1
|
Alsulaihim IN, Alanazi MM, Alhosaini KA, Ahamad SR, Khan MR, Almezied FS, Aldossari A, Abekairi TH, Assiri MA, Alasmari F. Effects of a synthetic cannabinoid, 5F-MDMB-PICA on metabolites and glutamatergic transporters in U87 cell line. Neuroscience 2025:S0306-4522(25)00368-9. [PMID: 40389124 DOI: 10.1016/j.neuroscience.2025.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 05/02/2025] [Accepted: 05/11/2025] [Indexed: 05/21/2025]
Abstract
Brian metabolic pathways have been impaired in animals exposed to drugs of abuse. The misuse of cannabinoids is associated with neuronal death and synaptic plasticity. Astrocytic glutamate transporters are therapeutic targets in several preclinical models of substance use disorders. Abused drugs could impair metabolic pathways in animal models, particularly those involving astrocytes, where glutamate transporters are critical regulators of neurotransmission. We here aimed to evaluate the metabolomic profile of a human glioblastoma cell line following exposure a synthetic cannabinoid, 5F-MDMB-PICA (5F-M-P), using an in vitro cell model (U87, glioblastoma astrocytic origin cell line). Additionally, we evaluated the effects of 5F-M-P on the expression of astrocytic glutamate transporters. After treatments, the cells were collected for metabolomic study using gas chromatography-mass spectrometry, and protein expression study using western blotting assay. 5F-M-P, especially at a concentration of 100 μM, altered the abundance of numerous metabolites. Enrichment analysis identified that specific signaling pathways were involved in the effects of 5F-M-P on metabolites, including the glutamate neurotransmission pathway. Additionally, 5F-M-P at 200 μM reduced the expression of glutamate transporter-1 and glutamate-aspartate co-transporter. Therefore, 5F-M-P exposure altered key metabolic pathways in astrocytes including glutamatergic pathways, an effect associated with reduced astrocytic glutamate transporter expression.
Collapse
Affiliation(s)
- Ibrahim N Alsulaihim
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Mufadhe Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Khaled A Alhosaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Syed Rizwan Ahamad
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad R Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahad S Almezied
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Thamer H Abekairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed A Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fawaz Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
2
|
Ma L, Tao Q, Dang J, Sun J, Niu X, Zhang M, Kang Y, Wang W, Cheng J, Zhang Y. The structural and functional brain alternations in tobacco use disorder: a systematic review and meta-analysis. Front Psychiatry 2025; 16:1403604. [PMID: 40291519 PMCID: PMC12022757 DOI: 10.3389/fpsyt.2025.1403604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
Background While numerous previous studies have indicated that nicotine intake results in gray matter and functional brain abnormalities in tobacco use disorder (TUD), the majority of results could not be replicated or even reversed. Consequently, it is important to utilize relevant coordinate data for a comprehensive meta-analysis to identify the shared patterns of structural, functional, and multimodal alternations in TUD. Method The present study conducted a systematic retrieval of studies published on PubMed, Web of Science, and Scopus from January 1, 2010, to December 12, 2023, to identify studies on voxel-based morphometry (VBM) and resting-state functional magnetic resonance imaging (rs-fMRI) for TUD. Then, two meta-analyses using the anisotropic seed-based d mapping method were used to detect brain comprehensive alterations in individuals with TUD. Furthermore, two meta-analyses were pooled for multimodal analysis to discover multimodal anomalies. Finally, subgroup analyses were performed to explore the sources of TUD heterogeneity from both methodological and age perspectives. Result This study encompassed a total of 25 VBM studies, including 1,249 individuals with TUD and 1,874 healthy controls (HCs), and 35 rs-fMRI studies, including 1,436 individuals with TUD and 1,550 HCs. For rs-fMRI analysis, individuals with TUD exhibited increased intrinsic function in the right cerebellum crus2, left superior frontal gyrus, left inferior parietal gyrus, and left supplementary motor area and decreased intrinsic function in the right gyrus rectus, right superior/middle frontal gyrus, and left inferior frontal gyrus. For VBM analysis, individuals with TUD showed decreased gray matter volume (GMV) in the left superior temporal gyrus, right superior frontal gyrus, right anterior cingulate/paracingulate gyrus, left superior frontal gyrus, and right anterior thalamic region and increased GMV in the right lingual gyrus. Conclusion This meta-analysis illustrates structural and functional abnormalities of the default mode network, executive control network, and salience network in individuals with TUD. Multimodal analysis of the right lingual gyrus provided additional information, offering the potential for identifying more therapeutic targets for interventions against TUD.
