1
|
Winterlind EL, Malone SG, Setzer MR, Murphy MA, Saunders D, Gray JC. N-acetylcysteine as a treatment for substance use cravings: A meta-analysis. Addict Biol 2024; 29:e70001. [PMID: 39556483 PMCID: PMC11572739 DOI: 10.1111/adb.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/24/2024] [Accepted: 10/08/2024] [Indexed: 11/20/2024]
Abstract
N-acetylcysteine (NAC) may serve as a novel pharmacotherapy for substance use and substance craving in individuals with substance use disorders (SUDs), possibly through its potential to regulate glutamate. Though prior meta-analyses generally support NAC's efficacy in reducing symptoms of craving, individual trials have found mixed results. The aims of this updated meta-analysis were to (1) examine the efficacy of NAC in treating symptoms of craving in individuals with SUD and (2) explore subgroup differences, risk of bias and publication bias across trials. Database searches of PubMed, Cochrane Library and ClinicalTrials.gov were conducted in June and July of 2023 to identify relevant randomized control trials (RCTs). The meta-analysis consisted of 9 trials which analysed data from a total of 623 participants. The most targeted substance in the clinical trials was alcohol (3/9; 33.3%), followed by tobacco (2/9; 22.2%) and multiple substances (2/9; 22.2%). Meta-analysis, subgroup analyses and leave-one-out analyses were conducted to examine the treatment effect on craving symptoms and adverse events (AEs). Risk of bias assessments, Egger's tests and funnel plot tests were conducted to examine the risk of bias and publication bias. NAC did not significantly outperform placebo in reducing symptoms of craving in the meta-analysis (SMD = 0.189, 95% CI = -0.015-0.393). Heterogeneity was very high in the meta-analysis (99.26%), indicating that findings may have been influenced by clinical or methodological differences in the study protocols. Additionally, results indicate that there may be publication bias present. Overall, our findings are contrary to those of prior meta-analyses, suggesting a limited impact of NAC on substance craving. However, the high heterogeneity and presence of publication bias identified warrants cautious interpretation of the meta-analytic outcomes.
Collapse
Affiliation(s)
- Emma L. Winterlind
- Department of Medical and Clinical PsychologyUniformed Services University of the Health SciencesBethesdaMarylandUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc.BethesdaMarylandUSA
- Present address:
Department of PsychologyUniversity of WyomingLaramieWyomingUSA
- Present address:
Department of PsychologyFordham UniversityBronxNew YorkUSA
| | - Samantha G. Malone
- Department of Medical and Clinical PsychologyUniformed Services University of the Health SciencesBethesdaMarylandUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc.BethesdaMarylandUSA
| | - Michael R. Setzer
- Department of Medical and Clinical PsychologyUniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - Mikela A. Murphy
- Department of Medical and Clinical PsychologyUniformed Services University of the Health SciencesBethesdaMarylandUSA
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc.BethesdaMarylandUSA
- Present address:
Department of PsychologyUniversity of WyomingLaramieWyomingUSA
- Present address:
Department of PsychologyFordham UniversityBronxNew YorkUSA
| | - David Saunders
- Department of MedicineUniformed Services University of the Health SciencesBethesdaMarylandUSA
| | - Joshua C. Gray
- Department of Medical and Clinical PsychologyUniformed Services University of the Health SciencesBethesdaMarylandUSA
| |
Collapse
|
2
|
Winterlind EL, Malone SG, Setzer MR, Murphy MA, Saunders D, Gray JC. N-acetylcysteine as a treatment for substance use cravings: A meta-analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.13.24306839. [PMID: 38798604 PMCID: PMC11118593 DOI: 10.1101/2024.05.13.24306839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
N-acetylcysteine (NAC) may serve as a novel pharmacotherapy for substance use and substance craving in individuals with substance use disorders (SUDs), possibly through its potential to regulate glutamate. Though prior meta-analyses generally support NAC's efficacy in reducing symptoms of craving, individual trials have found mixed results. The aims of the this updated meta-analysis were to (1) examine the efficacy of NAC in treating symptoms of craving in individuals with a SUD and (2) explore subgroup differences, risk of bias, and publication bias across trials. Database searches of PubMed, Cochrane Library, and ClinicalTrials.gov were conducted in June and July of 2023 to identify relevant randomized control trials (RCTs). The meta-analysis consisted of 9 trials which analyzed data from a total of 623 participants. The most targeted substance in the clinical trials was alcohol (3/9; 33.3%), followed by tobacco (2/9; 22.2%) and multiple substances (2/9; 22.2%). Meta-analysis, subgroup analyses, and leave-one-out analyses were conducted to examine treatment effect on craving symptoms and adverse events (AEs). Risk of bias assessments, Egger's tests, and funnel plot tests were conducted to examine risk of bias and publication bias. NAC did not significantly outperform placebo in reducing symptoms of craving in the meta-analysis (SMD = 0.189, 95% CI = -0.015 - 0.393). Heterogeneity was very high in the meta-analysis (99.26%), indicating that findings may have been influenced by clinical or methodological differences in the study protocols. Additionally, results indicate that there may be publication bias present. Overall, our findings are contrary to those of prior meta-analyses, suggesting limited impact of NAC on substance craving. However, the high heterogeneity and presence of publication bias identified warrants cautious interpretation of the meta-analytic outcomes.
