1
|
Liu R, Rong P, Ma Y, Lv P, Dong N, Chen W, Yang F, Zhao Q, Yang S, Li M, Xin X, Chen J, Zhang X, Han X, Zhang B. Altered structural covariance of the cortex and hippocampal formation in patients with lung cancer after chemotherapy. Heliyon 2024; 10:e40284. [PMID: 39641051 PMCID: PMC11617865 DOI: 10.1016/j.heliyon.2024.e40284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/25/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024] Open
Abstract
Objective In this retrospective study, we aimed to investigate changes in brain morphology and structural topological networks in patients with lung cancer (LC) with or without chemotherapy. Methods We retrospectively recruited 191 participants for this cross-sectional study, including 113 patients with LC without chemotherapy (Ch-), 38 patients with LC with chemotherapy (Ch+), and 40 healthy controls (HC) matched for age, sex, and education. The gray matter volume (GMV) and cortical properties were compared among the three groups. We constructed the structural covariant network (SCN) based on cortical thickness, volumes of subcortical structures, and volumes of hippocampal subfields and the amygdala in all participants. The global and nodal topological properties of SCN were compared among groups. In addition, 23 patients with LC (8 Ch+ and 15 Ch-) who received two identical brain magnetic resonance scans were enrolled in the follow-up study. The paired t-test was used to compare group differences in brain morphology and topological properties in the structural network. Results The GMV of the bilateral caudate and thalamus were smaller in the Ch- and Ch + groups compared to the HC group using threshold-free cluster enhancement and permutation (P < 0.05, 5000 times permutations) for multiple comparison correction. The cortical SCN analysis suggested multiple enhanced nodal properties in several brain areas in Ch+ and Ch-compared to HC, mainly in the temporal gyrus, using permutations test and false discovery rate (FDR) (P < 0.05) corrections. Moreover, an increased sigma was found in the Ch + compared with HC (P = 0.0238). The reduced nodal degree (P = 0.0002) and betweenness (P = 0.0008) in the right amygdala of Ch + compared to HC were detected by subcortical SCN analysis. Furthermore, reduced gamma (P = 0.0342) and sigma (P < 0.0001) were found in Ch-compared with HC in the SCN analysis of subfields of the amygdala-hippocampal complex. In the follow-up study, reduced nodal degree (P < 0.0001) was found in the right anterior amygdala, and reduced clustering coefficient and local efficiency were found in patients with LC after the permutation test. Conclusions Our study showed GMV defects and structural topological property abnormalities related to LC and chemotherapy. Such morphological changes associated with LC and chemotherapy could be used as imaging markers for clinical assessments and pathological indicators.
Collapse
Affiliation(s)
- Renyuan Liu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Ping Rong
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Yiming Ma
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Pin Lv
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Ningyu Dong
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Wenqian Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Fan Yang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Qiuyue Zhao
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Shangwen Yang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Ming Li
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Xiaoyan Xin
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Jiu Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
| | - Xiaowei Han
- Department of Radiology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, China
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, China
- Medical Imaging Center, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, China
| |
Collapse
|
2
|
Cao HL, Meng YJ, Wei W, Li T, Li ML, Guo WJ. Altered individual gray matter structural covariance networks in early abstinence patients with alcohol dependence. Brain Imaging Behav 2024; 18:951-960. [PMID: 38713331 DOI: 10.1007/s11682-024-00888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2024] [Indexed: 05/08/2024]
Abstract
While alterations in cortical thickness have been widely observed in individuals with alcohol dependence, knowledge about cortical thickness-based structural covariance networks is limited. This study aimed to explore the topological disorganization of structural covariance networks based on cortical thickness at the single-subject level among patients with alcohol dependence. Structural imaging data were obtained from 61 patients with alcohol dependence during early abstinence and 59 healthy controls. The single-subject structural covariance networks were constructed based on cortical thickness data from 68 brain regions and were analyzed using graph theory. The relationships between network architecture and clinical characteristics were further investigated using partial correlation analysis. In the structural covariance networks, both patients with alcohol dependence and healthy controls displayed small-world topology. However, compared to controls, alcohol-dependent individuals exhibited significantly altered global network properties characterized by greater normalized shortest path length, greater shortest path length, and lower global efficiency. Patients exhibited lower degree centrality and nodal efficiency, primarily in the right precuneus. Additionally, scores on the Alcohol Use Disorder Identification Test were negatively correlated with the degree centrality and nodal efficiency of the left middle temporal gyrus. The results of this correlation analysis did not survive after multiple comparisons in the exploratory analysis. Our findings may reveal alterations in the topological organization of gray matter networks in alcoholism patients, which may contribute to understanding the mechanisms of alcohol addiction from a network perspective.