Collapse
Affiliation(s)
- Longyao Ma
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
| | - Qiuying Tao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
| | - Jinghan Dang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
| | - Jieping Sun
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
| | - Xiaoyu Niu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
| | - Mengzhe Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
| | - Yimeng Kang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
| | - Weijian Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
| |
Collapse
|
3
|
Chen X, Long K, Liu S, Cai Y, Cheng L, Chen W, Lin F, Lei H. Repeated exposure to high-dose nicotine induces prefrontal gray matter atrophy in adolescent male rats. Neuroscience 2025; 566:205-217. [PMID: 39631662 DOI: 10.1016/j.neuroscience.2024.11.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/07/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024]
Abstract
Incidences of seizure after e-cigarette use in adolescents and young adults have been reported, raising the concern about the risk of nicotine overconsumption. Few previous studies have investigated the effects of nicotine at high doses on brain and behavior in adolescent animals. In this study, the effects of a 15-day repeated nicotine treatment at a daily dose of 2 mg/kg body weight were investigated in adolescent and adult male rats. Nicotine treatment abolished body weight gain in the adults, but did not affect the body weight significantly in the adolescents. Only the nicotine-treated adolescents showed significant changes in brain anatomy 1 day post-treatment, which manifested as a significant reduction of whole-brain gray matter (GM) volume, a further reduction of regional GM volume in the medial prefrontal cortex (mPFC) and altered GM volume covariations between the mPFC and a number of brain regions. The mPFC of nicotine-treated adolescent rats did not exhibit evident signs of neuronal degeneration and reactive astrocytosis, but showed a significantly decreased expression of presynaptic marker synaptophysin (SYN), along with a significantly increased oxidative stress and a significantly elevated expressions of microglial marker ionized calcium binding adaptor molecule 1 (IBA1). Together, these results suggested that repeated nicotine overdosing may shift regional redox, modulate microglia-mediated pruning, and give rise to structural/connectivity deficits in the mPFC of adolescent male rats.
Collapse
Affiliation(s)
- Xi Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Kehong Long
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Sijie Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Yue Cai
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Linlin Cheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, PR China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Wei Chen
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Fuchun Lin
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Hao Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei, PR China; University of Chinese Academy of Sciences, Beijing, PR China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, PR China.
| |
Collapse
|
4
|
Koster M, van der Pluijm M, van de Giessen E, Schrantee A, van Hooijdonk CFM, Selten JP, Booij J, de Haan L, Ziermans T, Vermeulen J. The association of tobacco smoking and metabolite levels in the anterior cingulate cortex of first-episode psychosis patients: A case-control and 6-month follow-up 1H-MRS study. Schizophr Res 2024; 271:144-152. [PMID: 39029144 DOI: 10.1016/j.schres.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/07/2024] [Accepted: 07/07/2024] [Indexed: 07/21/2024]
Abstract
Tobacco smoking is highly prevalent among patients with psychosis and associated with worse clinical outcomes. Neurometabolites, such as glutamate and choline, are both implicated in psychosis and tobacco smoking. However, the specific associations between smoking and neurometabolites have yet to be investigated in patients with psychosis. The current study examines associations of chronic smoking and neurometabolite levels in the anterior cingulate cortex (ACC) in first-episode psychosis (FEP) patients and controls. Proton magnetic resonance spectroscopy (1H MRS) data of 59 FEP patients and 35 controls were analysed. Associations between smoking status (i.e., smoker yes/no) or cigarettes per day and Glx (glutamate + glutamine, as proxy for glutamate) and total choline (tCh) levels were assessed at baseline in both groups separately. For patients, six months follow-up data were acquired for multi-cross-sectional analysis using linear mixed models. No significant differences in ACC Glx levels were found between smoking (n = 28) and non-smoking (n = 31) FEP patients. Smoking patients showed lower tCh levels compared to non-smoking patients at baseline, although not surving multiple comparisons correction, and in multi-cross-sectional analysis (pFDR = 0.08 and pFDR = 0.044, respectively). Negative associations were observed between cigarettes smoked per day, and ACC Glx (pFDR = 0.02) and tCh levels (pFDR = 0.02) in controls. Differences between patients and controls regarding Glx might be explained by pre-existing disease-related glutamate deficits or alterations at nicotine acetylcholine receptor level, resulting in differences in tobacco-related associations with neurometabolites. Additionally, observed alterations in tCh levels, suggesting reduced cellular proliferation processes, might result from exposure to the neurotoxic effects of smoking.
