobiología y Metodología, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain
| | - Antonio Bordallo
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Juan Suarez
- Grupo de Neuropsicofarmacología, IBIMA-Plataforma BIONAND, 29590 Málaga, Spain
- Departamento de Anatomía, Medicina Legal e Historia de la Ciencia, Facultad de Medicina, Universidad de Málaga, 29071 Málaga, Spain
| | - Francisco Javier Pavón-Morón
- Unidad Clínica Área del Corazón, Hospital Universitario Virgen de la Victoria, IBIMA-Plataforma BIONAND, 29010 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Antonia Serrano
- Grupo de Neuropsicofarmacología, IBIMA-Plataforma BIONAND, 29590 Málaga, Spain
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Fermín Mayoral
- Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, IBIMA-Plataforma BIONAND, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Grupo de Neuropsicofarmacología, IBIMA-Plataforma BIONAND, 29590 Málaga, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Unidad Clínica de Neurología, Hospital Regional Universitario de Málaga, IBIMA-Plataforma BIONAND, 29010 Málaga, Spain
- Andalusian Network for Clinical and Translational Research in Neurology [NEURO-RECA], 29001 Málaga, Spain
| |
Collapse
|
6
|
Liu S, Yin R, Yang Z, Wei F, Hu J. The effects of rhein on D-GalN/LPS-induced acute liver injury in mice: Results from gut microbiome-metabolomics and host transcriptome analysis. Front Immunol 2022; 13:971409. [PMID: 36389730 PMCID: PMC9648667 DOI: 10.3389/fimmu.2022.971409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/11/2022] [Indexed: 11/24/2022] Open
Abstract
Background Rhubarb is an important traditional Chinese medicine, and rhein is one of its most important active ingredients. Studies have found that rhein can improve ulcerative colitis by regulating gut microbes, but there are few reports on its effects on liver diseases. Therefore, this study aims to investigate these effects and underlying mechanisms. Methods Mice were given rhein (100 mg/kg), with both a normal control group and a model group receiving the same amount of normal saline for one week. Acute liver injury was induced in mice by intraperitoneal injection of D-GalN (800 mg/kg)/LPS (10 ug/kg). Samples (blood, liver, and stool) were then collected and assessed for histological lesions and used for 16S rRNA gene sequencing, high-performance liquid chromatography-mass spectrometry (LC-MS) and RNA-seq analysis. Results The levels of ALT and AST in the Model group were abnormal higher compared to the normal control group, and the levels of ALT and AST were significantly relieved in the rhein group. Hepatic HE staining showed that the degree of liver injury in the rhein group was lighter than that in the model group, and microbiological results showed that norank_o:Clostridia_UCG-014, Lachnoclostridium, and Roseburia were more abundant in the model group compared to the normal control group. Notably, the rhein treatment group showed reshaped disturbance of intestinal microbial community by D-GalN/LPS and these mice also had higher levels of Verrucomicrobia, Akkermansiaceae and Bacteroidetes. Additionally, There were multiple metabolites that were significantly different between the normal control group and the model group, such as L-α-amino acid, ofloxacin-N-oxide, 1-hydroxy-1,3-diphenylpropan-2-one,and L-4-hydroxyglutamate semialdehyde, but that returned to normal levels after rhein treatment. The gene expression level in the model group also changed significantly, various genes such as Cxcl2, S100a9, Tnf, Ereg, and IL-10 were up-regulated, while Mfsd2a and Bhlhe41 were down-regulated, which were recovered after rhein treatment. Conclusion Overall, our results show that rhein alleviated D-GalN/LPS-induced acute liver injury in mice. It may help modulate gut microbiota in mice, thereby changing metabolism in the intestine. Meanwhile, rhein also may help regulate genes expression level to alleviate D-GalN/LPS-induced acute liver injury.