Collapse
Affiliation(s)
- Hai-Ling Cao
- Mental Health Center, West China Hospital, Sichuan University, No. 28 Dianxin South Street, Chengdu, Sichuan, 610041, China
| | - Ya-Jing Meng
- Mental Health Center, West China Hospital, Sichuan University, No. 28 Dianxin South Street, Chengdu, Sichuan, 610041, China
| | - Wei Wei
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310063, China
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310063, China
| | - Ming-Li Li
- Mental Health Center, West China Hospital, Sichuan University, No. 28 Dianxin South Street, Chengdu, Sichuan, 610041, China.
| | - Wan-Jun Guo
- Mental Health Center, West China Hospital, Sichuan University, No. 28 Dianxin South Street, Chengdu, Sichuan, 610041, China.
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310063, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou, 311121, China.
| |
Collapse
|
3
|
Karoly HC, Kirk‐Provencher KT, Schacht JP, Gowin JL. Alcohol and brain structure across the lifespan: A systematic review of large-scale neuroimaging studies. Addict Biol 2024; 29:e13439. [PMID: 39317645 PMCID: PMC11421948 DOI: 10.1111/adb.13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/26/2024]
Abstract
Alcohol exposure affects brain structure, but the extent to which its effects differ across development remains unclear. Several countries are considering changes to recommended guidelines for alcohol consumption, so high-quality evidence is needed. Many studies have been conducted among small samples, but recent efforts have been made to acquire large samples to characterize alcohol's effects on the brain on a population level. Several large-scale consortia have acquired such samples, but this evidence has not been synthesized across the lifespan. We conducted a systematic review of large-scale neuroimaging studies examining effects of alcohol exposure on brain structure at multiple developmental stages. We included studies with an alcohol-exposed sample of at least N = 100 from the following consortia: ABCD, ENIGMA, NCANDA, IMAGEN, Framingham Offspring Study, HCP and UK BioBank. Twenty-seven studies were included, examining prenatal (N = 1), adolescent (N = 9), low-to-moderate-level adult (N = 11) and heavy adult (N = 7) exposure. Prenatal exposure was associated with greater brain volume at ages 9-10, but contemporaneous alcohol consumption during adolescence and adulthood was associated with smaller volume/thickness. Both low-to-moderate consumption and heavy consumption were characterized by smaller volume and thickness in frontal, temporal and parietal regions, and reductions in insula, cingulate and subcortical structures. Adolescent consumption had similar effects, with less consistent evidence for smaller cingulate, insula and subcortical volume. In sum, prenatal exposure was associated with larger volume, while adolescent and adult alcohol exposure was associated with smaller volume and thickness, suggesting that regional patterns of effects of alcohol are similar in adolescence and adulthood.
Collapse
Affiliation(s)
- Hollis C. Karoly
- Department of PsychologyColorado State UniversityFort CollinsColoradoUSA
| | - Katelyn T. Kirk‐Provencher
- Department of Radiology, School of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Joseph P. Schacht
- Department of Psychiatry, School of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Joshua L. Gowin
- Department of Radiology, School of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| |
Collapse
|
4
|
Xu CX, Kong L, Jiang H, Jiang Y, Sun YH, Bian LG, Feng Y, Sun QF. Analysis of brain structural covariance network in Cushing disease. Heliyon 2024; 10:e28957. [PMID: 38601682 PMCID: PMC11004566 DOI: 10.1016/j.heliyon.2024.e28957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Cushing disease (CD) is a rare clinical neuroendocrine disease. CD is characterized by abnormal hypercortisolism induced by a pituitary adenoma with the secretion of adrenocorticotropic hormone. Individuals with CD usually exhibit atrophy of gray matter volume. However, little is known about the alterations in topographical organization of individuals with CD. This study aimed to investigate the structural covariance networks of individuals with CD based on the gray matter volume using graph theory analysis. METHODS High-resolution T1-weighted images of 61 individuals with CD and 53 healthy controls were obtained. Gray matter volume was estimated and the structural covariance network was analyzed using graph theory. Network properties such as hubs of all participants were calculated based on degree centrality. RESULTS No significant differences were observed between individuals with CD and healthy controls in terms of age, gender, and education level. The small-world features were conserved in individuals with CD but were higher than those in healthy controls. The individuals with CD showed higher global efficiency and modularity, suggesting higher integration and segregation as compared to healthy controls. The hub nodes of the individuals with CD were Short insular gyri (G_insular_short_L), Anterior part of the cingulate gyrus and sulcus (G_and_S_cingul-Ant_R), and Superior frontal gyrus (G_front_sup_R). CONCLUSIONS Significant differences in the structural covariance network of patients with CD were found based on graph theory. These findings might help understanding the pathogenesis of individuals with CD and provide insight into the pathogenesis of this CD.