Collapse
Affiliation(s)
- Merel Koster
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, the Netherlands.
| | - Marieke van der Pluijm
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Elsmarieke van de Giessen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Carmen F M van Hooijdonk
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, University of Maastricht, Maastricht, the Netherlands; Rivierduinen, Institute for Mental Health Care, Leiden, the Netherlands
| | - Jean-Paul Selten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, University of Maastricht, Maastricht, the Netherlands; Rivierduinen, Institute for Mental Health Care, Leiden, the Netherlands
| | - Jan Booij
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Lieuwe de Haan
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Tim Ziermans
- Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - Jentien Vermeulen
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, the Netherlands
| |
Collapse
|
5
|
Torres-Carmona E, Nakajima S, Iwata Y, Ueno F, Stefan C, Song J, Abdolizadeh A, Koizumi MT, Kambari Y, Amaev A, Agarwal SM, Mar W, de Luca V, Remington G, Gerretsen P, Graff-Guerrero A. Clozapine treatment and astrocyte activity in treatment resistant schizophrenia: A proton magnetic resonance spectroscopy study. Schizophr Res 2024; 270:152-161. [PMID: 38909486 DOI: 10.1016/j.schres.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 04/17/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
Clozapine is the only antipsychotic approved for treating treatment-resistant schizophrenia (TRS), characterized by persistent positive symptoms despite adequate antipsychotic treatment. Unfortunately, clozapine demonstrates clinical efficacy in only ~30-60 % of patients with TRS (clozapine-responders; ClzR+), while the remaining ~40-70 % are left with no pharmacological recourse for improvement (clozapine-resistant; ClzR-). Mechanism(s) underlying clozapine's superior efficacy remain unclear. However, in vitro evidence suggests clozapine may mitigate glutamatergic dysregulations observed in TRS, by modulating astrocyte activity in ClzR+, but not ClzR-. A factor that if proven correct, may help the assessment of treatment response and development of more effective antipsychotics. To explore the presence of clozapine-astrocyte interaction and clinical improvement, we used 3 T proton-magnetic resonance spectroscopy to quantify levels of myo-Inositol, surrogate biomarker of astrocyte activity, in regions related to schizophrenia neurobiology: Dorsal-anterior-cingulate-cortex (dACC), left-dorsolateral-prefrontal-cortex (left-DLPFC), and left-striatum (left-striatum) of 157 participants (ClzR- = 30; ClzR+ = 37; responders = 38; controls = 52). Clozapine treatment was assessed using clozapine to norclozapine plasma levels, 11-12 h after last clozapine dose. Measures for symptom severity (i.e., Positive and Negative Symptoms Scale) and cognition (i.e., Mini-Mental State Examination) were also recorded. Higher levels of myo-Inositol were observed in TRS groups versus responders and controls (dACC (p < 0.001); left-striatum (p = 0.036); left-DLPFC (p = 0.023)). In ClzR+, but not ClzR-, clozapine to norclozapine ratios were positively associated with myo-Inositol levels (dACC (p = 0.004); left-DLPFC (p < 0.001)), and lower positive symptom severity (p < 0.001). Our results support growing in vitro evidence of clozapine-astrocyte interaction in clozapine-responders. Further research may determine the viability of clozapine-astrocyte interactions as an early marker of clozapine response.