Collapse
Affiliation(s)
- Shuhui Liu
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ruiying Yin
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ziwei Yang
- Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Feili Wei
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Feili Wei, ; Jianhua Hu,
| | - Jianhua Hu
- Beijing Youan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Feili Wei, ; Jianhua Hu,
| |
Collapse
|
7
|
Simard M, Tremblay A, Morin S, Martin C, Julien P, Fradette J, Flamand N, Pouliot R. α-Linolenic acid and linoleic acid modulate the lipidome and the skin barrier of a tissue-engineered skin model. Acta Biomater 2022; 140:261-274. [PMID: 34808417 DOI: 10.1016/j.actbio.2021.11.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) play an important role in the establishment and the maintenance of the skin barrier function. However, the impact of their derived lipid mediators remains unclear. Skin substitutes were engineered according to the self-assembly method with a culture medium supplemented with 10 μM of both α-linolenic acid (ALA) and linoleic acid (LA). The supplementation with ALA and LA decreased testosterone absorption through a tissue-engineered reconstructed skin model, thus indicating an improved skin barrier function following supplementation. The exogenously provided fatty acids were incorporated into the phospholipid and triglyceride fractions of the skin substitutes. Indeed, the dual supplementation increased the levels of eicosapentaenoic acid (EPA) (15-fold), docosapentaenoic acid (DPA) (3-fold), and LA (1.5-fold) in the epidermal phospholipids while it increased the levels of ALA (>20-fold), DPA (3-fold) and LA (1.5-fold) in the epidermal triglycerides. The bioactive lipid mediator profile of the skin substitutes, including prostaglandins, hydroxy-fatty acids, N-acylethanolamines and monoacylglycerols, was next analyzed using liquid chromatography-tandem mass spectrometry. The lipid supplementation further modulated bioactive lipid mediator levels of the reconstructed skin substitutes, leading to a lipid mediator profile more representative of the one found in normal human skin. These findings show that an optimized supply of PUFAs via culture media is essential for the establishment of improved barrier function in vitro. STATEMENT OF SIGNIFICANCE: Supplementation of the culture medium with 10 μM of both α-linolenic acid (ALA) and linoleic acid (LA) improved the skin barrier function of a tissue-engineered skin model. The exogenously provided fatty acids were incorporated into the phospholipid and triglyceride fractions of the skin substitutes and further modulated bioactive lipid mediator levels, including prostaglandins, hydroxy-fatty acids, N-acylethanolamines and monoacylglycerols. These findings highlight the important role of ALA and LA in skin homeostasis and show that an optimized supply of polyunsaturated fatty acids via culture media is essential for the establishment of improved barrier function in vitro.
Collapse
Affiliation(s)
- Mélissa Simard
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC, G1J 1A4, Canada
| | - Andréa Tremblay
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC, G1J 1A4, Canada
| | - Sophie Morin
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC, G1J 1A4, Canada
| | - Cyril Martin
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, QC, G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC, Canada
| | - Pierre Julien
- Département de médecine, Faculté de médecine de l'Université Laval, Québec, QC, G1V 0A6, Canada; Axe Endocrinologie et Néphrologie, Centre de recherche du CHU de Québec, Université Laval, Québec, QC, G1J 1A4, Canada
| | - Julie Fradette
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Département de chirurgie, Faculté de médecine de l'Université Laval, Québec, QC, G1V 0A6, Canada
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, QC, G1V 4G5, Canada; Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC, Canada
| | - Roxane Pouliot
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1Z4, Canada; Faculté de pharmacie de l'Université Laval, Québec, QC, G1J 1A4, Canada.
| |
Collapse
|
8
|
Pai AY, Wenziger C, Streja E, Argueta DA, DiPatrizio NV, Rhee CM, Vaziri ND, Kalantar-Zadeh K, Piomelli D, Moradi H. Impact of Circulating N-Acylethanolamine Levels with Clinical and Laboratory End Points in Hemodialysis Patients. Am J Nephrol 2021; 52:59-68. [PMID: 33601382 DOI: 10.1159/000513381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/14/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Patients with ESRD on maintenance hemodialysis (MHD) are particularly susceptible to dysregulation of energy metabolism, which may manifest as protein energy wasting and cachexia. In recent years, the endocannabinoid system has been shown to play an important role in energy metabolism with potential relevance in ESRD. N-acylethanolamines are a class of fatty acid amides which include the major endocannabinoid ligand, anandamide, and the endogenous peroxisome proliferator-activated receptor-α agonists, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). METHODS Serum concentrations of OEA and PEA were measured in MHD patients and their correlations with various clinical/laboratory indices were examined. Secondarily, we evaluated the association of circulating PEA and OEA levels with 12-month all-cause mortality. RESULTS Both serum OEA and PEA levels positively correlated with high-density lipoprotein-cholesterol levels and negatively correlated with body fat and body anthropometric measures. Serum OEA levels correlated positively with serum interleukin-6 (IL-6) (rho = 0.19; p = 0.004). Serum PEA and IL-6 showed a similar but nonsignificant trend (rho = 0.12; p = 0.07). Restricted cubic spline analyses showed that increasing serum OEA and PEA both trended toward higher mortality risk, and these associations were statistically significant for PEA (PEA ≥4.7 pmol/mL; reference: PEA <4.7 pmol/mL) after adjustments in a Cox model (hazard ratio 2.99; 95% confidence interval 1.04, 8.64). CONCLUSIONS In MHD patients, OEA and PEA are significantly correlated with variables related to lipid metabolism and body mass. Additionally, higher serum levels of PEA are associated with mortality risk. Future studies are needed to examine the potential mechanisms responsible for these findings and their clinical implications.
