1
|
Lacomba‐Arnau E, Martínez‐Molina A, Barrós‐Loscertales A. Structural Cerebellar and Lateral Frontoparietal Networks are altered in CUD: An SBM Analysis. Addict Biol 2025; 30:e70021. [PMID: 40072344 PMCID: PMC11899759 DOI: 10.1111/adb.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 03/14/2025]
Abstract
Repetitive drug use results in enduring structural and functional changes in the brain. Addiction research has consistently revealed significant modifications in key brain networks related to reward, habit, salience, executive function, memory and self-regulation. Techniques like Voxel-based Morphometry have highlighted large-scale structural differences in grey matter across distinct groups. Source-based Morphometry (SBM) takes this a step further by incorporating the Independent Component Analysis to detect shared patterns of grey matter variation, all without requiring prior selection of regions of interest. However, SBM has yet to be employed in the study of structural alteration patterns related to cocaine addiction. Therefore, we performed this analysis to explore alterations in structural covariance specific to cocaine addiction. Our study involved 40 individuals diagnosed with Cocaine Use Disorder (CUD) and 40 matched healthy controls. Participants with CUD completed clinical questionnaires assessing the severity of their dependence and other relevant clinical variables. Following the adjustment for age-related effects, we observed notable disparities between groups in two structural independent components, which we identified as the structural cerebellar network and the structural lateral frontoparietal network, which display opposing trends. Specifically, the individuals with CUD exhibited a heightened contribution to the cerebellar network but simultaneously demonstrated a reduced contribution to the lateral frontoparietal network compared to the healthy controls. These findings unveil distinctive covariance patterns of neuroregulation linked with cocaine addiction, which indicates an interruption in the typical structural development in an affected lateral frontoparietal network, while suggesting an extended pattern of neuroregulation within the cerebellar network in individuals with CUD.
Collapse
Affiliation(s)
- Elena Lacomba‐Arnau
- Departament de Psicologia, Sociologia i Treball SocialUniversitat de LleidaLleidaSpain
- Department of Precision HealthLuxembourg Institute of HealthStrassenLuxembourg
| | | | | |
Collapse
|
2
|
Chan MMY, Choi CXT, Tsoi TCW, Zhong J, Han YMY. Clinical and neuropsychological correlates of theta-band functional excitation-inhibition ratio in autism: An EEG study. Clin Neurophysiol 2024; 163:56-67. [PMID: 38703700 DOI: 10.1016/j.clinph.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 01/29/2024] [Accepted: 04/05/2024] [Indexed: 05/06/2024]
Abstract
OBJECTIVE How abnormal brain signaling impacts cognition in autism spectrum disorder (ASD) remained elusive. This study aimed to investigate the local and global brain signaling in ASD indicated by theta-band functional excitation-inhibition (fE/I) ratio and explored psychophysiological relationships between fE/I, cognitive deficits, and ASD symptomatology. METHODS A total of 83 ASD and typically developing (TD) individuals participated in this study. Participants' interference control and set-shifting abilities were assessed. Resting-state electroencephalography (EEG) was used for estimating theta-band fE/I ratio. RESULTS ASD individuals (n = 31 without visual EEG abnormality; n = 22 with visual EEG abnormality) generally performed slower in a cognitive task tapping interference control and set-maintenance abilities, but only ASD individuals with visually abnormal EEG performed significantly slower than their TD counterparts (Bonferroni-corrected ps < .001). Heightened theta-band fE/I ratios at the whole-head level, left and right hemispheres were observed in the ASD subgroup without visual EEG abnormality only (Bonferroni-corrected ps < .001), which remained highly significant when only data from medication-naïve participants were analyzed. In addition, higher left hemispheric fE/I ratios in ASD individuals without visual EEG abnormality were significantly correlated with faster interference control task performance, in turn faster reaction time was significantly associated with less severe restricted, repetitive behavior (Bonferroni-corrected ps ≤ .0017). CONCLUSIONS Differential theta-band fE/I within the ASD population. Heightened theta-band fE/I in ASD without visual EEG abnormality may be associated with more efficient filtering of distractors and a less severe ASD symptom manifestation. SIGNIFICANCE Brain signaling, indicated by theta-band fE/I, was different in ASD subgroups. Only ASD with visually-normal EEG showed heightened theta-band fE/I, which was associated with faster processing of visual distractors during a cognitive task. More efficient distractor filtering was associated with less restricted, repetitive behaviors.
