1
|
Kunej T, Šimon M, Luštrek B, Horvat S, Potočnik K. Examining genotype-phenotype associations of GRAM domain proteins using GWAS, PheWAS and literature review in cattle, human, pig, mouse and chicken. Sci Rep 2024; 14:28889. [PMID: 39572677 PMCID: PMC11582632 DOI: 10.1038/s41598-024-80117-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 11/14/2024] [Indexed: 11/24/2024] Open
Abstract
The GRAMD genes are involved in maintaining cholesterol homeostasis, apoptosis, cancer and production traits in livestock. A lipid-binding GRAM domain is implicated in lipid transport and metabolism. The functions of GRAMD proteins remain incompletely understood. The aim of the present study was therefore to investigate the associations between six GRAMD genes in cattle using data from the international genomic evaluation of the Interbull InterGenomics Centre and to evaluate genotype-phenotype associations in human, cattle, pig, mouse and, chicken. Genotyping of 55,013 bulls was performed using DNA microarrays and 11 SNPs were mapped to the five GRAMD genes. A phenome-wide association study (PheWAS) tested associations between the 11 SNPs and 36 traits. The integrated analysis of SNP effects, rankings, and clustering patterns revealed their potential for improving cattle productivity, health, and robustness, and established a baseline for the targeted improvement of cattle traits. This study lays the groundwork for functional experiments aimed at uncovering the mechanism of action of GRAMD genes and to evaluate the potential of using GRAMD sequence variants for selection programs in dairy cattle. The study presents an example of how the combination of GWAS and the PheWAS offers a promising toolbox for the systematic functional annotation of vertebrate genomes.
Collapse
Affiliation(s)
- Tanja Kunej
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, Domžale, SI-1230, Slovenia.
| | - Martin Šimon
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, Domžale, SI-1230, Slovenia
| | - Barbara Luštrek
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, Domžale, SI-1230, Slovenia
| | - Simon Horvat
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, Domžale, SI-1230, Slovenia
| | - Klemen Potočnik
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, Domžale, SI-1230, Slovenia.
| |
Collapse
|
2
|
Atashi H, Chen Y, Wilmot H, Vanderick S, Hubin X, Soyeurt H, Gengler N. Single-step genome-wide association for selected milk fatty acids in Dual-Purpose Belgian Blue cows. J Dairy Sci 2023; 106:6299-6315. [PMID: 37479585 DOI: 10.3168/jds.2022-22432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 03/17/2023] [Indexed: 07/23/2023]
Abstract
The aim of this study was to estimate genetic parameters and identify genomic regions associated with selected individual and groups of milk fatty acids (FA) predicted by milk mid-infrared spectrometry in Dual-Purpose Belgian Blue cows. The used data were 69,349 test-day records of milk yield, fat percentage, and protein percentage along with selected individual and groups FA of milk (g/dL milk) collected from 2007 to 2020 on 7,392 first-parity (40,903 test-day records), and 5,185 second-parity (28,446 test-day records) cows distributed in 104 herds in the Walloon Region of Belgium. Data of 28,466 SNPs, located on 29 Bos taurus autosomes (BTA), of 1,699 animals (639 males and 1,060 females) were used. Random regression test-day models were used to estimate genetic parameters through the Bayesian Gibbs sampling method. The SNP solutions were estimated using a single-step genomic best linear unbiased prediction approach. The proportion of genetic variance explained by each 25-SNP sliding window (with an average size of ~2 Mb) was calculated, and regions accounting for at least 1.0% of the total additive genetic variance were used to search for candidate genes. Average daily heritability estimated for the included milk FA traits ranged from 0.01 (C4:0) to 0.48 (C12:0) and 0.01 (C4:0) to 0.42 (C12:0) in the first and second parities, respectively. Genetic correlations found between milk yield and the studied individual milk FA, except for C18:0, C18:1 trans, C18:1 cis-9, were positive. The results showed that fat percentage and protein percentage were positively genetically correlated with all studied individual milk FA. Genome-wide association analyses identified 11 genomic regions distributed over 8 chromosomes [BTA1, BTA4, BTA10, BTA14 (4 regions), BTA19, BTA22, BTA24, and BTA26] associated with the studied FA traits, though those found on BTA14 partly overlapped. The genomic regions identified differed between parities and lactation stages. Although these differences in genomic regions detected may be due to the power of quantitative trait locus detection, it also suggests that candidate genes underlie the phenotypic expression of the studied traits may vary between parities and lactation stages. These findings increase our understanding about the genetic background of milk FA and can be used for the future implementation of genomic evaluation to improve milk FA profile in Dual-Purpose Belgian Blue cows.