Collapse
Affiliation(s)
- Alex Y Pai
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California Irvine School of Medicine, Irvine, California, USA
| | - Cachet Wenziger
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California Irvine School of Medicine, Irvine, California, USA
| | - Elani Streja
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California Irvine School of Medicine, Irvine, California, USA
- Tibor Rubin VA Medical Center, Long Beach, California, USA
| | - Donovan A Argueta
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California, USA
| | - Nicholas V DiPatrizio
- Division of Biomedical Sciences, University of California Riverside School of Medicine, Riverside, California, USA
| | - Connie M Rhee
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California Irvine School of Medicine, Irvine, California, USA
| | - Nosratola D Vaziri
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California Irvine School of Medicine, Irvine, California, USA
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California Irvine School of Medicine, Irvine, California, USA
- Tibor Rubin VA Medical Center, Long Beach, California, USA
| | - Daniele Piomelli
- Anatomy and Neurobiology, University of California Irvine School of Medicine, Irvine, California, USA
| | - Hamid Moradi
- Division of Nephrology, Hypertension and Kidney Transplantation, University of California Irvine School of Medicine, Irvine, California, USA,
- Tibor Rubin VA Medical Center, Long Beach, California, USA,
| |
Collapse
|
9
|
García-Baos A, Alegre-Zurano L, Cantacorps L, Martín-Sánchez A, Valverde O. Role of cannabinoids in alcohol-induced neuroinflammation. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110054. [PMID: 32758518 DOI: 10.1016/j.pnpbp.2020.110054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/13/2020] [Accepted: 07/29/2020] [Indexed: 02/06/2023]
Abstract
Alcohol is a psychoactive substance highly used worldwide, whose harmful use might cause a broad range of mental and behavioural disorders. Underlying brain impact, the neuroinflammatory response induced by alcohol is recognised as a key contributing factor in the progression of other neuropathological processes, such as neurodegeneration. These sequels are determined by multiple factors, including age of exposure. Strikingly, it seems that the endocannabinoid system modulation could regulate the alcohol-induced neuroinflammation. Although direct CB1 activation can worsen alcohol consequences, targeting other components of the expanded endocannabinoid system may counterbalance the pro-inflammatory response. Indeed, specific modulations of the expanded endocannabinoid system have been proved to exert anti-inflammatory effects, primarily through the CB2 and PPARγ signalling. Among them, some endo- and exogeneous cannabinoids can block certain pro-inflammatory mediators, such as NF-κB, thereby neutralizing the neuroinflammatory intracellular cascades. Furthermore, a number of cannabinoids are able to activate complementary anti-inflammatory pathways, which are necessary for the transition from chronically overactivated microglia to a regenerative microglial phenotype. Thus, cannabinoid modulation provides cooperative anti-inflammatory mechanisms that may be advantageous to resolve a pathological neuroinflammation in an alcohol-dependent context.