Collapse
Affiliation(s)
- Edgardo Torres-Carmona
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Shinichiro Nakajima
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Neuropsychiatry, Keio University, Minato, Tokyo, Japan
| | - Yusuke Iwata
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Fumihiko Ueno
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Cristiana Stefan
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Jianmeng Song
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Ali Abdolizadeh
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | | | - Yasaman Kambari
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Aron Amaev
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sri Mahavir Agarwal
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada
| | - Wanna Mar
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Vincenzo de Luca
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada
| | - Gary Remington
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada
| | - Philip Gerretsen
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute, CAMH, Toronto, ON, Canada.
| |
Collapse
|
6
|
Li X, Ramos-Rolón AP, Kass G, Pereira-Rufino LS, Shifman N, Shi Z, Volkow ND, Wiers CE. Imaging neuroinflammation in individuals with substance use disorders. J Clin Invest 2024; 134:e172884. [PMID: 38828729 PMCID: PMC11142750 DOI: 10.1172/jci172884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Increasing evidence suggests a role of neuroinflammation in substance use disorders (SUDs). This Review presents findings from neuroimaging studies assessing brain markers of inflammation in vivo in individuals with SUDs. Most studies investigated the translocator protein 18 kDa (TSPO) using PET; neuroimmune markers myo-inositol, choline-containing compounds, and N-acetyl aspartate using magnetic resonance spectroscopy; and fractional anisotropy using MRI. Study findings have contributed to a greater understanding of neuroimmune function in the pathophysiology of SUDs, including its temporal dynamics (i.e., acute versus chronic substance use) and new targets for SUD treatment.
Collapse
Affiliation(s)
- Xinyi Li
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Astrid P. Ramos-Rolón
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Gabriel Kass
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Lais S. Pereira-Rufino
- Departamento de Morfologia e Genética, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Naomi Shifman
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Zhenhao Shi
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA
| | - Corinde E. Wiers
- Center for Studies of Addiction, University of Pennsylvania Perelman School of Medicine, Department of Psychiatry, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Abdullah M, Lin SH, Huang LC, Chen PS, Tseng HH, Yang YK. Fat loss and muscle gain: The possible role of cortical glutamate in determining the efficacy of physical exercise. Obes Res Clin Pract 2024; 18:163-170. [PMID: 38704348 DOI: 10.1016/j.orcp.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/21/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024]
Abstract
BACKGROUND Physical exercise is widely acknowledged for its health benefits, but its effectiveness in treating obesity remains contentious due to variability in response. Owing to the roles of glutamate in appetite regulation, food addiction, and impulsivity, this observational cohort-study evaluated medial prefrontal cortex (mPFC) glutamate as a predictor of variability in exercise response, specifically in terms of fat loss and muscle gain. METHODS Healthy non-exercising adult men (n = 21) underwent an 8-week supervised exercise program. Baseline glutamate levels in the mPFC were measured through magnetic resonance spectroscopy. For exercise-dependent changes in body composition (fat and muscle mass), basal metabolic rate (BMR), and blood metabolic biomarkers related to lipid and glucose metabolism, measurements were obtained through bioelectrical impedance and blood sample analyses, respectively. RESULTS The exercise program resulted in significant improvements in body composition, including reductions in percentage body fat mass, body fat mass, and waist-to-hip ratio and an increase in mean muscle mass. Furthermore, BMR and metabolic indicators linked to glucose and lipids exhibited significant changes. Notably, lower baseline glutamate levels were associated with greater loss in percentage body fat mass (r = 0.482, p = 0.027), body fat mass (r = 0.441, p = 0.045), and increase in muscle mass (r = -0.409, p = 0.066, marginal) following the exercise program. CONCLUSION These preliminary findings contribute to our understanding of the neurobiology of obesity and emphasize the significance of glutamate in regulating body composition. The results also highlight cortical glutamate as a potential predictor of exercise-induced fat loss and muscle gain.
Collapse
Affiliation(s)
- Muhammad Abdullah
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| | - Shih-Hsien Lin
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Clinical Medicine Research Center, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Chung Huang
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Huai-Hsuan Tseng
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Psychiatry, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan.