Collapse
Affiliation(s)
- Melody M Y Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; Queensland Brain Institute, The University of Queensland, St Lucia QLD 4072, Australia
| | - Coco X T Choi
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Tom C W Tsoi
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Junpei Zhong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region
| | - Yvonne M Y Han
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region; University Research Facility in Behavioral and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong Special Administrative Region.
| |
Collapse
|
3
|
Cardullo S, Gómez Pérez LJ, Terraneo A, Gallimberti L, Mioni G. Time perception in stimulant-dependent participants undergoing repetitive transcranial magnetic stimulation. Behav Brain Res 2024; 460:114816. [PMID: 38122902 DOI: 10.1016/j.bbr.2023.114816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/29/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND The dopaminergic (DA) system is an important neural system for the modulation of time perception and the timing of motor actions. Dysregulation of the DA system is related to chronic use of stimulant drugs, which lead, among others, to executive dysfunctions. Little is known instead about the potential deficiencies in temporal processing of stimulant-dependent individuals. The present study aimed to investigate temporal processing using a time bisection task with different temporal intervals in chronic cocaine users undergoing repetitive transcranial magnetic stimulation (rTMS). METHOD Study 1: A time bisection task with short temporal intervals range (480/1920 ms) was administered to 18 cocaine use disorder (CocUD) patients and 20 healthy control before and after the intensive phase of rTMS treatment (5 days apart). Study 2: 22 CocUD participants and 23 control participants completed two temporal tasks (time bisection and time reproduction) with long temporal intervals range (1200/2640 ms) at baseline and immediately after the intensive phase of rTMS treatment. RESULTS Study 1: A shift in the psychometric function consistent with temporal overestimation in CocUD patients compared to controls was observed. However, no temporal impairment in CocUD patients at test session was found. Study 2: The analysis of temporal variability indices showed a significant difference between groups at baseline but not at Day 5 due to a significant difference between time points only in the CocUD group. CONCLUSIONS This study report a temporal overestimation in CocUD patients and a temporal variability reduction after an rTMS protocol in CocUD patients.
Collapse
Affiliation(s)
- Stefano Cardullo
- Novella Fronda Foundation, Padua, Italy; Mental Health Centre, Department of Psychiatry -AULSS 6 Euganea, Padua, Italy
| | | | | | | | - Giovanna Mioni
- Department of General Psychology, University of Padova, Padua, Italy.
| |
Collapse
|
4
|
Li G, Zhang Z, Zhang Y, Tang X, Li CSR. The effects of cocaine use severity and abstinence on behavioral performance and neural processes of response inhibition. Psychiatry Res Neuroimaging 2023; 336:111734. [PMID: 37871409 DOI: 10.1016/j.pscychresns.2023.111734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/29/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
Previous studies identified cerebral markers of response inhibition dysfunction in cocaine dependence. However, whether deficits in response inhibition vary with the severity of cocaine use or ameliorate during abstinence remain unclear. This study aimed to address these issues and the neural mechanisms supporting the individual variation. We examined the data of 67 individuals with cocaine dependence (CD) and 84 healthy controls (HC) who underwent functional magnetic resonance imaging during a stop-signal task (SST). The stop-signal reaction time (SSRT) was computed using the integration method, with a longer SSRT indicating poorer response inhibition. The results showed that, while CD and HC did not differ significantly in SSRT, years of cocaine use (YOC) and days of abstinence (DOA) were each positively and negatively correlated with the SSRT in CD. Whole-brain regressions of stop minus go success trials on SSRT revealed correlates in bilateral superior temporal gyrus (STG) in response inhibition across CD and HC. Further, mediation and path analyses revealed that YOC and DOA affected SSRT through the STG activities in CD. Together, the findings characterized the contrasting effects of cocaine use severity and abstinence on response inhibition as well as the neural processes that support these effects in cocaine dependence.