Collapse
Affiliation(s)
- Alba García-Baos
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laia Alegre-Zurano
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Lídia Cantacorps
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ana Martín-Sánchez
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain; Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
10
|
N-acylethanolamine acid amidase (NAAA) inhibition decreases the motivation for alcohol in Marchigian Sardinian alcohol-preferring rats. Psychopharmacology (Berl) 2021; 238:249-258. [PMID: 33037452 PMCID: PMC7796956 DOI: 10.1007/s00213-020-05678-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
RATIONALE N-acylethanolamine acid amidase (NAAA) is an intracellular cysteine hydrolase that terminates the biological actions of oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), two endogenous lipid-derived agonists of the nuclear receptor, and peroxisome proliferator-activated receptor-α. OEA and PEA are important regulators of energy balance, pain, and inflammation, but recent evidence suggests that they might also contribute to the control of reward-related behaviors. OBJECTIVES AND METHODS In the present study, we investigated the effects of systemic and intracerebral NAAA inhibition in the two-bottle choice model of voluntary alcohol drinking and on operant alcohol self-administration. RESULTS Intraperitoneal injections of the systemically active NAAA inhibitor ARN19702 (3 and 10 mg/kg) lowered voluntary alcohol intake in a dose-dependent manner, achieving ≈ 47% reduction at the 10 mg/kg dose (p < 0.001). Water, food, or saccharin consumption was not affected by the inhibitor. Similarly, ARN19702 dose-dependently attenuated alcohol self-administration under both fixed ratio 1 (FR-1) and progressive ratio schedules of reinforcement. Furthermore, microinjection of ARN19702 (1, 3 and 10 μg/μl) or of two chemically different NAAA inhibitors, ARN077 and ARN726 (both at 3 and 10 μg/μl), into the midbrain ventral tegmental area produced dose-dependent decreases in alcohol self-administration under FR-1 schedule. Microinjection of ARN19702 into the nucleus accumbens had no such effect. CONCLUSION Collectively, the results point to NAAA as a possible molecular target for the treatment of alcohol use disorder.
Collapse
|
11
|
Alasmari F, Alhaddad H, Wong W, Bell RL, Sari Y. Ampicillin/Sulbactam Treatment Modulates NMDA Receptor NR2B Subunit and Attenuates Neuroinflammation and Alcohol Intake in Male High Alcohol Drinking Rats. Biomolecules 2020; 10:biom10071030. [PMID: 32664441 PMCID: PMC7407831 DOI: 10.3390/biom10071030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/21/2022] Open
Abstract
Exposure to ethanol commonly manifests neuroinflammation. Beta (β)-lactam antibiotics attenuate ethanol drinking through upregulation of astroglial glutamate transporters, especially glutamate transporter-1 (GLT-1), in the mesocorticolimbic brain regions, including the nucleus accumbens (Acb). However, the effect of β-lactam antibiotics on neuroinflammation in animals chronically exposed to ethanol has not been fully investigated. In this study, we evaluated the effects of ampicillin/sulbactam (AMP/SUL, 100 and 200 mg/kg, i.p.) on ethanol consumption in high alcohol drinking (HAD1) rats. Additionally, we investigated the effects of AMP/SUL on GLT-1 and N-methyl-d-aspartate (NMDA) receptor subtypes (NR2A and NR2B) in the Acb core (AcbCo) and Acb shell (AcbSh). We found that AMP/SUL at both doses attenuated ethanol consumption and restored ethanol-decreased GLT-1 and NR2B expression in the AcbSh and AcbCo, respectively. Moreover, AMP/SUL (200 mg/kg, i.p.) reduced ethanol-increased high mobility group box 1 (HMGB1) and receptor for advanced glycation end-products (RAGE) expression in the AcbSh. Moreover, both doses of AMP/SUL attenuated ethanol-elevated tumor necrosis factor-alpha (TNF-α) in the AcbSh. Our results suggest that AMP/SUL attenuates ethanol drinking and modulates NMDA receptor NR2B subunits and HMGB1-associated pathways.
Collapse
Affiliation(s)
- Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (H.A.); (W.W.)
| | - Hasan Alhaddad
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (H.A.); (W.W.)
| | - Woonyen Wong
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (H.A.); (W.W.)
| | - Richard L. Bell
- Department of Psychiatry and Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: (R.L.B.); (Y.S.); Tel.: +317-278-8407 (R.L.B.); +419-383-1507 (Y.S.)
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA; (H.A.); (W.W.)
- Correspondence: (R.L.B.); (Y.S.); Tel.: +317-278-8407 (R.L.B.); +419-383-1507 (Y.S.)
| |
Collapse
|
12
|
Ghaffari S, Roshanravan N, Tutunchi H, Ostadrahimi A, Pouraghaei M, Kafil B. Oleoylethanolamide, A Bioactive Lipid Amide, as A Promising Treatment Strategy for Coronavirus/COVID-19. Arch Med Res 2020; 51:464-467. [PMID: 32327293 PMCID: PMC7158763 DOI: 10.1016/j.arcmed.2020.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022]
Abstract
The current outbreak of COVID-19 (coronavirus) has been identified by World Health Organization (WHO) as a global pandemic. With the emergence of the COVID-19 virus and considering the lack of effective pharmaceutical treatment for it, there is an urgent need to identify safe and effective drugs or potential adjuvant therapy in this regard. Bioactive lipids with an array of known health-promoting properties can be suggested as effective agents in alleviating acute respiratory stress induced by virus. The bioactive lipid amide, oleoylethanolamide (OEA), due to several distinctive homeostatic properties, including anti-inflammatory activities, modulation of immune response, and anti-oxidant effects can be considered as a novel potential pharmacological alternative for the management of COVID-19.