| |
Collapse
|
8
|
Durazzo TC, Stephens LH, Meyerhoff DJ. Regional cortical thickness recovery with extended abstinence after treatment in those with alcohol use disorder. Alcohol 2024; 114:51-60. [PMID: 37657667 PMCID: PMC10902196 DOI: 10.1016/j.alcohol.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/31/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
Several cross-sectional investigations reported widespread cortical thinning in those with alcohol use disorder (AUD). The few longitudinal studies investigating cortical thickness changes during abstinence are limited to the first month of sobriety. Consequently, cortical thickness changes during extended abstinence in those with AUD is unclear. In this study, AUD participants were studied at approximately 1 week (n = 68), 1 month (n = 88), and 7.3 months (n = 40) of abstinence. Forty-five never-smoking controls (CON) completed a baseline study, and 15 were reassessed after approximately 9.6 months. Participants completed magnetic resonance imaging studies at 1.5T, and cortical thickness for 34 bilateral regions of interest (ROI) was quantitated with FreeSurfer. AUD participants demonstrated significant linear thickness increases in 25/34 ROI over 7.3 months of abstinence. The rate of change from 1 week to 1 month was greater than 1 month to 7.3 months in 19/34 ROIs. Proatherogenic conditions were associated with lower thickness recovery in anterior frontal, inferior parietal, and lateral/mesial temporal regions. After 7.3 months of abstinence, AUD participants were statistically equivalent to CON on cortical thickness in 24/34 ROIs; the cortical thickness differences between AUD and CON in the banks superior temporal gyrus, post central, posterior cingulate, superior parietal, supramarginal, and superior frontal cortices were driven by thinner cortices in AUD with proatherogenic conditions relative to CON. In actively smoking AUD, increasing pack-years was associated with decreasing thickness recovery primarily in the anterior frontal ROIs. Widespread bilateral cortical thickness recovery over 7.3 months of abstinence was the central finding for this AUD cohort. The longitudinal and cross-sectional findings for AUD with proatherogenic suggests alterations in perfusion or vascular integrity may relate to structural recovery in those with AUD. These results support the adaptive and beneficial effects of sustained sobriety on brain structural recovery in people with AUD.
Collapse
Affiliation(s)
- Timothy C Durazzo
- Sierra-Pacific Mental Illness Research and Education Clinical Centers, Veterans Administration Palo Alto Health Care System, Palo Alto, CA, United States; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States.
| | - Lauren H Stephens
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Dieter J Meyerhoff
- Center for Imaging of Neurodegenerative Diseases (CIND), San Francisco Veterans Administration Medical Center, San Francisco, CA, United States; Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, United States
| |
Collapse
|
9
|
Candow DG, Forbes SC, Ostojic SM, Prokopidis K, Stock MS, Harmon KK, Faulkner P. "Heads Up" for Creatine Supplementation and its Potential Applications for Brain Health and Function. Sports Med 2023; 53:49-65. [PMID: 37368234 PMCID: PMC10721691 DOI: 10.1007/s40279-023-01870-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2023] [Indexed: 06/28/2023]
Abstract
There is emerging interest regarding the potential beneficial effects of creatine supplementation on indices of brain health and function. Creatine supplementation can increase brain creatine stores, which may help explain some of the positive effects on measures of cognition and memory, especially in aging adults or during times of metabolic stress (i.e., sleep deprivation). Furthermore, creatine has shown promise for improving health outcome measures associated with muscular dystrophy, traumatic brain injury (including concussions in children), depression, and anxiety. However, whether any sex- or age-related differences exist in regard to creatine and indices of brain health and function is relatively unknown. The purpose of this narrative review is to: (1) provide an up-to-date summary and discussion of the current body of research focusing on creatine and indices of brain health and function and (2) discuss possible sex- and age-related differences in response to creatine supplementation on brain bioenergetics, measures of brain health and function, and neurological diseases.
Collapse
Affiliation(s)
- Darren G Candow
- Aging Muscle & Bone Health Laboratory, Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada.