Collapse
Affiliation(s)
- Can-Xin Xu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Linghan Kong
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- Department of Radiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Jiang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yue Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, 453100, China
| | - Yu-Hao Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Liu-Guan Bian
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuan Feng
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- Department of Radiology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Engineering Research Center of Advanced Magnetic Resonance Technologies for Diagnosis and Therapy (NERC-AMRT), Shanghai Jiao Tong University, Shanghai, China
| | - Qing-Fang Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
5
|
Xu H, Li J, Huang H, Yin B, Li DD. Abnormal developmental of structural covariance networks in young adults with heavy cannabis use: a 3-year follow-up study. Transl Psychiatry 2024; 14:45. [PMID: 38245512 PMCID: PMC10799944 DOI: 10.1038/s41398-024-02764-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
Heavy cannabis use (HCU) exerts adverse effects on the brain. Structural covariance networks (SCNs) that illustrate coordinated regional maturation patterns are extensively employed to examine abnormalities in brain structure. Nevertheless, the unexplored aspect remains the developmental alterations of SCNs in young adults with HCU for three years, from the baseline (BL) to the 3-year follow-up (FU). These changes demonstrate dynamic development and hold potential as biomarkers. A total of 20 young adults with HCU and 22 matched controls were recruited. All participants underwent magnetic resonance imaging (MRI) scans at both the BL and FU and were evaluated using clinical measures. Both groups used cortical thickness (CT) and cortical surface area (CSA) to construct structural covariance matrices. Subsequently, global and nodal network measures of SCNs were computed based on these matrices. Regarding global network measures, the BL assessment revealed significant deviations in small-worldness and local efficiency of CT and CSA in young adults with HCU compared to controls. However, no significant differences between the two groups were observed at the FU evaluation. Young adults with HCU displayed changes in nodal network measures across various brain regions during the transition from BL to FU. These alterations included abnormal nodal degree, nodal efficiency, and nodal betweenness in widespread areas such as the entorhinal cortex, superior frontal gyrus, and parahippocampal cortex. These findings suggest that the topography of CT and CSA plays a role in the typical structural covariance topology of the brain. Furthermore, these results indicate the effect of HCU on the developmental changes of SCNs in young adults.
Collapse
Affiliation(s)
- Hui Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, 325035, China.
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorder, Wenzhou, 325007, China.