Collapse
Affiliation(s)
- Samad Ghaffari
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Roshanravan
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Helda Tutunchi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Ostadrahimi
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahboub Pouraghaei
- Emergency Medicine Research Team, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behnam Kafil
- Nutrition Research Center, Department of Clinical Nutrition, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Sanchez-Marin L, Gavito AL, Decara J, Pastor A, Castilla-Ortega E, Suarez J, de la Torre R, Pavon FJ, Rodriguez de Fonseca F, Serrano A. Impact of intermittent voluntary ethanol consumption during adolescence on the expression of endocannabinoid system and neuroinflammatory mediators. Eur Neuropsychopharmacol 2020; 33:126-138. [PMID: 32057593 DOI: 10.1016/j.euroneuro.2020.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/09/2020] [Accepted: 01/22/2020] [Indexed: 01/14/2023]
Abstract
The adolescent brain displays high vulnerability to the deleterious effects of ethanol, including greater risk of developing alcohol use disorder later in life. Here, we characterized the gene expression of the endocannabinoid system (ECS) and relevant signaling systems associated with neuroinflammation and emotional behaviors in the brain of young adult control and ethanol-exposed (EtOH) rats. We measured mRNA levels of candidate genes using quantitative real time PCR in the medial prefrontal cortex (mPFC), amygdala and hippocampus. EtOH rats were generated by maintenance on an intermittent and voluntary ethanol consumption during adolescence using the two-bottle choice paradigm (4 days/week for 4 weeks) followed by 2 week-withdrawal, a time-point of withdrawal with no physical symptoms. Mean differences and effect sizes were calculated using t-test and Cohen's d values. In the mPFC and hippocampus, EtOH rats had significantly higher mRNA expression of endocannabinoid-signaling (mPFC: Ppara, Dagla, Daglb and Napepld; and hippocampus: Cnr2, Dagla and Mgll) and neuroinflammation-associated genes (mPFC: Gfap; and hippocampus: Aif1) than in controls. Moreover, EtOH rats had significantly higher mRNA expression of neuropeptide Y receptor genes (Npy1r, Npy2r and Npy5r) in the hippocampus. Finally, EtOH rats also displayed higher plasma endocannabinoid levels than controls. In conclusion, these results suggest that adolescent ethanol exposure can lead to long-term alterations in the gene expression of the ECS and other signaling systems involved in neuroinflammation and regulation of emotional behaviors in key brain areas for the development of addiction.
Collapse
Affiliation(s)
- L Sanchez-Marin
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain
| | - A L Gavito
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain
| | - J Decara
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain
| | - A Pastor
- Programa de Neurociencias, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - E Castilla-Ortega
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain
| | - J Suarez
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain
| | - R de la Torre
- Programa de Neurociencias, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - F J Pavon
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain; Unidad Gestión Clínica del Corazón, IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga, Spain
| | - F Rodriguez de Fonseca
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain.
| | - A Serrano
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga, Universidad de Málaga, Avda. Carlos Haya 82, Sótano, Málaga 29010, Spain.
| |
Collapse
|
14
|
Rodriguez-Gonzalez A, Orio L. Microbiota and Alcohol Use Disorder: Are Psychobiotics a Novel Therapeutic Strategy? Curr Pharm Des 2020; 26:2426-2437. [PMID: 31969090 DOI: 10.2174/1381612826666200122153541] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/30/2019] [Indexed: 02/08/2023]
Abstract
In recent years, there has been an exciting focus of research attempting to understand neuropsychiatric disorders from a holistic perspective in order to determine the role of gut microbiota in the aetiology and pathogenesis of such disorders. Thus, the possible therapeutic benefits of targeting gut microbiota are being explored for conditions such as stress, depression or schizophrenia. Growing evidence indicates that there is bidirectional communication between gut microbiota and the brain that has an effect on normal CNS functioning and behavioural responses. Alcohol abuse damages the gastrointestinal tract, alters gut microbiota and induces neuroinflammation and cognitive decline. The relationship between alcohol abuse and hypothalamic-pituitary-adrenal axis activation, inflammation and immune regulation has been well documented. In this review, we explore the connection between microbiota, brain function and behaviour, as well as the mechanisms through which alcohol induces microbiota dysbiosis and intestinal barrier dysfunction. Finally, we propose the study of psychobiotics as a novel pharmaceutical strategy to treat alcohol use disorders.