| | - Scott C Forbes
- Department of Physical Education Studies, Brandon University, Brandon, MB, Canada
| | - Sergej M Ostojic
- Department of Nutrition and Public Health, University of Agder, Kristiansand, Norway
| | | | - Matt S Stock
- School of Kinesiology and Rehabilitation Sciences, University of Central Florida, Orlando, FL, USA
| | - Kylie K Harmon
- Department of Exercise Science, Syracuse University, New York, NY, USA
| | - Paul Faulkner
- Department of Psychology, University of Roehampton, London, UK
| |
Collapse
|
10
|
O'Neill J, Diaz MP, Alger JR, Pochon JB, Ghahremani D, Dean AC, Tyndale RF, Petersen N, Marohnic S, Karaiskaki A, London ED. Smoking, tobacco dependence, and neurometabolites in the dorsal anterior cingulate cortex. Mol Psychiatry 2023; 28:4756-4765. [PMID: 37749232 PMCID: PMC10914613 DOI: 10.1038/s41380-023-02247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/27/2023]
Abstract
Cigarette smoking has a major impact on global health and morbidity, and positron emission tomographic research has provided evidence for reduced inflammation in the human brain associated with cigarette smoking. Given the consequences of inflammatory dysfunction for health, the question of whether cigarette smoking affects neuroinflammation warrants further investigation. The goal of this project therefore was to validate and extend evidence of hypoinflammation related to smoking, and to examine the potential contribution of inflammation to clinical features of smoking. Using magnetic resonance spectroscopy, we measured levels of neurometabolites that are putative neuroinflammatory markers. N-acetyl compounds (N-acetylaspartate + N-acetylaspartylglutamate), glutamate, creatine, choline-compounds (phosphocholine + glycerophosphocholine), and myo-inositol, have all been linked to neuroinflammation, but they have not been examined as such with respect to smoking. We tested whether people who smoke cigarettes have brain levels of these metabolites consistent with decreased neuroinflammation, and whether clinical features of smoking are associated with levels of these metabolites. The dorsal anterior cingulate cortex was chosen as the region-of-interest because of previous evidence linking it to smoking and related states. Fifty-four adults who smoked daily maintained overnight smoking abstinence before testing and were compared with 37 nonsmoking participants. Among the smoking participants, we tested for associations of metabolite levels with tobacco dependence, smoking history, craving, and withdrawal. Levels of N-acetyl compounds and glutamate were higher, whereas levels of creatine and choline compounds were lower in the smoking group as compared with the nonsmoking group. In the smoking group, glutamate and creatine levels correlated negatively with tobacco dependence, and creatine correlated negatively with lifetime smoking, but none of the metabolite levels correlated with craving or withdrawal. The findings indicate a link between smoking and a hypoinflammatory state in the brain, specifically in the dorsal anterior cingulate cortex. Smoking may thereby increase vulnerability to infection and brain injury.
Collapse
Affiliation(s)
- Joseph O'Neill
- Division of Child & Adolescent Psychiatry, Department of Psychiatry, University of California at Los Angeles, Los Angeles, CA, USA
- Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA
| | - Maylen Perez Diaz
- Jane and Terry Semel Institute for Neuroscience and Human Behavior and the Department of Psychiatry, University of California at Los Angeles, Los Angeles, CA, USA
- Biogen, Inc., Nashville, TN, USA
| | - Jeffry R Alger
- Department of Neurology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Jean-Baptiste Pochon
- Jane and Terry Semel Institute for Neuroscience and Human Behavior and the Department of Psychiatry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Dara Ghahremani
- Jane and Terry Semel Institute for Neuroscience and Human Behavior and the Department of Psychiatry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Andrew C Dean
- Jane and Terry Semel Institute for Neuroscience and Human Behavior and the Department of Psychiatry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Rachel F Tyndale
- Department of Pharmacology & Toxicology, and Department of Psychiatry, University of Toronto, and Campbell Family Mental Health Research Institute, Centre for Addiction & Mental Health, Toronto, ON, Canada
| | - Nicole Petersen
- Jane and Terry Semel Institute for Neuroscience and Human Behavior and the Department of Psychiatry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Shane Marohnic
- Jane and Terry Semel Institute for Neuroscience and Human Behavior and the Department of Psychiatry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Andrea Karaiskaki
- Jane and Terry Semel Institute for Neuroscience and Human Behavior and the Department of Psychiatry, University of California at Los Angeles, Los Angeles, CA, USA
| | - Edythe D London
- Brain Research Institute, University of California at Los Angeles, Los Angeles, CA, USA.