Collapse
Affiliation(s)
- Guangfei Li
- Department of Biomedical Engineering, Faculty of Environment and Life. Beijing University of Technology, Beijing, China; Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Beijing, China.
| | - Zhao Zhang
- Department of Biomedical Engineering, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Yihe Zhang
- Department of Brain Cognition and Intelligent Medicine, School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Xiaoying Tang
- Department of Biomedical Engineering, School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States; Wu Tsai Institute, Yale University, New Haven, CT, United States.
| |
Collapse
|
5
|
Anticipatory cues in emotional processing shift the activation of a combined salience sensorimotor functional network in drug-naïve depressed patients. J Affect Disord 2023; 320:509-516. [PMID: 36206887 DOI: 10.1016/j.jad.2022.09.165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Major depressive disorder is characterized by a large-scale brain network dysfunction, contributing to impairments in cognitive and affective functioning. Core regions of default mode, limbic and salience networks are also impaired in emotional processing and anticipation. This study aimed to explore default mode, salience, and limbic networks modulation during the processing of emotional stimuli with and without anticipatory cues in depression, and further investigate how these networks were functionally coupled with the rest of the brain. METHODS Twenty-one drug-naïve depressed patients and 15 matched controls were included in the study. All participants completed a psychological assessment and the affective pictures paradigm during an fMRI acquisition. Group independent component analysis and psychophysiological interactions analyses were performed. RESULTS A significant interaction between Cue, Valence and Group was found for the salience/sensorimotor network. When processing uncued emotional stimuli, patients showed increased activation of this network for negative vs. neutral pictures, whereas when anticipatory cues were displayed previously to the picture presentation, they invert this pattern of activation (hyperactivating the salience/sensorimotor network for positive vs. neutral pictures). Patients showed increased functional connectivity between the salience/sensorimotor network and the left amygdala as well as the right inferior parietal lobule compared to controls when processing uncued negative pictures. LIMITATIONS The sample size was modest, and the salience/sensorimotor network included regions not typically identified as part of salience network. Thus, this study should be replicated to further interpret the results. CONCLUSIONS Anticipatory cues shift the pattern of activation of the salience/sensorimotor network in drug-naïve depressed patients.
Collapse
|
6
|
Gong M, Shen Y, Liang W, Zhang Z, He C, Lou M, Xu Z. Impairments in the Default Mode and Executive Networks in Methamphetamine Users During Short-Term Abstinence. Int J Gen Med 2022; 15:6073-6084. [PMID: 35821766 PMCID: PMC9271316 DOI: 10.2147/ijgm.s369571] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Methamphetamine use may cause severe neurotoxicity and cognitive impairment, leading to addiction, overdose, and high rates of relapse. However, few studies have systematically focused on functional impairments detected by neuroimaging in methamphetamine abstainers (MAs) during short-term abstinence. This study aimed to investigate effective connectivity, resting-state networks, and internetwork functional connectivity in MA brains to improve clinical treatment. Methods Twenty MAs and 27 age- and education-matched healthy controls underwent resting-state functional magnetic resonance imaging. The amplitude of low-frequency fluctuations and Granger causality were analyzed to investigate disrupted brain regions and effective connectivity, respectively. Independent component analysis and functional network connectivity were used to identify resting-state networks and internetwork functional connectivity, respectively. Results Compared with healthy controls, MAs demonstrated abnormal amplitudes of low-frequency fluctuations in the bilateral precuneus, left posterior cingulate cortex (PCC), left middle frontal gyrus (MFG), left superior parietal lobule, left supplementary motor area (SMA), and left inferior parietal lobule (IPL). Moreover, MAs showed decreased effective connectivity from the left PCC to the left precuneus, increased effective connectivity from the left precuneus to the left MFG and from the right precuneus to the left SMA, and altered functional connectivity within the default mode network (DMN), frontoparietal network, sensorimotor network, ventral attention network, cerebellar network, and visual network. Importantly, hyperconnectivity between the DMN and ventral attention network and hypoconnectivity between the DMN and cerebellar network as well as the DMN and frontoparietal network were demonstrated in MAs. Conclusion Our study implies that in short-term methamphetamine abstinence, disruptions to the DMN and executive network may a play key role, providing new insights for early rehabilitation.
