1
|
Bongers R, Rochus CM, Houlahan K, Lynch C, Oliveira GA, Rojas de Oliveira H, van Staaveren N, Kelton DF, Miglior F, Schenkel FS, Baes CF. Estimation of genetic parameters and genome-wide association study for enzootic bovine leukosis resistance in Canadian Holstein cattle. J Dairy Sci 2025; 108:611-622. [PMID: 39343214 DOI: 10.3168/jds.2024-25196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/12/2024] [Indexed: 10/01/2024]
Abstract
Bovine leukemia virus (BLV) is the causative agent of enzootic bovine leukosis (hereafter referred to as leukosis), frequently observed in North American dairy herds. Infection with BLV can lead to persistent lymphocytosis and tumors and is associated with decreased production, immunity. and fertility. With no available treatment or vaccine, reducing the prevalence of leukosis through management and culling has not yet been successful. Genetic selection could contribute to permanent improvement in dairy cattle resistance to leukosis. This study aimed to examine the prevalence and impact of leukosis in Canada and to assess the potential for including leukosis resistance in Canadian national genetic evaluations by characterizing the genetic architecture of leukosis resistance using pedigree and genomic information. A total of 117,349 milk ELISA test records on 96,779 Holstein cows from 950 Canadian herds taken between 2007 and 2021 were provided by Lactanet Canada (Guelph, ON, Canada). Each cow was classified as test-positive for leukosis or test-negative for leukosis. Leukosis was present in ∼77% of herds tested; within those herds, an average of 39% of cows tested were test-positive for leukosis. Heritabilities of 0.10 (SE = 0.001) and 0.07 (SE <0.001) were estimated for leukosis resistance using a linear animal model and BLUP or single-step GBLUP methodology, respectively. Breeding value correlations were estimated between leukosis resistance and economically important and phenotypically relevant traits. Most correlations between leukosis resistance and traits already included in Canadian genetic evaluations were favorable, with the exception of SCS. The candidate genes for leukosis resistance identified using a genome-wide association study were on chromosome 23, with some being part of the major histocompatibility complex. This study showed that genetic evaluation for leukosis resistance is possible, and could be considered for inclusion in Canadian national selection indices.
Collapse
Affiliation(s)
- Renee Bongers
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Christina M Rochus
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Kerry Houlahan
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Colin Lynch
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Gerson A Oliveira
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Hinayah Rojas de Oliveira
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Nienke van Staaveren
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - David F Kelton
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Filippo Miglior
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada; Lactanet Canada, Guelph, ON N1K 1E5, Canada
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Christine F Baes
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada; Institute of Genetics, Department of Clinical Research and Veterinary Public Health, University of Bern, Bern 3001, Switzerland.
| |
Collapse
|
2
|
Rajawat D, Ghildiyal K, Sonejita Nayak S, Sharma A, Parida S, Kumar S, Ghosh AK, Singh U, Sivalingam J, Bhushan B, Dutt T, Panigrahi M. Genome-wide mining of diversity and evolutionary signatures revealed selective hotspots in Indian Sahiwal cattle. Gene 2024; 901:148178. [PMID: 38242377 DOI: 10.1016/j.gene.2024.148178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/10/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
The Sahiwal cattle breed is the best indigenous dairy cattle breed, and it plays a pivotal role in the Indian dairy industry. This is due to its exceptional milk-producing potential, adaptability to local tropical conditions, and its resilience to ticks and diseases. The study aimed to identify selective sweeps and estimate intrapopulation genetic diversity parameters in Sahiwal cattle using ddRAD sequencing-based genotyping data from 82 individuals. After applying filtering criteria, 78,193 high-quality SNPs remained for further analysis. The population exhibited an average minor allele frequency of 0.221 ± 0.119. Genetic diversity metrics, including observed (0.597 ± 0.196) and expected heterozygosity (0.433 ± 0.096), nucleotide diversity (0.327 ± 0.114), the proportion of polymorphic SNPs (0.726), and allelic richness (1.323 ± 0.134), indicated ample genomic diversity within the breed. Furthermore, an effective population size of 74 was observed in the most recent generation. The overall mean linkage disequilibrium (r2) for pairwise SNPs was 0.269 ± 0.057. Moreover, a greater proportion of short Runs of Homozygosity (ROH) segments were observed suggesting that there may be low levels of recent inbreeding in this population. The genomic inbreeding coefficients, computed using different inbreeding estimates (FHOM, FUNI, FROH, and FGROM), ranged from -0.0289 to 0.0725. Subsequently, we found 146 regions undergoing selective sweeps using five distinct statistical tests: Tajima's D, CLR, |iHS|, |iHH12|, and ROH. These regions, located in non-overlapping 500 kb windows, were mapped and revealed various protein-coding genes associated with enhanced immune systems and disease resistance (IFNL3, IRF8, BLK), as well as production traits (NRXN1, PLCE1, GHR). Notably, we identified interleukin 2 (IL2) on Chr17: 35217075-35223276 as a gene linked to tick resistance and uncovered a cluster of genes (HSPA8, UBASH3B, ADAMTS18, CRTAM) associated with heat stress. These findings indicate the evolutionary impact of natural and artificial selection on the environmental adaptation of the Sahiwal cattle population.