- Jane and Terry Semel Institute for Neuroscience and Human Behavior and the Department of Psychiatry, University of California at Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Qiu T, Zeng Q, Luo X, Xu T, Shen Z, Xu X, Wang C, Li K, Huang P, Li X, Xie F, Dai S, Zhang M. Effects of Cigarette Smoking on Resting-State Functional Connectivity of the Nucleus Basalis of Meynert in Mild Cognitive Impairment. Front Aging Neurosci 2021; 13:755630. [PMID: 34867281 PMCID: PMC8638702 DOI: 10.3389/fnagi.2021.755630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Mild cognitive impairment (MCI) is the prodromal phase of Alzheimer’s disease (AD) and has a high risk of progression to AD. Cigarette smoking is one of the important modifiable risk factors in AD progression. Cholinergic dysfunction, especially the nucleus basalis of Meynert (NBM), is the converging target connecting smoking and AD. However, how cigarette smoking affects NBM connectivity in MCI remains unclear. Objective: This study aimed to evaluate the interaction effects of condition (non-smoking vs. smoking) and diagnosis [cognitively normal (CN) vs. MCI] based on the resting-state functional connectivity (rsFC) of the NBM. Methods: After propensity score matching, we included 86 non-smoking CN, 44 smoking CN, 62 non-smoking MCI, and 32 smoking MCI. All subjects underwent structural and functional magnetic resonance imaging scans and neuropsychological tests. The seed-based rsFC of the NBM with the whole-brain voxel was calculated. Furthermore, the mixed effect analysis was performed to explore the interaction effects between condition and diagnosis on rsFC of the NBM. Results: The interaction effects of condition × diagnosis on rsFC of the NBM were observed in the bilateral prefrontal cortex (PFC), bilateral supplementary motor area (SMA), and right precuneus/middle occipital gyrus (MOG). Specifically, the smoking CN showed decreased rsFC between left NBM and PFC and increased rsFC between left NBM and SMA compared with non-smoking CN and smoking MCI. The smoking MCI showed reduced rsFC between right NBM and precuneus/MOG compared with non-smoking MCI. Additionally, rsFC between the NBM and SMA showed a significant negative correlation with Wechsler Memory Scale-Logical Memory (WMS-LM) immediate recall in smoking CN (r = −0.321, p = 0.041). Conclusion: Our findings indicate that chronic nicotine exposure through smoking may lead to functional connectivity disruption between the NBM and precuneus in MCI patients. The distinct alteration patterns on NBM connectivity in CN smokers and MCI smokers suggest that cigarette smoking has different influences on normal and impaired cognition.
Collapse
Affiliation(s)
- Tiantian Qiu
- Department of Radiology, Linyi People's Hospital, Linyi, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Tongcheng Xu
- Department of Radiology, Linyi People's Hospital, Linyi, China
| | - Zhujing Shen
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaopei Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Wang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaodong Li
- Department of Radiology, Linyi People's Hospital, Linyi, China
| | - Fei Xie
- Department of Equipment and Medical Engineering, Linyi People's Hospital, Linyi, China
| | - Shouping Dai
- Department of Radiology, Linyi People's Hospital, Linyi, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Faulkner P, Paioni SL, Kozhuharova P, Orlov N, Lythgoe DJ, Daniju Y, Morgenroth E, Barker H, Allen P. Relationship between depression, prefrontal creatine and grey matter volume. J Psychopharmacol 2021; 35:1464-1472. [PMID: 34697970 PMCID: PMC8652356 DOI: 10.1177/02698811211050550] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Depression and low mood are leading contributors to disability worldwide. Research indicates that clinical depression may be associated with low creatine concentrations in the brain and low prefrontal grey matter volume. Because subclinical depression also contributes to difficulties in day-to-day life, understanding the neural mechanisms of depressive symptoms in all individuals, even at a subclinical level, may aid public health. METHODS Eighty-four young adult participants completed the Depression, Anxiety and Stress Scale (DASS) to quantify severity of depression, anxiety and stress, and underwent 1H-Magnetic Resonance Spectroscopy of the medial prefrontal cortex and structural magnetic resonance imaging (MRI) to determine whole-brain grey matter volume. RESULTS/OUTCOMES DASS depression scores were negatively associated (a) with concentrations of creatine (but not other metabolites) in the prefrontal cortex and (b) with grey matter volume in the right superior medial frontal gyrus. Medial prefrontal creatine concentrations and right superior medial frontal grey matter volume were positively correlated. DASS anxiety and DASS stress scores were not related to prefrontal metabolite concentrations or whole-brain grey matter volume. CONCLUSIONS/INTERPRETATIONS This study provides preliminary evidence from a representative group of individuals who exhibit a range of depression levels that prefrontal creatine and grey matter volume are negatively associated with depression. While future research is needed to fully understand this relationship, these results provide support for previous findings, which indicate that increasing creatine concentrations in the prefrontal cortex may improve mood and well-being.