Collapse
Affiliation(s)
- Mingqiang Gong
- Department of Acupuncture and Moxibustion, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People's Republic of China.,Department of Radiology, Longgang Central Hospital, Shenzhen, People's Republic of China
| | - Yunxia Shen
- Department of Radiology, Longgang Central Hospital, Shenzhen, People's Republic of China
| | - Wenbin Liang
- Department of Radiology, Longgang Central Hospital, Shenzhen, People's Republic of China
| | - Zhen Zhang
- Department of Radiology, The Third People's Hospital of Longgang District, Shenzhen, People's Republic of China
| | - Chunxue He
- Department of Radiology, Shenzhen Clinical Medicine College, Guangzhou University of Chinese Medicine, Shenzhen, People's Republic of China
| | - Mingwu Lou
- Department of Radiology, Longgang Central Hospital, Shenzhen, People's Republic of China
| | - ZiYu Xu
- Department of Radiology, Longgang Central Hospital, Shenzhen, People's Republic of China
| |
Collapse
|
7
|
Ye Q, Zhu H, Chen H, Liu R, Huang L, Chen H, Cheng Y, Qin R, Shao P, Xu H, Ma J, Xu Y. Effects of cognitive reserve proxies on cognitive function and frontoparietal control network in subjects with white matter hyperintensities: A cross-sectional functional magnetic resonance imaging study. CNS Neurosci Ther 2022; 28:932-941. [PMID: 35274485 PMCID: PMC9062549 DOI: 10.1111/cns.13824] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/01/2022] Open
Abstract
AIMS This study aimed to analyze the potential association between cognition reserve (CR) components, including education, working activity, and leisure time activity, and cognitive function in subjects with white matter hyperintensities (WMH). The study also explored the role of the frontoparietal control network (FPCN) in such association. METHODS White matter hyperintensities subjects with and without cognitive impairment (CI) were evaluated with multimodal magnetic resonance imaging, neuropsychological testing, and CR survey. FPCN patterns were assessed with dorsolateral prefrontal cortex seed-based functional connectivity analysis. RESULTS Education was positively associated with cognitive function in WMH subjects with or without CI, whereas working activity and leisure time activity were positively associated with cognitive function only in those without CI. Similarly, education was associated with bilateral FPCN in both WMH groups, whereas working activity and leisure time activity were associated with bilateral FPCN mainly in the group without CI. Furthermore, FPCN partially mediated the association between education and cognitive function in both WMH groups. CONCLUSION Education showed a positive impact on cognitive function in WMH subjects regardless of their cognitive status, whereas working activity and leisure time activity exhibited beneficial effects only in those without CI. The FPCN mediated the beneficial effect of education on cognitive function.
Collapse
|
8
|
Picó-Pérez M, Costumero V, Verdejo-Román J, Albein-Urios N, Martínez-González JM, Soriano-Mas C, Barrós-Loscertales A, Verdejo-Garcia A. Brain networks alterations in cocaine use and gambling disorders during emotion regulation. J Behav Addict 2022; 11. [PMID: 35460545 PMCID: PMC9295223 DOI: 10.1556/2006.2022.00018] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/25/2022] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
Background Cocaine use disorder (CUD) and gambling disorder (GD) share clinical features and neural alterations, including emotion regulation deficits and dysfunctional activation in related networks. However, they also exhibit differential aspects, such as the neuroadaptive effects of long-term drug consumption in CUD as compared to GD. Neuroimaging research aimed at disentangling their shared and specific alterations can contribute to improve understanding of both disorders. Methods We compared CUD (N = 15), GD (N = 16) and healthy comparison (HC; N = 17) groups using a network-based approach for studying temporally coherent functional networks during functional magnetic resonance imaging (fMRI) of an emotion regulation task. We focused our analysis in limbic, ventral frontostriatal, dorsal attentional (DAN) and executive networks (FPN), given their involvement in emotion regulation and their alteration in CUD and GD. Correlations with measures of emotional experience and impulsivity (UPPS-P) were also performed. Results The limbic network was significantly decreased during emotional processing both for CUD and GD individuals compared to the HC group. Furthermore, GD participants compared to HC showed an increased activation in the ventral frontostriatal network during emotion regulation. Finally, networks' activation patterns were modulated by impulsivity traits. Conclusions Functional network analyses revealed both overlapping and unique effects of stimulant and gambling addictions on neural networks underpinning emotion regulation.