| | - Jiahao Li
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
- Department of Neurology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Huan Huang
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Bo Yin
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Dan-Dong Li
- Department of Neurosurgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
6
|
Ottino-González J, Cupertino RB, Cao Z, Hahn S, Pancholi D, Albaugh MD, Brumback T, Baker FC, Brown SA, Clark DB, de Zambotti M, Goldston DB, Luna B, Nagel BJ, Nooner KB, Pohl KM, Tapert SF, Thompson WK, Jernigan TL, Conrod P, Mackey S, Garavan H. Brain structural covariance network features are robust markers of early heavy alcohol use. Addiction 2024; 119:113-124. [PMID: 37724052 PMCID: PMC10872365 DOI: 10.1111/add.16330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/27/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND AND AIMS Recently, we demonstrated that a distinct pattern of structural covariance networks (SCN) from magnetic resonance imaging (MRI)-derived measurements of brain cortical thickness characterized young adults with alcohol use disorder (AUD) and predicted current and future problematic drinking in adolescents relative to controls. Here, we establish the robustness and value of SCN for identifying heavy alcohol users in three additional independent studies. DESIGN AND SETTING Cross-sectional and longitudinal studies using data from the Pediatric Imaging, Neurocognition and Genetics (PING) study (n = 400, age range = 14-22 years), the National Consortium on Alcohol and Neurodevelopment in Adolescence (NCANDA) (n = 272, age range = 17-22 years) and the Human Connectome Project (HCP) (n = 375, age range = 22-37 years). CASES Cases were defined based on heavy alcohol use patterns or former alcohol use disorder (AUD) diagnoses: 50, 68 and 61 cases were identified. Controls had none or low alcohol use or absence of AUD: 350, 204 and 314 controls were selected. MEASUREMENTS Graph theory metrics of segregation and integration were used to summarize SCN. FINDINGS Mirroring our prior findings, and across the three data sets, cases had a lower clustering coefficient [area under the curve (AUC) = -0.029, P = 0.002], lower modularity (AUC = -0.14, P = 0.004), lower average shortest path length (AUC = -0.078, P = 0.017) and higher global efficiency (AUC = 0.007, P = 0.010). Local efficiency differences were marginal (AUC = -0.017, P = 0.052). That is, cases exhibited lower network segregation and higher integration, suggesting that adjacent nodes (i.e. brain regions) were less similar in thickness whereas spatially distant nodes were more similar. CONCLUSION Structural covariance network (SCN) differences in the brain appear to constitute an early marker of heavy alcohol use in three new data sets and, more generally, demonstrate the utility of SCN-derived metrics to detect brain-related psychopathology.
Collapse
Affiliation(s)
- Jonatan Ottino-González
- Division of Endocrinology, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Renata B. Cupertino
- Department of Genetics, University of California San Diego, San Diego, CA, USA
| | - Zhipeng Cao
- Department of Psychiatry, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Sage Hahn
- Department of Psychiatry, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Devarshi Pancholi
- Department of Psychiatry, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Matthew D. Albaugh
- Department of Psychiatry, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Ty Brumback
- Department of Psychological Science, Northern Kentucky University, Highland Heights, KY, USA
| | - Fiona C. Baker
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
| | - Sandra A. Brown
- Departments of Psychology and Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Duncan B. Clark
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - David B. Goldston
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bonnie J. Nagel
- Departments of Psychiatry and Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, USA
| | - Kate B. Nooner
- Department of Psychology, University of North Carolina Wilmington, Wilmington, NC, USA
| | - Kilian M. Pohl
- Center for Health Sciences, SRI International, Menlo Park, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Susan F. Tapert
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Wesley K. Thompson
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Terry L. Jernigan
- Center for Human Development, University of California, San Diego, CA, USA
| | - Patricia Conrod
- Department of Psychiatry, Université de Montreal, CHU Ste Justine Hospital, Montreal, Québec, Canada
| | - Scott Mackey
- Department of Psychiatry, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Hugh Garavan
- Department of Psychiatry, University of Vermont Larner College of Medicine, Burlington, VT, USA
| |
Collapse
|
7
|
Wang W, Kang Y, Niu X, Zhang Z, Li S, Gao X, Zhang M, Cheng J, Zhang Y. Connectome-based predictive modeling of smoking severity using individualized structural covariance network in smokers. Front Neurosci 2023; 17:1227422. [PMID: 37547147 PMCID: PMC10400777 DOI: 10.3389/fnins.2023.1227422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/04/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Abnormal interactions among distributed brain systems are implicated in the mechanisms of nicotine addiction. However, the relationship between the structural covariance network, a measure of brain connectivity, and smoking severity remains unclear. To fill this gap, this study aimed to investigate the relationship between structural covariance network and smoking severity in smokers. Methods A total of 101 male smokers and 51 male non-smokers were recruited, and they underwent a T1-weighted anatomical image scan. First, an individualized structural covariance network was derived via a jackknife-bias estimation procedure for each participant. Then, a data-driven machine learning method called connectome-based predictive modeling (CPM) was conducted to infer smoking severity measured with Fagerström Test for Nicotine Dependence (FTND) scores using an individualized structural covariance network. The performance of CPM was evaluated using the leave-one-out cross-validation and a permutation testing. Results As a result, CPM identified the smoking severity-related structural covariance network, as indicated by a significant correlation between predicted and actual FTND scores (r = 0.23, permutation p = 0.020). Identified networks comprised of edges mainly located between the subcortical-cerebellum network and networks including the frontoparietal default model and motor and visual networks. Discussion These results identified smoking severity-related structural covariance networks and provided a new insight into the neural underpinnings of smoking severity.
Collapse
|