Collapse
Affiliation(s)
- H Atashi
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; Department of Animal Science, Shiraz University, 71441-13131 Shiraz, Iran.
| | - Y Chen
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - H Wilmot
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; National Fund for Scientific Research (F.R.S.-FNRS), 1000 Brussels, Belgium
| | - S Vanderick
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - X Hubin
- Elevéo asbl Awé Group, 5590 Ciney, Belgium
| | - H Soyeurt
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - N Gengler
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| |
Collapse
|
3
|
Falchi L, Cesarani A, Mastrangelo S, Senczuk G, Portolano B, Pilla F, Macciotta NPP. Analysis of runs of homozygosity of cattle living in different climate zones. J Anim Sci 2023; 101:skad061. [PMID: 36802370 PMCID: PMC10066727 DOI: 10.1093/jas/skad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Aim of this study was to analyze the distribution and characteristics of runs of homozygosity in Bos taurus taurus and Bos taurus indicus breeds, as well as their crosses, farmed all around the world. With this aim in view, we used single-nucleotide polymorphisms (SNP) genotypes for 3,263 cattle belonging to 204 different breeds. After quality control, 23,311 SNPs were retained for the analysis. Animals were divided into seven different groups: 1) continental taurus, 2) temperate taurus, 3) temperate indicus, 4) temperate composite, 5) tropical taurus, 6) tropical indicus, and 7) tropical composite. The climatic zones were created according to the latitude of the breeds' country of origin: i) continental, latitude ≥ 45°; ii) temperate, 45°< Latitude >23.26°; iii) tropics, latitude ≤ 23.26°. Runs of homozygosity were computed as 15 SNPs spanning in at least 2 Mb; number of ROH per animal (nROH), average ROH length (meanMb), and ROH-based inbreeding coefficients (FROH) were also computed. Temperate indicus showed the largest nROH, whereas Temperate taurus the lowest value. Moreover, the largest meanMb was observed for Temperate taurus, whereas the lowest value for Tropics indicus. Temperate indicus breeds showed the largest FROH values. Genes mapped in the identified ROH were reported to be associated with the environmental adaptation, disease resistance, coat color determinism, and production traits. Results of the present study confirmed that runs of homozygosity could be used to identify genomic signatures due to both artificial and natural selection.
Collapse
Affiliation(s)
- Laura Falchi
- Dipartimento di Agraria, University of Sassari, 07100 Sassari, Italy
| | - Alberto Cesarani
- Dipartimento di Agraria, University of Sassari, 07100 Sassari, Italy
- Department of Animal and Dairy Science, University of Georgia, 30602 Athens, USA
| | - Salvatore Mastrangelo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - Gabriele Senczuk
- Dipartimento di Agricoltura, Ambiente e Alimenti, University of Molise, 86100 Campobasso, Italy
| | - Baldassare Portolano
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - Fabio Pilla
- Dipartimento di Agricoltura, Ambiente e Alimenti, University of Molise, 86100 Campobasso, Italy
| | | |
Collapse
|
4
|
Narayana SG, de Jong E, Schenkel FS, Fonseca PA, Chud TC, Powel D, Wachoski-Dark G, Ronksley PE, Miglior F, Orsel K, Barkema HW. Underlying genetic architecture of resistance to mastitis in dairy cattle: A systematic review and gene prioritization analysis of genome-wide association studies. J Dairy Sci 2022; 106:323-351. [DOI: 10.3168/jds.2022-21923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/01/2022] [Indexed: 11/05/2022]
|
5
|
Deng TX, Ma XY, Lu XR, Duan AQ, Shokrollahi B, Shang JH. Signatures of selection reveal candidate genes involved in production traits in Chinese crossbred buffaloes. J Dairy Sci 2021; 105:1327-1337. [PMID: 34955275 DOI: 10.3168/jds.2021-21102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022]
Abstract
Identification of selection signature is important for a better understanding of genetic mechanisms that affect phenotypic differentiation in livestock. However, the genome-wide selection responses have not been investigated for the production traits of Chinese crossbred buffaloes. In this study, an SNP data set of 133 buffaloes (Chinese crossbred buffalo, n = 45; Chinese local swamp buffalo, n = 88) was collected from the Dryad Digital Repository database (https://datadryad.org/stash/). Population genetics analysis showed that these buffaloes were divided into the following 2 groups: crossbred buffalo and swamp buffalo. The crossbred group had higher genetic diversity than the swamp group. Using 3 complementary statistical methods (integrated haplotype score, cross population extended haplotype homozygosity, and composite likelihood ratio), a total of 31 candidate selection regions were identified in the Chinese crossbred population. Here, within these candidate regions, 25 genes were under the putative selection. Among them, several candidate genes were reported to be associated with production traits. In addition, we identified 13 selection regions that overlapped with bovine QTLs that were mainly involved in milk production and composition traits. These results can provide useful insights regarding the selection response for production traits of Chinese crossbred buffalo, as identified candidate genes influence production performance.