Collapse
Affiliation(s)
- Maria Picó-Pérez
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's, PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Clinical Academic Center - Braga, Braga, Portugal
- Departamento de Psicología Básica, Clínica y Psicobiología, Universitat Jaume I, Castelló de la Plana, Spain
| | - Víctor Costumero
- Departamento de Psicología Básica, Clínica y Psicobiología, Universitat Jaume I, Castelló de la Plana, Spain
| | - Juan Verdejo-Román
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
- Department of Personality, Assessment and Clinical Treatment, University of Granada, Granada, Spain
| | - Natalia Albein-Urios
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, Australia
| | | | - Carles Soriano-Mas
- Mental Health Research Networking Center (CIBERSAM), Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Spain
| | - Alfonso Barrós-Loscertales
- Departamento de Psicología Básica, Clínica y Psicobiología, Universitat Jaume I, Castelló de la Plana, Spain
| | - Antonio Verdejo-Garcia
- School of Psychology, Monash Institute of Cognitive and Clinical Neurosciences, Monash University, Victoria, Australia
| |
Collapse
|
9
|
Structural and Functional Correlates of Higher Cortical Brain Regions in Chronic Refractory Cough. Chest 2022; 162:851-860. [DOI: 10.1016/j.chest.2022.04.141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/05/2022] [Accepted: 04/22/2022] [Indexed: 01/10/2023] Open
|
10
|
The Flexibility of Cognitive Reserve in Regulating the Frontoparietal Control Network and Cognitive Function in Subjects with White Matter Hyperintensities. Behav Brain Res 2022; 425:113831. [DOI: 10.1016/j.bbr.2022.113831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 11/02/2022]
|
11
|
Soleimani G, Kupliki R, Bodurka J, Paulus M, Ekhtiari H. How structural and functional MRI can inform dual-site tACS parameters: A case study in a clinical population and its pragmatic implications. Brain Stimul 2022; 15:337-351. [PMID: 35042056 DOI: 10.1016/j.brs.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Abnormalities in frontoparietal network (FPN) were observed in many neuropsychiatric diseases including substance use disorders. A growing number of studies are using dual-site-tACS with frontoparietal synchronization to engage this network. However, a computational pathway to inform and optimize parameter space for frontoparietal synchronization is still lacking. In this case study, in a group of participants with methamphetamine use disorders, we proposed a computational pathway to extract optimal electrode montage while accounting for stimulation intensity using structural and functional MRI. METHODS Sixty methamphetamine users completed an fMRI drug cue-reactivity task. Four main steps were taken to define electrode montage and adjust stimulation intensity using 4x1 high-definition (HD) electrodes for a dual-site-tACS; (1) Frontal seed was defined based on the maximum electric fields (EF) predicted by simulation of HD montage over DLPFC (F3/F4 in EEG 10-20), (2) frontal seed-to-whole brain context-dependent correlation was calculated to determine connected regions to frontal seeds, (3) center of connected cluster in parietal cortex was selected as a location for placing the second set of HD electrodes to shape the informed montage, (4) individualized head models were used to determine optimal stimulation intensity considering underlying brain structure. The informed montage was compared to montages with large electrodes and classic frontoparietal HD montages (F3-P3/F4-P4) in terms of tACS-induced EF and ROI-to-ROI task-based/resting-state connectivity. RESULTS Compared to the large electrodes, HD frontoparietal montages allow for a finer control of the spatial peak fields in the main nodes of the FPN at the cost of lower maximum EF (large-pad/HD: max EF[V/m] = 0.37/0.11, number of cortical sub-regions that EF exceeds 50% of the max = 77/13). For defining stimulation targets based on EF patterns, using group-level head models compared to a single standard head model results in comparable but significantly different seed locations (6.43mm Euclidean distance between the locations of the frontal maximum EF in standard-space). As expected, significant task-based/resting-state connections were only found between frontal-parietal locations in the informed montage. Cue-induced craving score was correlated with frontoparietal connectivity only in the informed montage (r = -0.24). Stimulation intensity in the informed montage, and not in the classic HD montage, needs 40% reduction in the parietal site to reduce the disparity in EF between sites. CONCLUSION This study provides some empirical insights to montage and dose selection in dual-site-tACS using individual brain structures and functions and proposes a computational pathway to use head models and functional MRI to define (1) optimum electrode montage for targeting FPN in a context of interest (drug-cue-reactivity) and (2) proper transcranial stimulation intensity.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Rayus Kupliki