Collapse
Affiliation(s)
- Alicia Rodriguez-Gonzalez
- Department of Psychobiology and Methods in Behavioural Sciences, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Laura Orio
- Department of Psychobiology and Methods in Behavioural Sciences, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
15
|
Orio L. The multifaceted potential of the lipid transmitter oleoylethanolamide to treat alcohol-induced neuroinflammation and alcohol use disorders. Neural Regen Res 2020; 15:71-72. [PMID: 31535652 PMCID: PMC6862416 DOI: 10.4103/1673-5374.264457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Laura Orio
- Department of Psychobiology and Methods in Behavioural Sciences, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
16
|
Airapetov MI, Eresko SO, Lebedev AA, Bychkov ER, Shabanov PD. [Alcoholization and ethanol withdrawal leads to the activation of neuroimmune response in the prefrontal rat brain]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2019; 65:380-384. [PMID: 31666409 DOI: 10.18097/pbmc20196505380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The effects of acute (single) and chronic ethanol administration on the level of pro-inflammatory cytokines (IL-1β and TNF-α), as well as on the level of mRNA NF-κB, TLR4 and its endogenous agonist, HMGB1 protein, were investigated in rats. It was shown that the level of TLR4, HMGB1 and cytokines was significantly higher than in control group. The ethanol withdrawal after prolonged administration resulted in dysregulation of cytokine levels, TLR4 and HMGB1. Changes in the level of TLR4 and HMGB1 mRNA demonstrated a similar pattern. The obtained data confirm that prolonged alcoholization leads to the activation of TLR4-dependent signaling in the prefrontal cortex of rats, and this can lead to a prolonged neuro-inflammatory process in the brain.
Collapse
Affiliation(s)
- M I Airapetov
- Institute of Experimental Medicine, St. Petersburg, Russia; St. Petersburg State Medical Pediatric University, St. Petersburg, Russia
| | - S O Eresko
- St. Petersburg State University, St. Petersburg, Russia
| | - A A Lebedev
- Institute of Experimental Medicine, St. Petersburg, Russia
| | - E R Bychkov
- Institute of Experimental Medicine, St. Petersburg, Russia
| | - P D Shabanov
- Institute of Experimental Medicine, St. Petersburg, Russia; Kirov Military Medical Academy, St. Petersburg, Russia
| |
Collapse
|
17
|
Silva-Peña D, Rivera P, Alén F, Vargas A, Rubio L, García-Marchena N, Pavón FJ, Serrano A, Rodríguez de Fonseca F, Suárez J. Oleoylethanolamide Modulates BDNF-ERK Signaling and Neurogenesis in the Hippocampi of Rats Exposed to Δ 9-THC and Ethanol Binge Drinking During Adolescence. Front Mol Neurosci 2019; 12:96. [PMID: 31068789 PMCID: PMC6491684 DOI: 10.3389/fnmol.2019.00096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/01/2019] [Indexed: 01/08/2023] Open
Abstract
Oleoylethanolamide is an endogenous NAE that modulates ethanol-seeking behavior and ethanol-induced neuroinflammation. In the present study we further analyze the role of OEA in hippocampal neurogenesis, BDNF-ERK signaling, and spatial memory that are affected by alcohol. Additionally, we addressed the effects of OEA on the association of alcohol and cannabis, a frequent combination in human alcohol addicts, and whose long-term effects are far from being understood. To this end, OEA (10 mg/kg/day, i.p.) was pharmacologically administered for 5 days/week in a preclinical model of adolescent rats with binge-like consumption (1 day/week) of ethanol (3 g/kg, i.g.) combined or not with acute administrations of Δ9-THC (5 mg/kg, i.p.) for 5 weeks. OEA restored ethanol/THC-related decreases in both short-term spatial memory (spontaneous alternation by Y-maze) and circulating levels of BDNF, reduced cell proliferation (Mki67 and IdU+ cells) and maturation (Dcx, Calb1), and improved cell survival (Casp3 and BrdU+ cells) in the dorsal hippocampus. Interestingly, OEA alone or combined with THC also decreased the mRNA levels of neurotrophic factors (Bdnf, Ntf3) and the NT3 receptor TrkC, but increased the BDNF receptor TrkB in the hippocampus of ethanol-exposed rats. These effects were likely associated with a OEA-specific phosphorylation of AKT and ERK1, key signaling regulators of cell proliferation and survival. These results suggest a regulatory role of OEA in short-term spatial memory and hippocampal neurogenesis through BDNF/AKT/ERK1 signaling in response to acute THC in an alcoholic context during adolescence.
