1
|
Zheng M, Hong T, Zhou H, Garland EL, Hu Y. The acute effect of mindfulness-based regulation on neural indices of cue-induced craving in smokers. Addict Behav 2024; 159:108134. [PMID: 39178637 DOI: 10.1016/j.addbeh.2024.108134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/19/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
Mindfulness has garnered attention for its potential in alleviating cigarette cravings; however, the neural mechanisms underlying its efficacy remain inadequately understood. This study (N=46, all men) aims to examine the impact of a mindfulness strategy on regulating cue-induced craving and associated brain activity. Twenty-three smokers, consuming over 10 cigarettes daily for at least 2 years, were compared to twenty-three non-smokers. During a regulation of craving task, participants were asked to practice mindfulness during smoking cue-exposure or passively view smoking cues while fMRI scans were completed. A 2 (condition: mindfulness-cigarette and look-cigarette) × 2 (phase: early, late of whole smoking cue-exposure period) repeated measures ANOVA showed a significant interaction of the craving scores between condition and phase, indicating that the mindfulness strategy dampened late-phase craving. Additionally, within the smoker group, the fMRI analyses revealed a significant main effect of mindfulness condition and its interaction with time in several brain networks involving reward, emotion, and interoception. Specifically, the bilateral insula, ventral striatum, and amygdala showed lower activation in the mindfulness condition, whereas the activation of right orbitofrontal cortex mirrored the strategy-time interaction effect of the craving change. This study illuminates the dynamic interplay between mindfulness, smoking cue-induced craving, and neural activity, offering insights into how mindfulness may effectively regulate cigarette cravings.
Collapse
Affiliation(s)
- Ming Zheng
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tiantian Hong
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhou
- The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China
| | - Eric L Garland
- Sanford Institute for Empathy and Compassion, University of California San Diego, La Jolla, CA; Department of Psychiatry, University of California San Diego, La Jolla, CA
| | - Yuzheng Hu
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310058, China; The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou 310058, China; MOE Frontiers Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Vaccaro AG, Lacadie CM, Potenza MN. Intrinsic connectivity demonstrates a shared role of the posterior cingulate for cue reactivity in both gambling and cocaine use disorders. Addict Behav 2024; 155:108027. [PMID: 38581751 PMCID: PMC11273263 DOI: 10.1016/j.addbeh.2024.108027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Cue reactivity is relevant across addictive disorders as a process relevant to maintenance, relapse, and craving. Understanding the neurobiological foundations of cue reactivity across substance and behavioral addictions has important implications for intervention development. The present study used intrinsic connectivity distribution methods to examine functional connectivity during a cue-exposure fMRI task involving gambling, cocaine and sad videos in 22 subjects with gambling disorder, 24 with cocaine use disorder, and 40 healthy comparison subjects. Intrinsic connectivity distribution implicated the posterior cingulate cortex (PCC) at a stringent whole-brain threshold. Post-hoc analyses investigating the nature of the findings indicated that individuals with gambling disorder and cocaine use disorder exhibited decreased connectivity in the posterior cingulate during gambling and cocaine cues, respectively, as compared to other cues and compared to other groups. Brain-related cue reactivity in substance and behavioral addictions involve PCC connectivity in a content-to-disorder specific fashion. The findings suggesting that PCC-related circuitry underlies cue reactivity across substance and behavioral addictions suggests a potential biomarker for targeting in intervention development.
Collapse
Affiliation(s)
- Anthony G Vaccaro
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Cheryl M Lacadie
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Marc N Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Child Study Center, Yale University School of Medicine, New Haven, CT, USA; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA; Connecticut Council on Problem Gambling, Wethersfield, CT, USA; Connecticut Mental Health Center, New Haven, CT, USA; Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Watve A, Haugg A, Frei N, Koush Y, Willinger D, Bruehl AB, Stämpfli P, Scharnowski F, Sladky R. Facing emotions: real-time fMRI-based neurofeedback using dynamic emotional faces to modulate amygdala activity. Front Neurosci 2024; 17:1286665. [PMID: 38274498 PMCID: PMC10808718 DOI: 10.3389/fnins.2023.1286665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Maladaptive functioning of the amygdala has been associated with impaired emotion regulation in affective disorders. Recent advances in real-time fMRI neurofeedback have successfully demonstrated the modulation of amygdala activity in healthy and psychiatric populations. In contrast to an abstract feedback representation applied in standard neurofeedback designs, we proposed a novel neurofeedback paradigm using naturalistic stimuli like human emotional faces as the feedback display where change in the facial expression intensity (from neutral to happy or from fearful to neutral) was coupled with the participant's ongoing bilateral amygdala activity. Methods The feasibility of this experimental approach was tested on 64 healthy participants who completed a single training session with four neurofeedback runs. Participants were assigned to one of the four experimental groups (n = 16 per group), i.e., happy-up, happy-down, fear-up, fear-down. Depending on the group assignment, they were either instructed to "try to make the face happier" by upregulating (happy-up) or downregulating (happy-down) the amygdala or to "try to make the face less fearful" by upregulating (fear-up) or downregulating (fear-down) the amygdala feedback signal. Results Linear mixed effect analyses revealed significant amygdala activity changes in the fear condition, specifically in the fear-down group with significant amygdala downregulation in the last two neurofeedback runs as compared to the first run. The happy-up and happy-down groups did not show significant amygdala activity changes over four runs. We did not observe significant improvement in the questionnaire scores and subsequent behavior. Furthermore, task-dependent effective connectivity changes between the amygdala, fusiform face area (FFA), and the medial orbitofrontal cortex (mOFC) were examined using dynamic causal modeling. The effective connectivity between FFA and the amygdala was significantly increased in the happy-up group (facilitatory effect) and decreased in the fear-down group. Notably, the amygdala was downregulated through an inhibitory mechanism mediated by mOFC during the first training run. Discussion In this feasibility study, we intended to address key neurofeedback processes like naturalistic facial stimuli, participant engagement in the task, bidirectional regulation, task congruence, and their influence on learning success. It demonstrated that such a versatile emotional face feedback paradigm can be tailored to target biased emotion processing in affective disorders.