- Laureate Institute for Brain Research, Tulsa, OK, United States
| | - Jerzy Bodurka
- Laureate Institute for Brain Research, Tulsa, OK, United States
| | - Martin Paulus
- Laureate Institute for Brain Research, Tulsa, OK, United States
| | - Hamed Ekhtiari
- Laureate Institute for Brain Research, Tulsa, OK, United States.
| |
Collapse
|
12
|
Si L, Cui B, Li Z, Li X, Li K, Ling X, Shen B, Yang X. Altered Resting-State Intranetwork and Internetwork Functional Connectivity in Patients With Chronic Unilateral Vestibulopathy. J Magn Reson Imaging 2021; 56:291-300. [PMID: 34921750 PMCID: PMC9299943 DOI: 10.1002/jmri.28031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Chronic unilateral vestibulopathy (CUVP) is often accompanied by dizziness and postural instability, which restrict patients' daily activities. It is important to understand central compensation mechanisms underlying these symptoms in patients with CUVP by evaluating their brain functional status. PURPOSE To analyze the changes in resting-state intranetwork and internetwork functional connectivity (FC) and explore the state of central vestibular compensation in patients with CUVP. STUDY TYPE Retrospective. POPULATION Eighteen patients with right-sided CUVP and 18 age- and sex-matched healthy controls. FIELD STRENGTH/SEQUENCE A 3.0 T, three-dimensional magnetization-prepared rapid gradient-echo (MP-RAGE) and resting-state echo-planar imaging (EPI) functional MRI sequences. ASSESSMENT FC alterations were explored using independent component analysis (ICA). Twelve independent components were identified via ICA. Dizziness Handicap Inventory (DHI) score for all patients was determined. STATISTICAL TESTS Two-sample t test, family-wise error (FWE) correction, Pearson correlation coefficient (r). A P value <0.05 was considered statistically significant. RESULTS Compared with healthy controls, patients with CUVP showed significantly decreased FC in the right middle occipital gyrus within the lateral visual network, and significantly increased FC in the right supplementary motor area within the sensorimotor network. The FC was decreased between the medial visual and auditory networks, the right frontoparietal and posterior default networks, as well as the sensorimotor and auditory networks. There was a significant negative correlation between the FC changes in the visual, auditory networks and the DHI score in patients with CUVP (r = -0.583). DATA CONCLUSION Compared to healthy controls, the FC was significantly decreased in the right visual cortex and significantly enhanced in the right sensorimotor network in patients with CUVP. Patients with CUVP showed decreased FC between multiple whole-brain networks, suggesting that abnormal integration of multisensory information may be involved in the occurrence of chronic dizziness and instability in patients with CUVP. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Lihong Si
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, People's Republic of China
| | - Bin Cui
- Department of Radiology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, People's Republic of China
| | - Zheyuan Li
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, People's Republic of China
| | - Xiang Li
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, People's Republic of China
| | - Kangzhi Li
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, People's Republic of China
| | - Xia Ling
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, People's Republic of China
| | - Bo Shen
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, People's Republic of China
| | - Xu Yang
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, People's Republic of China
| |
Collapse
|
13
|
Costumero V, Rosell Negre P, Bustamante JC, Fuentes‐Claramonte P, Adrián‐Ventura J, Palomar‐García M, Miró‐Padilla A, Llopis JJ, Sepulcre J, Barrós‐Loscertales A. Distance disintegration characterizes node-level topological dysfunctions in cocaine addiction. Addict Biol 2021; 26:e13072. [PMID: 34137121 DOI: 10.1111/adb.13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 05/07/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022]