Collapse
Affiliation(s)
- T X Deng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China.
| | - X Y Ma
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - X R Lu
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - A Q Duan
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China
| | - Borhan Shokrollahi
- Department of Animal Science, Faculty of Agriculture, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran 5595-73919
| | - J H Shang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning 530001, China.
| |
Collapse
|
6
|
Bayesian modeling reveals host genetics associated with rumen microbiota jointly influence methane emission in dairy cows. ISME JOURNAL 2020; 14:2019-2033. [PMID: 32366970 PMCID: PMC7368015 DOI: 10.1038/s41396-020-0663-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 03/25/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Reducing methane emissions from livestock production is of great importance for the sustainable management of the Earth’s environment. Rumen microbiota play an important role in producing biogenic methane. However, knowledge of how host genetics influences variation in ruminal microbiota and their joint effects on methane emission is limited. We analyzed data from 750 dairy cows, using a Bayesian model to simultaneously assess the impact of host genetics and microbiota on host methane emission. We estimated that host genetics and microbiota explained 24% and 7%, respectively, of variation in host methane levels. In this Bayesian model, one bacterial genus explained up to 1.6% of the total microbiota variance. Further analysis was performed by a mixed linear model to estimate variance explained by host genomics in abundances of microbial genera and operational taxonomic units (OTU). Highest estimates were observed for a bacterial OTU with 33%, for an archaeal OTU with 26%, and for a microbial genus with 41% heritability. However, after multiple testing correction for the number of genera and OTUs modeled, none of the effects remained significant. We also used a mixed linear model to test effects of individual host genetic markers on microbial genera and OTUs. In this analysis, genetic markers inside host genes ABS4 and DNAJC10 were found associated with microbiota composition. We show that a Bayesian model can be utilized to model complex structure and relationship between microbiota simultaneously and their interaction with host genetics on methane emission. The host genome explains a significant fraction of between-individual variation in microbial abundance. Individual microbial taxonomic groups each only explain a small amount of variation in methane emissions. The identification of genes and genetic markers suggests that it is possible to design strategies for breeding cows with desired microbiota composition associated with phenotypes.