Collapse
Affiliation(s)
- Apurva Watve
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital, University of Zürich, Zürich, Switzerland
| | - Amelie Haugg
- Department of Child and Adolescent Psychiatry, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
| | - Nada Frei
- Department of Child and Adolescent Psychiatry, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
| | - Yury Koush
- Magnetic Resonance Research Center (MRRC), Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, United States
| | - David Willinger
- Department of Child and Adolescent Psychiatry, Psychiatric Hospital, University of Zürich, Zürich, Switzerland
- Division of Psychodynamics, Department of Psychology and Psychodynamics, Karl Landsteiner University of Health Sciences, Krems an der Donau, Lower Austria, Austria
- Neuroscience Center Zürich, University of Zürich and Swiss Federal Institute of Technology, Zürich, Switzerland
| | - Annette Beatrix Bruehl
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital, University of Zürich, Zürich, Switzerland
- Center for Affective, Stress and Sleep Disorders, Psychiatric University Hospital Basel, Basel, Switzerland
| | - Philipp Stämpfli
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital, University of Zürich, Zürich, Switzerland
| | - Frank Scharnowski
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zürich, University of Zürich and Swiss Federal Institute of Technology, Zürich, Switzerland
- Zurich Center for Integrative Human Physiology, Faculty of Medicine, University of Zürich, Zürich, Switzerland
- Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria
| | - Ronald Sladky
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital, University of Zürich, Zürich, Switzerland
- Social, Cognitive and Affective Neuroscience Unit, Department of Basic Psychological Research and Research Methods, Faculty of Psychology, University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Jing C, Kuai H, Matsumoto H, Yamaguchi T, Liao IY, Wang S. Addiction-related brain networks identification via Graph Diffusion Reconstruction Network. Brain Inform 2024; 11:1. [PMID: 38190053 PMCID: PMC10774517 DOI: 10.1186/s40708-023-00216-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
Functional magnetic resonance imaging (fMRI) provides insights into complex patterns of brain functional changes, making it a valuable tool for exploring addiction-related brain connectivity. However, effectively extracting addiction-related brain connectivity from fMRI data remains challenging due to the intricate and non-linear nature of brain connections. Therefore, this paper proposed the Graph Diffusion Reconstruction Network (GDRN), a novel framework designed to capture addiction-related brain connectivity from fMRI data acquired from addicted rats. The proposed GDRN incorporates a diffusion reconstruction module that effectively maintains the unity of data distribution by reconstructing the training samples, thereby enhancing the model's ability to reconstruct nicotine addiction-related brain networks. Experimental evaluations conducted on a nicotine addiction rat dataset demonstrate that the proposed GDRN effectively explores nicotine addiction-related brain connectivity. The findings suggest that the GDRN holds promise for uncovering and understanding the complex neural mechanisms underlying addiction using fMRI data.