Abstract
Previous investigations have used global graph theory measures in order to disentangle the complexity of the neural reorganizations occurring in cocaine use disorder (CUD). However, how these global topological alterations map into individual brain network areas remains unknown. In this study, we used resting state functional magnetic resonance imaging (fMRI) data to investigate node-level topological dysfunctions in CUD. The sample was composed of 32 individuals with CUD and 32 healthy controls, matched in age, years of education and intellectual functioning. Graph theory measures of optimal connectivity distance, node strength, nodal efficiency and clustering coefficient were estimated in each participant using voxel-wise functional connectivity connectomes. CUD individuals as compared with healthy controls showed higher optimal connectivity distances in ventral striatum, insula, cerebellum, temporal cortex, lateral orbitofrontal cortex, middle frontal cortex and left hippocampus. Furthermore, clinical measures quantifying severity of dependence were positively related with optimal connectivity distances in the right rolandic operculum and the right lateral orbitofrontal cortex, whereas length of abstinence was negatively associated with optimal connectivity distances in the right temporal pole and the left insula. Our results reveal a topological distancing of cognitive and affective related areas in addiction, suggesting an overall reduction in the communication capacity of these regions.
Collapse
Affiliation(s)
- Víctor Costumero
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology University Jaume I Castellón de la Plana Spain
| | - Patricia Rosell Negre
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology University Jaume I Castellón de la Plana Spain
| | | | | | - Jesús Adrián‐Ventura
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology University Jaume I Castellón de la Plana Spain
| | - María‐Ángeles Palomar‐García
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology University Jaume I Castellón de la Plana Spain
| | - Anna Miró‐Padilla
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology University Jaume I Castellón de la Plana Spain
| | - Juan José Llopis
- Addictive Behaviors Unit San Agustín Hospital General Universitario de Castellón Castellón de la Plana Spain
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Department of Radiology Massachusetts General Hospital and Harvard Medical School Boston Massachusetts USA
| | - Alfonso Barrós‐Loscertales
- Neuropsychology and Functional Neuroimaging Group, Department of Basic Psychology University Jaume I Castellón de la Plana Spain
| |
Collapse
|
14
|
Cocaine-seeking behaviour is differentially expressed in male and female mice exposed to maternal separation and is associated with alterations in AMPA receptors subunits in the medial prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110262. [PMID: 33497752 DOI: 10.1016/j.pnpbp.2021.110262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/14/2020] [Accepted: 01/17/2021] [Indexed: 12/13/2022]
Abstract
According with clinical data, women evolve differently from drug use to drug abuse. Among drugs of abuse, cocaine is the most consumed psychostimulant. Animal studies demonstrated that females show increased motivation to seek cocaine during the self-administration paradigm (SA) than males. Moreover, suffering childhood adversity or major depressive disorder are two factors that could increase the predisposition to suffer cocaine addiction. Maternal separation with early weaning (MSEW) is an animal model that allows examining the impact of early-life stress on cocaine abuse. In this study, we aimed to explore changes in MSEW-induced cocaine-seeking motivation to determine potential associations between despair-like behaviour and cocaine-seeking. We also evaluated possible alterations in the AMPA receptors (AMPArs) composition in the medial prefrontal cortex (mPFC) of these mice. We exposed mice to MSEW and the behavioural tests were performed during adulthood. Moreover, GluA1, GluA2 mRNA and protein expression were evaluated in the mPFC. Results show higher cocaine-seeking in standard nest females, as well as an increase in GluA1 and GluA2 protein expression. Moreover, MSEW induces downregulation of Gria2 and increases the Gria1/Gria2 ratio, only in male mice. In conclusion, female mice show different composition of the AMPA receptor in the mPFC and MSEW alters the glutamatergic system in the mPFC of male mice.