Collapse
|
7
|
Alexandre PA, Porto-Neto LR, Karaman E, Lehnert SA, Reverter A. Pooled genotyping strategies for the rapid construction of genomic reference populations1. J Anim Sci 2019; 97:4761-4769. [PMID: 31710679 PMCID: PMC6915231 DOI: 10.1093/jas/skz344] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/06/2019] [Indexed: 01/24/2023] Open
Abstract
The growing concern with the environment is making important for livestock producers to focus on selection for efficiency-related traits, which is a challenge for commercial cattle herds due to the lack of pedigree information. To explore a cost-effective opportunity for genomic evaluations of commercial herds, this study compared the accuracy of bulls' genomic estimated breeding values (GEBV) using different pooled genotype strategies. We used ten replicates of previously simulated genomic and phenotypic data for one low (t1) and one moderate (t2) heritability trait of 200 sires and 2,200 progeny. Sire's GEBV were calculated using a univariate mixed model, with a hybrid genomic relationship matrix (h-GRM) relating sires to: 1) 1,100 pools of 2 animals; 2) 440 pools of 5 animals; 3) 220 pools of 10 animals; 4) 110 pools of 20 animals; 5) 88 pools of 25 animals; 6) 44 pools of 50 animals; and 7) 22 pools of 100 animals. Pooling criteria were: at random, grouped sorting by t1, grouped sorting by t2, and grouped sorting by a combination of t1 and t2. The same criteria were used to select 110, 220, 440, and 1,100 individual genotypes for GEBV calculation to compare GEBV accuracy using the same number of individual genotypes and pools. Although the best accuracy was achieved for a given trait when pools were grouped based on that same trait (t1: 0.50-0.56, t2: 0.66-0.77), pooling by one trait impacted negatively on the accuracy of GEBV for the other trait (t1: 0.25-0.46, t2: 0.29-0.71). Therefore, the combined measure may be a feasible alternative to use the same pools to calculate GEBVs for both traits (t1: 0.45-0.57, t2: 0.62-0.76). Pools of 10 individuals were identified as representing a good compromise between loss of accuracy (~10%-15%) and cost savings (~90%) from genotype assays. In addition, we demonstrated that in more than 90% of the simulations, pools present higher sires' GEBV accuracy than individual genotypes when the number of genotype assays is limited (i.e., 110 or 220) and animals are assigned to pools based on phenotype. Pools assigned at random presented the poorest results (t1: 0.07-0.45, t2: 0.14-0.70). In conclusion, pooling by phenotype is the best approach to implementing genomic evaluation using commercial herd data, particularly when pools of 10 individuals are evaluated. While combining phenotypes seems a promising strategy to allow more flexibility to the estimates made using pools, more studies are necessary in this regard.
Collapse
Affiliation(s)
- Pâmela A Alexandre
- Agriculture & Food, Commonwealth Scientific and Industrial Research Organization, Brisbane, QLD, Australia
| | - Laercio R Porto-Neto
- Agriculture & Food, Commonwealth Scientific and Industrial Research Organization, Brisbane, QLD, Australia
| | - Emre Karaman
- Center for Quantitative Genetics and Genomics, Aarhus University, Tjele, Denmark
| | - Sigrid A Lehnert
- Agriculture & Food, Commonwealth Scientific and Industrial Research Organization, Brisbane, QLD, Australia
| | - Antonio Reverter
- Agriculture & Food, Commonwealth Scientific and Industrial Research Organization, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Kirsanova E, Heringstad B, Lewandowska-Sabat A, Olsaker I. Identification of candidate genes affecting chronic subclinical mastitis in Norwegian Red cattle: combining genome-wide association study, topologically associated domains and pathway enrichment analysis. Anim Genet 2019; 51:22-31. [PMID: 31808564 DOI: 10.1111/age.12886] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2019] [Indexed: 12/19/2022]
Abstract
The aim of this study was to identify genes associated with chronic subclinical mastitis (SCM) in Norwegian Red (NR) cattle. Twelve SCM traits defined based on fixed threshold for test-day somatic cell count (SCC) were, together with lactation-average somatic cell score (LSCS) used for association and pathway enrichment analyses. A GWAS was performed on 3795 genotyped NR bulls with 777K SNP data and phenotypic information from 7 300 847 test-day SCC observations from 3 543 764 cows. At 5% chromosome-wide significance level 36 unique SNP were detected to be associated with one or more of the traits. These SNPs were analysed for linked genes using genomic positions of topologically associated domains (TAD). For the SCM traits with SCC >50 000 and >100 000 cells/ml on two test-days in a row and LSCS, the same top significant genes were identified - checkpoint clamp loader component (RAD17) and cyclin B1 (CCNB1). The SCM traits with SCC >250 000, 300 000, 350 000 or 400 000 cells/ml on two test-days in a row and D400 (number of days before the first case with SCC >400 000 cells/ml) displayed similar top significant genes: acyl-CoA thioesterase 2 and 4 (ACOT2; ACOT4). For the traits SCM200_3 (SCC >200 000 cells/ml on three test-days in a row) and SCM150, SCM200 (SCC >150 000; 200 000 cells/ml on two test-days in a row) a group of chemokine (C-X-C motif) ligand genes and the Fos proto-oncogene, AP-1 transcription factor subunit (FOS) gene, were identified. Further functional studies of these identified candidate genes are necessary to clarify their actual role in development of chronic SCM in NR cattle.