Collapse
Affiliation(s)
- Emma L. Winterlind
- Uniformed Services University of the Health Sciences, Department of Medical and Clinical Psychology, Bethesda, MD, 20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817
| | - Samantha G. Malone
- Uniformed Services University of the Health Sciences, Department of Medical and Clinical Psychology, Bethesda, MD, 20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817
| | - Michael R. Setzer
- Uniformed Services University of the Health Sciences, Department of Medical and Clinical Psychology, Bethesda, MD, 20814
| | - Mikela A. Murphy
- Uniformed Services University of the Health Sciences, Department of Medical and Clinical Psychology, Bethesda, MD, 20814
- Henry M. Jackson Foundation for the Advancement of Military Medicine Inc., Bethesda, MD 20817
| | - David Saunders
- Uniformed Services University of the Health Sciences, Department of Medical and Clinical Psychology, Bethesda, MD, 20814
| | - Joshua C. Gray
- Uniformed Services University of the Health Sciences, Department of Medical and Clinical Psychology, Bethesda, MD, 20814
| |
Collapse
|
3
|
Randall CA, Sun D, Randall PA. Differential Effects of Nicotine, Alcohol, and Coexposure on Neuroimmune-Related Protein and Gene Expression in Corticolimbic Brain Regions of Rats. ACS Chem Neurosci 2023; 14:628-644. [PMID: 36705334 DOI: 10.1021/acschemneuro.2c00413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Nicotine and alcohol co-use is extremely common and their use constitutes two of the most common causes of preventable death, yet the underlying biological mechanisms are largely understudied. Activation of neuroimmune toll-like receptors (TLRs) promotes the induction of proinflammatory cascades and increases alcohol intake in rodents, which further promotes TLRs in the brain; nicotine may decrease central proinflammatory signaling. The current studies sought to determine the effects of nicotine ± alcohol (alone or in combination) on circulating blood plasma and TLR protein/gene expression in addiction-associated corticolimbic brain regions, including the prefrontal cortex-prelimbic (mPFC-PL) and nucleus accumbens core (AcbC). Adult rats were treated with alcohol (0 or 2 g/kg, IG) and exposed to nicotine vapor (0 or 30 mg/mL solution) daily for 2, 14, or 28 days. Plasma studies indicated no effects of independent exposure or coexposure in males. Coexposure decreased plasma nicotine levels versus nicotine-only treated females, yet alcohol and cotinine concentrations were unchanged. By 28 days, the anti-inflammatory cytokine IL-13 was decreased in alcohol-only females. Divergent changes in TLR3 (but not TLR4) protein occurred for independent-drug exposed males (but not coexposure), with reductions in the mPFC-PL after 14 days and increases in the AcbC by 28 days. Gene expression following chronic coexposure suggests nicotine may regionally counteract alcohol-induced inflammation, including increased AcbC-TLR3/4/7 and several downstream markers in females and increased mPFC-PL-TLR3 and -STAT3 (but not IRF3) evident in males with exposure to either drug alone. These findings give further insight into the role of sex and the neuroimmune system in independent exposure and coexposure to nicotine ± alcohol.
Collapse
Affiliation(s)
- Christie A Randall
- Department of Anesthesiology and Perioperative Medicine, College of Medicine, Pennsylvania State University, 500 University Drive, Hershey, Pennsylvania 17033, United States
| | - Dongxiao Sun
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033 United States
| | - Patrick A Randall
- Department of Anesthesiology and Perioperative Medicine, College of Medicine, Pennsylvania State University, 500 University Drive, Hershey, Pennsylvania 17033, United States.,Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania 17033 United States
| |
Collapse
|
4
|
Mechanistic Effects and Use of N-acetylcysteine in Substance Use Disorders. Curr Behav Neurosci Rep 2022. [DOI: 10.1007/s40473-022-00250-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
N-acetylcysteine in substance use disorder: a lesson from preclinical and clinical research. Pharmacol Rep 2021; 73:1205-1219. [PMID: 34091880 PMCID: PMC8460563 DOI: 10.1007/s43440-021-00283-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 12/29/2022]
Abstract
Substance use disorder (SUD) is a chronic brain condition, with compulsive and uncontrollable drug-seeking that leads to long-lasting and harmful consequences. The factors contributing to the development of SUD, as well as its treatment settings, are not fully understood. Alterations in brain glutamate homeostasis in humans and animals implicate a key role of this neurotransmitter in SUD, while the modulation of glutamate transporters has been pointed as a new strategy to diminish the excitatory glutamatergic transmission observed after drugs of abuse. N-acetylcysteine (NAC), known as a safe mucolytic agent, is involved in the regulation of this system and may be taken into account as a novel pharmacotherapy for SUD. In this paper, we summarize the current knowledge on the ability of NAC to reduce drug-seeking behavior induced by psychostimulants, opioids, cannabinoids, nicotine, and alcohol in animals and humans. Preclinical studies showed a beneficial effect in animal models of SUD, while the clinical efficacy of NAC has not been fully established. In summary, NAC will be a small add-on to usual treatment and/or psychotherapy for SUD, however, further studies are required.