Collapse
|
15
|
Suk JW, Hwang S, Cheong C. Functional and Structural Alteration of Default Mode, Executive Control, and Salience Networks in Alcohol Use Disorder. Front Psychiatry 2021; 12:742228. [PMID: 34744834 PMCID: PMC8564495 DOI: 10.3389/fpsyt.2021.742228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022] Open
Abstract
Alcohol use disorder (AUD) has been related to aberrant functional connectivity (FC) in the salience network (SN), executive control network (ECN), and default mode network (DMN). However, there is a lack of comprehensive and simultaneous examination of these networks in patients with AUD and of their relation to potential anatomical changes. We aimed to comprehensively examine the alteration in FC in the three networks in AUD patients, and the correlation of the alteration with anatomical/structural changes (volume) in the neural areas implicated in these networks, by applying voxel-based morphometry (VBM) and region of interest-to-region of interest connectivity analysis simultaneously. In all, 22 patients with AUD and 22 healthy adults participated in the study and underwent T1 magnetic resonance imaging. Patients with AUD showed increased FCs within the DMN and SN networks, especially in terms of connectivity of the frontal areas and bilateral hippocampi. They also showed decreased FCs in the ECN. In addition, there was significant volume reduction in these areas (frontal areas and hippocampus). The increased FCs within the frontal areas or bilateral hippocampi showed a negative correlation with gray matter volume of these areas in AUD patients. Our findings add to the empirical evidence that the frontal lobe and hippocampi are critical areas that are vulnerable to functional and structural changes due to AUD.
Collapse
Affiliation(s)
- Ji-Woo Suk
- Department of Psychiatry, University of Nebraska Medical Center, Omaha, NE, United States
| | - Soonjo Hwang
- Department of Psychiatry, University of Nebraska Medical Center, Omaha, NE, United States
| | - Chaejoon Cheong
- Bio-Chemical Analysis Team, Korean Basic Science Institute, Cheongju, South Korea
| |
Collapse
|
16
|
Klugah-Brown B, Di X, Zweerings J, Mathiak K, Becker B, Biswal B. Common and separable neural alterations in substance use disorders: A coordinate-based meta-analyses of functional neuroimaging studies in humans. Hum Brain Mapp 2020; 41:4459-4477. [PMID: 32964613 PMCID: PMC7555084 DOI: 10.1002/hbm.25085] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 12/12/2022] Open
Abstract
Delineating common and separable neural alterations in substance use disorders (SUD) is imperative to understand the neurobiological basis of the addictive process and to inform substance‐specific treatment strategies. Given numerous functional MRI (fMRI) studies in different SUDs, a meta‐analysis could provide an opportunity to determine robust shared and substance‐specific alterations. The present study employed a coordinate‐based meta‐analysis covering fMRI studies in individuals with addictive cocaine, cannabis, alcohol, and nicotine use. The primary meta‐analysis demonstrated common alterations in primary dorsal striatal, and frontal circuits engaged in reward/salience processing, habit formation, and executive control across different substances and task‐paradigms. Subsequent sub‐analyses revealed substance‐specific alterations in frontal and limbic regions, with marked frontal and insula‐thalamic alterations in alcohol and nicotine use disorders respectively. Examining task‐specific alterations across substances revealed pronounced frontal alterations during cognitive processes yet stronger striatal alterations during reward‐related processes. Finally, an exploratory meta‐analysis revealed that neurofunctional alterations in striatal and frontal reward processing regions can already be determined with a high probability in studies with subjects with comparably short durations of use. Together the findings emphasize the role of dysregulations in frontostriatal circuits and dissociable contributions of these systems in the domains of reward‐related and cognitive processes which may contribute to substance‐specific behavioral alterations.
Collapse
Affiliation(s)
- Benjamin Klugah-Brown
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Jana Zweerings
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen, Germany.,JARA Translational Brain Medicine, RWTH Aachen, Aachen, Germany
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Aachen, Germany.,JARA Translational Brain Medicine, RWTH Aachen, Aachen, Germany
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Bharat Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|