Collapse
Affiliation(s)
- E Kirsanova
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - B Heringstad
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Oslo, Norway.,Geno Breeding and A.I. Association, Hamar, Norway
| | - A Lewandowska-Sabat
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - I Olsaker
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
9
|
González-Ruiz S, Strillacci MG, Durán-Aguilar M, Cantó-Alarcón GJ, Herrera-Rodríguez SE, Bagnato A, Guzmán LF, Milián-Suazo F, Román-Ponce SI. Genome-Wide Association Study in Mexican Holstein Cattle Reveals Novel Quantitative Trait Loci Regions and Confirms Mapped Loci for Resistance to Bovine Tuberculosis. Animals (Basel) 2019; 9:E636. [PMID: 31480266 PMCID: PMC6769677 DOI: 10.3390/ani9090636] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 12/26/2022] Open
Abstract
Bovine tuberculosis (bTB) is a disease of cattle that represents a risk to public health and causes severe economic losses to the livestock industry. Recently, genetic studies, like genome-wide association studies (GWAS) have greatly improved the investigation of complex diseases identifying thousands of disease-associated genomic variants. Here, we present evidence of genetic variants associated with resistance to TB in Mexican dairy cattle using a case-control approach with a selective DNA pooling experimental design. A total of 154 QTLRs (quantitative trait loci regions) at 10% PFP (proportion of false positives), 42 at 5% PFP and 5 at 1% PFP have been identified, which harbored 172 annotated genes. On BTA13, five new QTLRs were identified in the MACROD2 and KIF16B genes, supporting their involvement in resistance to bTB. Six QTLRs harbor seven annotated genes that have been previously reported as involved in immune response against Mycobacterium spp: BTA (Bos taurus autosome) 1 (CD80), BTA3 (CTSS), BTA 3 (FCGR1A), BTA 23 (HFE), BTA 25 (IL21R), and BTA 29 (ANO9 and SIGIRR). We identified novel QTLRs harboring genes involved in Mycobacterium spp. immune response. This is a first screening for resistance to TB infection on Mexican dairy cattle based on a dense SNP (Single Nucleotide Polymorphism) chip.
Collapse
Affiliation(s)
- Sara González-Ruiz
- Doctorado en Ciencias Biológicas, Universidad Autónoma de Querétaro, Avenida de las Ciencias S/N Juriquilla, Delegación Santa Rosa Jáuregui, Querétaro C.P. 76230, Mexico
| | - Maria G Strillacci
- Department of Veterinary Medicine, Università degli Studi di Milano, Via Trentacoste, 2, 20134 Milano, Italy.
| | - Marina Durán-Aguilar
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias S/N Juriquilla, Delegación Santa Rosa Jáuregui, Querétaro C.P. 76230, Mexico
| | - Germinal J Cantó-Alarcón
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias S/N Juriquilla, Delegación Santa Rosa Jáuregui, Querétaro C.P. 76230, Mexico
| | - Sara E Herrera-Rodríguez
- Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Guadalajara C.P. 44270, Mexico
| | - Alessandro Bagnato
- Department of Veterinary Medicine, Università degli Studi di Milano, Via Trentacoste, 2, 20134 Milano, Italy
| | - Luis F Guzmán
- Centro Nacional de Recursos Genéticos, INIFAP, Tepatitlán de Morelos 47600, Mexico
| | - Feliciano Milián-Suazo
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Avenida de las Ciencias S/N Juriquilla, Delegación Santa Rosa Jáuregui, Querétaro C.P. 76230, Mexico
| | - Sergio I Román-Ponce
- Centro Nacional de Investigación Disciplinaria en Fisiología y Mejoramiento animal, INIFAP, SAGARPA, Km. 1 Carretera a Colón, Ajuchitlán, Colón, Querétaro C.P. 76280, Mexico.