Collapse
|
6
|
Quintanilla ME, Morales P, Ezquer F, Ezquer M, Herrera-Marschitz M, Israel Y. Administration of N-acetylcysteine Plus Acetylsalicylic Acid Markedly Inhibits Nicotine Reinstatement Following Chronic Oral Nicotine Intake in Female Rats. Front Behav Neurosci 2021; 14:617418. [PMID: 33633548 PMCID: PMC7902020 DOI: 10.3389/fnbeh.2020.617418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Background Nicotine is the major addictive component of cigarette smoke and the prime culprit of the failure to quit smoking. Common elements perpetuating the use of addictive drugs are (i) cues associated with the setting in which drug was used and (ii) relapse/reinstatement mediated by an increased glutamatergic tone (iii) associated with drug-induced neuroinflammation and oxidative stress. Aims The present study assessed the effect of the coadministration of the antioxidant N-acetylcysteine (NAC) plus the anti-inflammatory acetylsalicylic acid (ASA) on oral nicotine reinstatement intake following a post-deprivation re-access in female rats that had chronically and voluntarily consumed a nicotine solution orally. The nicotine-induced oxidative stress and neuroinflammation in the hippocampus and its effects on the glutamate transporters GLT-1 and XCT mRNA levels in prefrontal cortex were also analyzed. Results The oral coadministration of NAC (40 mg/kg/day) and ASA (15 mg/kg/day) inhibited by 85% of the oral nicotine reinstatement intake compared to control (vehicle), showing an additive effect of both drugs. Acetylsalicylic acid and N-acetylcysteine normalized hippocampal oxidative stress and blunted the hippocampal neuroinflammation observed upon oral nicotine reinstatement. Nicotine downregulated GLT-1 and xCT gene expression in the prefrontal cortex, an effect reversed by N-acetylcysteine, while acetylsalicylic acid reversed the nicotine-induced downregulation of GLT-1 gene expression. The inhibitory effect of N-acetylcysteine on chronic nicotine intake was blocked by the administration of sulfasalazine, an inhibitor of the xCT transporter. Conclusion Nicotine reinstatement, following post-deprivation of chronic oral nicotine intake, downregulates the mRNA levels of GLT-1 and xCT transporters, an effect reversed by the coadministration of N-acetylcysteine and acetylsalicylic acid, leading to a marked inhibition of nicotine intake. The combination of these drugs may constitute a valuable adjunct in the treatment of nicotine-dependent behaviors.
Collapse
Affiliation(s)
- María Elena Quintanilla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Paola Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.,Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana, Universidad del Desarrollo, Santiago, Chile
| | - Mario Herrera-Marschitz
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Yedy Israel
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
7
|
Abstract
The pervasive and devastating nature of substance use disorders underlies the need for the continued development of novel pharmacotherapies. We now know that glia play a much greater role in neuronal processes than once believed. The various types of glial cells (e.g., astrocytes, microglial, oligodendrocytes) participate in numerous functions that are crucial to healthy central nervous system function. Drugs of abuse have been shown to interact with glia in ways that directly contribute to the pharmacodynamic effects responsible for their abuse potential. Through their effect upon glia, drugs of abuse also alter brain function resulting in behavioral changes associated with substance use disorders. Therefore, drug-induced changes in glia and inflammation within the central nervous system (neuroinflammation) have been investigated to treat various aspects of drug abuse and dependence. This article presents a brief overview of the effects of each of the major classes of addictive drugs on glia. Next, the paper reviews the pre-clinical and clinical studies assessing the effects that glial modulators have on abuse-related behavioral effects, such as pleasure, withdrawal, and motivation. There is a strong body of pre-clinical literature demonstrating the general effectiveness of several glia-modulating drugs in models of reward and relapse. Clinical studies have also yielded promising results, though not as robust. There is still much to disentangle regarding the integration between addictive drugs and glial cells. Improved understanding of the relationship between glia and the pathophysiology of drug abuse should allow for more precise exploration in the development and testing of glial-directed treatments for substance use disorders.
Collapse
Affiliation(s)
- Jermaine D. Jones
- Division on Substance Use Disorders, New York State Psychiatric Institute and Columbia University Vagelos College of Physicians and Surgeons, 1051 Riverside Drive, New York, NY 10032, USA
| |
Collapse
|