Collapse
Affiliation(s)
- Changhong Jing
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hongzhi Kuai
- Faculty of Engineering, Maebashi Institute of Technology, Maebashi, 371-0816, Japan
| | - Hiroki Matsumoto
- Faculty of Engineering, Maebashi Institute of Technology, Maebashi, 371-0816, Japan
| | | | - Iman Yi Liao
- University of Nottingham Malaysia Campus, Semenyih, Malaysia
| | - Shuqiang Wang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| |
Collapse
|
5
|
Lor CS, Zhang M, Karner A, Steyrl D, Sladky R, Scharnowski F, Haugg A. Pre- and post-task resting-state differs in clinical populations. Neuroimage Clin 2023; 37:103345. [PMID: 36780835 PMCID: PMC9925974 DOI: 10.1016/j.nicl.2023.103345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/30/2022] [Accepted: 02/05/2023] [Indexed: 02/09/2023]
Abstract
Resting-state functional connectivity has generated great hopes as a potential brain biomarker for improving prevention, diagnosis, and treatment in psychiatry. This neuroimaging protocol can routinely be performed by patients and does not depend on the specificities of a task. Thus, it seems ideal for big data approaches that require aggregating data across multiple studies and sites. However, technical variability, diverging data analysis approaches, and differences in data acquisition protocols introduce heterogeneity to the aggregated data. Besides these technical aspects, a prior task that changes the psychological state of participants might also contribute to heterogeneity. In healthy participants, studies have shown that behavioral tasks can influence resting-state measures, but such effects have not yet been reported in clinical populations. Here, we fill this knowledge gap by comparing resting-state functional connectivity before and after clinically relevant tasks in two clinical conditions, namely substance use disorders and phobias. The tasks consisted of viewing craving-inducing and spider anxiety provoking pictures that are frequently used in cue-reactivity studies and exposure therapy. We found distinct pre- vs post-task resting-state connectivity differences in each group, as well as decreased thalamo-cortical and increased intra-thalamic connectivity which might be associated with decreased vigilance in both groups. Our results confirm that resting-state measures can be strongly influenced by prior emotion-inducing tasks that need to be taken into account when pooling resting-state scans for clinical biomarker detection. This demands that resting-state datasets should include a complete description of the experimental design, especially when a task preceded data collection.
Collapse
Affiliation(s)
- Cindy Sumaly Lor
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse 31, 8032 Zürich, Switzerland.
| | - Mengfan Zhang
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse 31, 8032 Zürich, Switzerland
| | - Alexander Karner
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse 31, 8032 Zürich, Switzerland
| | - David Steyrl
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse 31, 8032 Zürich, Switzerland
| | - Ronald Sladky
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria
| | - Frank Scharnowski
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Liebiggasse 5, 1010 Vienna, Austria; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Lenggstrasse 31, 8032 Zürich, Switzerland
| | - Amelie Haugg
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry, Neumünsterallee 9, 8032 Zürich, Switzerland
| |
Collapse
|
6
|
Lor CS, Haugg A, Zhang M, Schneider L, Herdener M, Quednow BB, Golestani N, Scharnowski F. Thalamic volume and functional connectivity are associated with nicotine dependence severity and craving. Addict Biol 2023; 28:e13261. [PMID: 36577730 PMCID: PMC10078543 DOI: 10.1111/adb.13261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 12/02/2022]
Abstract
Tobacco smoking is associated with deleterious health outcomes. Most smokers want to quit smoking, yet relapse rates are high. Understanding neural differences associated with tobacco use may help generate novel treatment options. Several animal studies have recently highlighted the central role of the thalamus in substance use disorders, but this research focus has been understudied in human smokers. Here, we investigated associations between structural and functional magnetic resonance imaging measures of the thalamus and its subnuclei to distinct smoking characteristics. We acquired anatomical scans of 32 smokers as well as functional resting-state scans before and after a cue-reactivity task. Thalamic functional connectivity was associated with craving and dependence severity, whereas the volume of the thalamus was associated with dependence severity only. Craving, which fluctuates rapidly, was best characterized by differences in brain function, whereas the rather persistent syndrome of dependence severity was associated with both brain structural differences and function. Our study supports the notion that functional versus structural measures tend to be associated with behavioural measures that evolve at faster versus slower temporal scales, respectively. It confirms the importance of the thalamus to understand mechanisms of addiction and highlights it as a potential target for brain-based interventions to support smoking cessation, such as brain stimulation and neurofeedback.
Collapse
Affiliation(s)
- Cindy Sumaly Lor
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria.,Department of Psychiatry, Psychotherapy and Psychosomatics
- Psychiatric University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | - Amelie Haugg
- Department of Child and Adolescent Psychiatry and Psychotherapy
- Psychiatric University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | - Mengfan Zhang
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria.,Department of Psychiatry, Psychotherapy and Psychosomatics
- Psychiatric University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | - Letitia Schneider
- Division of Psychology and Language Sciences, University College London, London, United Kingdom
| | - Marcus Herdener
- Department of Psychiatry, Psychotherapy and Psychosomatics
- Psychiatric University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | - Boris B Quednow
- Department of Psychiatry, Psychotherapy and Psychosomatics
- Psychiatric University Hospital Zurich, University of Zurich, Zürich, Switzerland
| | - Narly Golestani
- Brain and Language Lab
- Cognitive Science Hub, University of Vienna, Vienna, Austria.,Department of Behavioral and Cognitive Biology, University of Vienna, Vienna, Austria.,Department of Psychology
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Frank Scharnowski
- Department of Cognition, Emotion, and Methods in Psychology, University of Vienna, Vienna, Austria.,Department of Psychiatry, Psychotherapy and Psychosomatics
- Psychiatric University Hospital Zurich, University of Zurich, Zürich, Switzerland
| |
Collapse
|
7
|
TA-GAN: transformer-driven addiction-perception generative adversarial network. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-08187-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|