| |
Collapse
|
10
|
Gebreyesus G, Buitenhuis AJ, Poulsen NA, Visker MHPW, Zhang Q, van Valenberg HJF, Sun D, Bovenhuis H. Multi-population GWAS and enrichment analyses reveal novel genomic regions and promising candidate genes underlying bovine milk fatty acid composition. BMC Genomics 2019; 20:178. [PMID: 30841852 PMCID: PMC6404302 DOI: 10.1186/s12864-019-5573-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 02/28/2019] [Indexed: 01/23/2023] Open
Abstract
Background The power of genome-wide association studies (GWAS) is often limited by the sample size available for the analysis. Milk fatty acid (FA) traits are scarcely recorded due to expensive and time-consuming analytical techniques. Combining multi-population datasets can enhance the power of GWAS enabling detection of genomic region explaining medium to low proportions of the genetic variation. GWAS often detect broader genomic regions containing several positional candidate genes making it difficult to untangle the causative candidates. Post-GWAS analyses with data on pathways, ontology and tissue-specific gene expression status might allow prioritization among positional candidate genes. Results Multi-population GWAS for 16 FA traits quantified using gas chromatography (GC) in sample populations of the Chinese, Danish and Dutch Holstein with high-density (HD) genotypes detects 56 genomic regions significantly associated to at least one of the studied FAs; some of which have not been previously reported. Pathways and gene ontology (GO) analyses suggest promising candidate genes on the novel regions including OSBPL6 and AGPS on Bos taurus autosome (BTA) 2, PRLH on BTA 3, SLC51B on BTA 10, ABCG5/8 on BTA 11 and ALG5 on BTA 12. Novel genes in previously known regions, such as FABP4 on BTA 14, APOA1/5/7 on BTA 15 and MGST2 on BTA 17, are also linked to important FA metabolic processes. Conclusion Integration of multi-population GWAS and enrichment analyses enabled detection of several novel genomic regions, explaining relatively smaller fractions of the genetic variation, and revealed highly likely candidate genes underlying the effects. Detection of such regions and candidate genes will be crucial in understanding the complex genetic control of FA metabolism. The findings can also be used to augment genomic prediction models with regions collectively capturing most of the genetic variation in the milk FA traits. Electronic supplementary material The online version of this article (10.1186/s12864-019-5573-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- G Gebreyesus
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830, Tjele, Denmark. .,Animal Breeding and Genomics, Wageningen University and Research, P.O. Box 338, 6700 AH, Wageningen, the Netherlands.
| | - A J Buitenhuis
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830, Tjele, Denmark
| | - N A Poulsen
- Department of Food Science, Aarhus University, Blichers Allé 20, P.O. Box 50, DK-8830, Tjele, Denmark
| | - M H P W Visker
- Animal Breeding and Genomics, Wageningen University and Research, P.O. Box 338, 6700 AH, Wageningen, the Netherlands
| | - Q Zhang
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - H J F van Valenberg
- Dairy Science and Technology Group, Wageningen University and Research, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - D Sun
- Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - H Bovenhuis
- Animal Breeding and Genomics, Wageningen University and Research, P.O. Box 338, 6700 AH, Wageningen, the Netherlands
| |
Collapse
|
11
|
SNP co-association and network analyses identify E2F3, KDM5A and BACH2 as key regulators of the bovine milk fatty acid profile. Sci Rep 2017; 7:17317. [PMID: 29230020 PMCID: PMC5725496 DOI: 10.1038/s41598-017-17434-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 11/27/2017] [Indexed: 12/19/2022] Open
Abstract
The fatty acid (FA) profile has a considerable impact on the nutritional and technological quality of milk and dairy products. The molecular mechanism underlying the regulation of fat metabolism in bovine mammary gland have been not completely elucidated. We conducted genome-wide association studies (GWAS) across 65 milk FAs and fat percentage in 1,152 Brown Swiss cows. In total, we identified 175 significant single nucleotide polymorphism (SNPs) spanning all chromosomes. Pathway analyses revealed that 12:0 was associated with the greatest number of overrepresented categories/pathways (e.g. mitogen-activated protein kinase (MAPK) activity and protein phosphorylation), suggesting that it might play an important biological role in controlling milk fat composition. An Associated Weight Matrix approach based on SNP co-associations predicted a network of 791 genes related to the milk FA profile, which were involved in several connected molecular pathways (e.g., MAPK, lipid metabolism and hormone signalling) and undetectable through standard GWAS. Analysis of transcription factors and their putative target genes within the network identified BACH2, E2F3 and KDM5A as key regulators of milk FA metabolism. These findings contribute to increasing knowledge of FA metabolism and mammary gland functionality in dairy cows and may be useful in developing targeted breeding practices to improve milk quality.