Collapse
Affiliation(s)
- Daniel Silva-Peña
- Instituto de Investigación Biomédica de Málaga, U.G.C. de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Patricia Rivera
- Department of Endocrinology, Fundación Investigación Biomédica del Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Francisco Alén
- Departamento de Psicobiología, Universidad Complutense Madrid, Pozuelo de Alarcón, Spain
| | - Antonio Vargas
- Instituto de Investigación Biomédica de Málaga, U.G.C. de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Leticia Rubio
- Departamento de Anatomía y Medicina Legal, Universidad de Málaga, Málaga, Spain
| | - Nuria García-Marchena
- Instituto de Investigación Biomédica de Málaga, U.G.C. de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Francisco Javier Pavón
- Instituto de Investigación Biomédica de Málaga, U.G.C. de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Antonia Serrano
- Instituto de Investigación Biomédica de Málaga, U.G.C. de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga, U.G.C. de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain.,Departamento de Psicobiología, Universidad Complutense Madrid, Pozuelo de Alarcón, Spain
| | - Juan Suárez
- Instituto de Investigación Biomédica de Málaga, U.G.C. de Salud Mental, Hospital Regional Universitario de Málaga, Málaga, Spain
| |
Collapse
|
18
|
Orio L, Alen F, Pavón FJ, Serrano A, García-Bueno B. Oleoylethanolamide, Neuroinflammation, and Alcohol Abuse. Front Mol Neurosci 2019; 11:490. [PMID: 30687006 PMCID: PMC6333756 DOI: 10.3389/fnmol.2018.00490] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/18/2018] [Indexed: 12/28/2022] Open
Abstract
Neuroinflammation is a complex process involved in the physiopathology of many central nervous system diseases, including addiction. Alcohol abuse is characterized by induction of peripheral inflammation and neuroinflammation, which hallmark is the activation of innate immunity toll-like receptors 4 (TLR4). In the last years, lipid transmitters have generated attention as modulators of parts of the addictive process. Specifically, the bioactive lipid oleoylethanolamide (OEA), which is an endogenous acylethanolamide, has shown a beneficial profile for alcohol abuse. Preclinical studies have shown that OEA is a potent anti-inflammatory and antioxidant compound that exerts neuroprotective effects in alcohol abuse. Exogenous administration of OEA blocks the alcohol-induced TLR4-mediated pro-inflammatory cascade, reducing the release of proinflammatory cytokines and chemokines, oxidative and nitrosative stress, and ultimately, preventing the neural damage in frontal cortex of rodents. The mechanisms of action of OEA are discussed in this review, including a protective action in the intestinal barrier. Additionally, OEA blocks cue-induced reinstatement of alcohol-seeking behavior and reduces the severity of withdrawal symptoms in animals, together with the modulation of alcohol-induced depression-like behavior and other negative motivational states associated with the abstinence, such as the anhedonia. Finally, exposure to alcohol induces OEA release in blood and brain of rodents. Clinical evidences will be highlighted, including the OEA release and the correlation of plasma OEA levels with TLR4-dependent peripheral inflammatory markers in alcohol abusers. In base of these evidences we hypothesize that the endogenous release of OEA could be a homeostatic signal to counteract the toxic action of alcohol and we propose the exploration of OEA-based pharmacotherapies to treat alcohol-use disorders.