Collapse
Affiliation(s)
- Paul Faulkner
- Department of Psychology, Whitelands College, University of Roehampton, London, UK
- Department of Psychology, University of Roehampton, London, UK
- Combined Universities Brain Imaging Centre, London, UK
| | | | | | - Natasza Orlov
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - David J Lythgoe
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Yusuf Daniju
- Department of Psychology, University of Roehampton, London, UK
| | - Elenor Morgenroth
- Department of Psychology, University of Roehampton, London, UK
- Combined Universities Brain Imaging Centre, London, UK
- Institute of Bioengineering, Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Holly Barker
- Department of Psychology, University of Roehampton, London, UK
- Combined Universities Brain Imaging Centre, London, UK
| | - Paul Allen
- Department of Psychology, University of Roehampton, London, UK
- Combined Universities Brain Imaging Centre, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
13
|
Onwordi EC, Whitehurst T, Mansur A, Statton B, Berry A, Quinlan M, O'Regan DP, Rogdaki M, Marques TR, Rabiner EA, Gunn RN, Vernon AC, Natesan S, Howes OD. The relationship between synaptic density marker SV2A, glutamate and N-acetyl aspartate levels in healthy volunteers and schizophrenia: a multimodal PET and magnetic resonance spectroscopy brain imaging study. Transl Psychiatry 2021; 11:393. [PMID: 34282130 PMCID: PMC8290006 DOI: 10.1038/s41398-021-01515-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Glutamatergic excitotoxicity is hypothesised to underlie synaptic loss in schizophrenia pathogenesis, but it is unknown whether synaptic markers are related to glutamatergic function in vivo. Additionally, it has been proposed that N-acetyl aspartate (NAA) levels reflect neuronal integrity. Here, we investigated whether synaptic vesicle glycoprotein 2 A (SV2A) levels are related to glutamatergic markers and NAA in healthy volunteers (HV) and schizophrenia patients (SCZ). Forty volunteers (SCZ n = 18, HV n = 22) underwent [11C]UCB-J positron emission tomography and proton magnetic resonance spectroscopy (1H-MRS) imaging in the left hippocampus and anterior cingulate cortex (ACC) to index [11C]UCB-J distribution volume ratio (DVR), and creatine-scaled glutamate (Glu/Cr), glutamate and glutamine (Glx/Cr) and NAA (NAA/Cr). In healthy volunteers, but not patients, [11C]UCB-J DVR was significantly positively correlated with Glu/Cr, in both the hippocampus and ACC. Furthermore, in healthy volunteers, but not patients, [11C]UCB-J DVR was significantly positively correlated with Glx/Cr, in both the hippocampus and ACC. There were no significant relationships between [11C]UCB-J DVR and NAA/Cr in the hippocampus or ACC in healthy volunteers or patients. Therefore, an appreciable proportion of the brain 1H-MRS glutamatergic signal is related to synaptic density in healthy volunteers. This relationship is not seen in schizophrenia, which, taken with lower synaptic marker levels, is consistent with lower levels of glutamatergic terminals and/or a lower proportion of glutamatergic relative to GABAergic terminals in the ACC in schizophrenia.
Collapse
Affiliation(s)
- Ellis Chika Onwordi
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK.
- South London and Maudsley NHS Foundation Trust, Camberwell, London, SE5 8AF, UK.
| | - Thomas Whitehurst
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
| | - Ayla Mansur
- Department of Brain Sciences, Imperial College London, The Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Invicro, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| | - Ben Statton
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Alaine Berry
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Marina Quinlan
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Declan P O'Regan
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
| | - Maria Rogdaki
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
- South London and Maudsley NHS Foundation Trust, Camberwell, London, SE5 8AF, UK
| | - Tiago Reis Marques
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
- South London and Maudsley NHS Foundation Trust, Camberwell, London, SE5 8AF, UK
| | - Eugenii A Rabiner
- Invicro, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Roger N Gunn
- Department of Brain Sciences, Imperial College London, The Commonwealth Building, Hammersmith Hospital, Du Cane Road, London, W12 0NN, UK
- Invicro, Burlington Danes Building, Du Cane Road, London, W12 0NN, UK
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, 5 Cutcombe Road, London, SE5 9RT, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, SE1 1UL, UK
| | - Sridhar Natesan
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Oliver D Howes
- MRC London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital Campus, London, W12 0NN, UK.
- Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, W12 0NN, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK.
- South London and Maudsley NHS Foundation Trust, Camberwell, London, SE5 8AF, UK.
| |
Collapse
|