Collapse
|
12
|
Peletto S, Strillacci M, Capucchio M, Biasibetti E, Modesto P, Acutis P, Bagnato A. Genetic basis of Lipomatous Myopathy in Piedmontese beef cattle. Livest Sci 2017. [DOI: 10.1016/j.livsci.2017.09.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
13
|
Durán Aguilar M, Román Ponce SI, Ruiz López FJ, González Padilla E, Vásquez Peláez CG, Bagnato A, Strillacci MG. Genome-wide association study for milk somatic cell score in holstein cattle using copy number variation as markers. J Anim Breed Genet 2016; 134:49-59. [PMID: 27578198 DOI: 10.1111/jbg.12238] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 08/03/2016] [Indexed: 12/21/2022]
Abstract
Mastitis, the most common and expensive disease in dairy cows, implies significant losses in the dairy industry worldwide. Many efforts have been made to improve genetic mastitis resistance in dairy populations, but low heritability of this trait made this process not as effective as desired. The purpose of this study was to identify genomic regions explaining genetic variation of somatic cell count using copy number variations (CNVs) as markers in the Holstein population, genotyped with the Illumina BovineHD BeadChip. We found 24 and 47 copy number variation regions significantly associated with estimated breeding values for somatic cell score (SCS_EBVs) using SVS 8.3.1 and PennCNV-CNVRuler software, respectively. The association analysis performed with these two software allowed the identification of 18 candidate genes (TERT, NOTCH1, SLC6A3, CLPTM1L, PPARα, BCL-2, ABO, VAV2, CACNA1S, TRAF2, RELA, ELF3, DBH, CDK5, NF2, FASN, EWSR1 and MAP3K11) that result classified in the same functional cluster. These genes are also part of two gene networks, whose genes share the 'stress', 'cell death', 'inflammation' and 'immune response' GO terms. Combining CNV detection/association analysis based on two different algorithms helps towards a more complete identification of genes linked to phenotypic variation of the somatic cell count.
Collapse
Affiliation(s)
- M Durán Aguilar
- Facultad de Estudios Superiores Cuautitlán, UNAM, Cuautitlán Izcalli, México
| | - S I Román Ponce
- Centro Nacional de Investigación en Fisiología y Mejoramiento Animal, INIFAP, Auchitlán, Querétaro, México
| | - F J Ruiz López
- Centro Nacional de Investigación en Fisiología y Mejoramiento Animal, INIFAP, Auchitlán, Querétaro, México
| | - E González Padilla
- Departamento de Genética y Bioestadística, Facultad Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México DF, México
| | - C G Vásquez Peláez
- Departamento de Genética y Bioestadística, Facultad Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, México DF, México
| | - A Bagnato
- Department of Veterinary Medicine (DiMeVet), University of Milan, Milan, Italy
| | - M G Strillacci
- Department of Veterinary Medicine (DiMeVet), University of Milan, Milan, Italy
| |
Collapse
|
14
|
High density genome wide genotyping-by-sequencing and association identifies common and low frequency SNPs, and novel candidate genes influencing cow milk traits. Sci Rep 2016; 6:31109. [PMID: 27506634 PMCID: PMC4979022 DOI: 10.1038/srep31109] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/14/2016] [Indexed: 11/17/2022] Open
Abstract
High-throughput sequencing technologies have increased the ability to detect sequence variations for complex trait improvement. A high throughput genome wide genotyping-by-sequencing (GBS) method was used to generate 515,787 single nucleotide polymorphisms (SNPs), from which 76,355 SNPs with call rates >85% and minor allele frequency ≥1.5% were used in genome wide association study (GWAS) of 44 milk traits in 1,246 Canadian Holstein cows. GWAS was accomplished with a mixed linear model procedure implementing the additive and dominant models. A strong signal within the centromeric region of bovine chromosome 14 was associated with test day fat percentage. Several SNPs were associated with eicosapentaenoic acid, docosapentaenoic acid, arachidonic acid, CLA:9c11t and gamma linolenic acid. Most of the significant SNPs for 44 traits studied are novel and located in intergenic regions or introns of genes. Novel potential candidate genes for milk traits or mammary gland functions include ERCC6, TONSL, NPAS2, ACER3, ITGB4, GGT6, ACOX3, MECR, ADAM12, ACHE, LRRC14, FUK, NPRL3, EVL, SLCO3A1, PSMA4, FTO, ADCK5, PP1R16A and TEP1. Our study further demonstrates the utility of the GBS approach for identifying population-specific SNPs for use in improvement of complex dairy traits.