Collapse
Affiliation(s)
- Laura Orio
- Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain.,Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Francisco Alen
- Department of Psychobiology and Methods in Behavioral Science, Faculty of Psychology, Complutense University of Madrid, Madrid, Spain
| | - Francisco Javier Pavón
- Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Antonia Serrano
- Red de Trastornos Adictivos (RTA), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.,Unidad de Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Borja García-Bueno
- Department of Pharmacology and Toxicology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Salud Mental, IMAS and IUING, Madrid, Spain
| |
Collapse
|
19
|
Antón M, Rodríguez-González A, Ballesta A, González N, Del Pozo A, de Fonseca FR, Gómez-Lus ML, Leza JC, García-Bueno B, Caso JR, Orio L. Alcohol binge disrupts the rat intestinal barrier: the partial protective role of oleoylethanolamide. Br J Pharmacol 2018; 175:4464-4479. [PMID: 30248186 DOI: 10.1111/bph.14501] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 09/04/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Chronic alcohol consumption alters the gut-brain axis, but little is known about alcohol binge episodes on the functioning of the intestinal barrier. We investigated the influence of ethanol binges on bacterial translocation, gut inflammation and immunity, and tight junction (TJ) structure and the ability of the biolipid oleoylethanolamide (OEA) to prevent ethanol binge-induced intestinal barrier dysfunction. EXPERIMENTAL APPROACH OEA was injected i.p. before repeated ethanol administration by oral gavage. Plasma, spleen, liver and mesenteric lymph nodes (MLN) were collected in sterile conditions for determination of bacterial load. Immune/inflammatory parameters, TJ proteins and apoptotic markers were determined in colonic tissue by RT-PCR and Western blotting. TJ ultrastructure was examined by transmission electron microscopy. KEY RESULTS Ethanol binges induced bacterial translocation to the MLN (mainly) and spleen. Colonic tissues showed signs of inflammation, and activation of innate (Toll-like receptor-4) and adaptive (IgA) immune systems and TJ proteins (occludin and claudin-3) were decreased after ethanol binges. Pretreatment with OEA reduced intestinal inflammation and immune activation and partially preserved the TJ structure affected by alcohol binges but had no effect on alcohol-induced apoptosis. Ultrastructural analyses of colonic TJs revealed dilated TJs in all ethanol groups, with less electron-dense material in non-pretreated rats. The protective effects of i.p. OEA did not reduce bacterial translocation to the MLN. However, intragastric OEA administration significantly reduced plasma LPS levels and bacterial translocation to the MLN. CONCLUSION AND IMPLICATIONS OEA-based pharmacotherapies could potentially be useful to treat disorders characterized by intestinal barrier dysfunction, including alcohol abuse.
Collapse
Affiliation(s)
- M Antón
- Department of Psychobiology and Behavioral Science Methods, Faculty of Psychology, Complutense University, Madrid (UCM), and Red de Trastornos Adictivos (RTA) Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - A Rodríguez-González
- Department of Psychobiology and Behavioral Science Methods, Faculty of Psychology, Complutense University, Madrid (UCM), and Red de Trastornos Adictivos (RTA) Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - A Ballesta
- Department of Psychobiology and Behavioral Science Methods, Faculty of Psychology, Complutense University, Madrid (UCM), and Red de Trastornos Adictivos (RTA) Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - N González
- Department of Medicine Microbiology, Faculty of Medicine, UCM, Madrid, Spain
| | - A Del Pozo
- Department of Psychobiology and Behavioral Science Methods, Faculty of Psychology, Complutense University, Madrid (UCM), and Red de Trastornos Adictivos (RTA) Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - F R de Fonseca
- Department of Psychobiology and Behavioral Science Methods, Faculty of Psychology, Complutense University, Madrid (UCM), and Red de Trastornos Adictivos (RTA) Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - M L Gómez-Lus
- Department of Medicine Microbiology, Faculty of Medicine, UCM, Madrid, Spain
| | - J C Leza
- Department of Pharmacology and Toxicology, Faculty of Medicine, UCM, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Imas12 and IUINQ, Madrid, Spain
| | - B García-Bueno
- Department of Pharmacology and Toxicology, Faculty of Medicine, UCM, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Imas12 and IUINQ, Madrid, Spain
| | - J R Caso
- Department of Pharmacology and Toxicology, Faculty of Medicine, UCM, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Imas12 and IUINQ, Madrid, Spain
| | - L Orio
- Department of Psychobiology and Behavioral Science Methods, Faculty of Psychology, Complutense University, Madrid (UCM), and Red de Trastornos Adictivos (RTA) Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|