Collapse
|
15
|
Pegolo S, Cecchinato A, Mele M, Conte G, Schiavon S, Bittante G. Effects of candidate gene polymorphisms on the detailed fatty acids profile determined by gas chromatography in bovine milk. J Dairy Sci 2016; 99:4558-4573. [DOI: 10.3168/jds.2015-10420] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 02/10/2016] [Indexed: 11/19/2022]
|
16
|
Bagnato A, Strillacci MG, Pellegrino L, Schiavini F, Frigo E, Rossoni A, Fontanesi L, Maltecca C, Prinsen RT, Dolezal MA. Identification and Validation of Copy Number Variants in Italian Brown Swiss Dairy Cattle Using Illumina Bovine SNP50 Beadchip®. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2015.3900] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Alessandro Bagnato
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, University of Milan, Italy
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Italy
| | - Maria G. Strillacci
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, University of Milan, Italy
| | - Laura Pellegrino
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, University of Milan, Italy
| | - Fausta Schiavini
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, University of Milan, Italy
| | - Erika Frigo
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, University of Milan, Italy
| | - Attilio Rossoni
- Associazione Nazionale Allevatori Razza Bruna, Bussolengo (VR), Italy
| | - Luca Fontanesi
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Italy
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, USA
| | - Raphaelle T.M.M. Prinsen
- Dipartimento di Scienze Veterinarie per la Salute, la Produzione Animale e la Sicurezza Alimentare, University of Milan, Italy
| | - Marlies A. Dolezal
- Institut für Populationsgenetik Veterinärmedizinische, University of Wien, Austria
| |
Collapse
|
17
|
Strillacci MG, Frigo E, Schiavini F, Samoré AB, Canavesi F, Vevey M, Cozzi MC, Soller M, Lipkin E, Bagnato A. Genome-wide association study for somatic cell score in Valdostana Red Pied cattle breed using pooled DNA. BMC Genet 2014; 15:106. [PMID: 25288516 PMCID: PMC4198737 DOI: 10.1186/s12863-014-0106-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 09/25/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Mastitis is a major disease of dairy cattle occurring in response to environmental exposure to infective agents with a great economic impact on dairy industry. Somatic cell count (SCC) and its log transformation in somatic cell score (SCS) are traits that have been used as indirect measures of resistance to mastitis for decades in selective breeding. A selective DNA pooling (SDP) approach was applied to identify Quantitative Trait Loci (QTL) for SCS in Valdostana Red Pied cattle using the Illumina Bovine HD BeadChip. RESULTS A total of 171 SNPs reached the genome-wide significance for association with SCS. Fifty-two SNPs were annotated within genes, some of those involved in the immune response to mastitis. On BTAs 1, 2, 3, 4, 9, 13, 15, 17, 21 and 22 the largest number of markers in association to the trait was found. These regions identified novel genomic regions related to mastitis (1-Mb SNP windows) and confirmed those already mapped. The largest number of significant SNPs exceeding the threshold for genome-wide significant signal was found on BTA 15, located at 50.43-51.63 Mb. CONCLUSIONS The genomic regions identified in this study contribute to a better understanding of the genetic control of the mastitis immune response in cattle and may allow the inclusion of more detailed QTL information in selection programs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Alessandro Bagnato
- Department of Health, Animal Science and Food Safety (VESPA), University of Milan, Via Celoria 10, Milan, 20133, Italy.
| |
Collapse
|