Collapse
Affiliation(s)
- Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Subhashree Parida
- Pharmacology & Toxicology Division, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Shive Kumar
- Department of Animal Genetics and Breeding, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - A K Ghosh
- Department of Animal Genetics and Breeding, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Umesh Singh
- ICAR Central Institute for Research on Cattle, Meerut, UP, India
| | | | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| |
Collapse
|
3
|
Ma H, Lippolis JD, Casas E. Expression Profiles and Interaction of MicroRNA and Transcripts in Response to Bovine Leukemia Virus Exposure. Front Vet Sci 2022; 9:887560. [PMID: 35928115 PMCID: PMC9343836 DOI: 10.3389/fvets.2022.887560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
Bovine leukemia virus (BLV) infection in cattle is omnipresent, which causes significantly economical losses worldwide. The objective of this study was to determine microRNA (miRNA) and transcript profiles and to establish their relationship in response to exposure to the virus. Small noncoding and messenger RNA were extracted and sequenced from serum and white blood cells (WBCs) derived from seven BLV seropositive and seven seronegative cows. Transcriptomic profiles were generated by sequencing RNA libraries from WBC. Bta-miR-206 and bta-miR-133a-3p were differentially expressed in serum (P < 0.05). In WBC, bta-miR-335-3p, bta-miR-375, and bta-novel-miR76-3p were differentially expressed (P < 0.03). There were 64 differentially expressed transcripts (DETs). Gene ontology (GO) analysis of the DETs overexpressed in the seropositive group with GOs of response to stimulus and immune system process predicted that the DETs could potentially negatively regulate viral life cycle and viral entry or release from host cells. In addition, the DETs depleted in the seropositive group could play a role in the downregulation of antigen processing and presentation of endogenous peptide antigen via MHC class I. The differentially expressed miRNAs targeted 17 DETs, among which the expressions of bta-miR-133a-3p and bta-miR-335-3p were significantly negatively correlated with the expressions of ENSBTAT00000079143 and ENSBTAT00000066733, respectively. Under high prediction criteria, 90 targets of the differentially expressed miRNAs were all non-DETs. The most enriched biological process GO term of the targets was the RNA-dependent DNA biosynthetic process, which could be associated with virus replication. These results suggested that the differentially expressed miRNAs fine-tune most of the target genes in responding to BLV exposure. In addition, Bta-miR-206 interacted with BLV regulatory genes rex and tax by targeting their coding regions. A further study of the miRNAs and the genes may reveal the molecular mechanisms of BLV infection and uncover possible ways to prevent the infection.
Collapse
|
4
|
Atashi H, Wilmot H, Vanderick S, Hubin X, Gengler N. Genome-wide association study for milk production traits in Dual-Purpose Belgian Blue cows. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Zhao B, Luo H, Huang X, Wei C, Di J, Tian Y, Fu X, Li B, Liu GE, Fang L, Zhang S, Tian K. Integration of a single-step genome-wide association study with a multi-tissue transcriptome analysis provides novel insights into the genetic basis of wool and weight traits in sheep. Genet Sel Evol 2021; 53:56. [PMID: 34193030 PMCID: PMC8247193 DOI: 10.1186/s12711-021-00649-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/22/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Genetic improvement of wool and growth traits is a major goal in the sheep industry, but their underlying genetic architecture remains elusive. To improve our understanding of these mechanisms, we conducted a weighted single-step genome-wide association study (WssGWAS) and then integrated the results with large-scale transcriptome data for five wool traits and one growth trait in Merino sheep: mean fibre diameter (MFD), coefficient of variation of the fibre diameter (CVFD), crimp number (CN), mean staple length (MSL), greasy fleece weight (GFW), and live weight (LW). RESULTS Our dataset comprised 7135 individuals with phenotype data, among which 1217 had high-density (HD) genotype data (n = 372,534). The genotypes of 707 of these animals were imputed from the Illumina Ovine single nucleotide polymorphism (SNP) 54 BeadChip to the HD Array. The heritability of these traits ranged from 0.05 (CVFD) to 0.36 (MFD), and between-trait genetic correlations ranged from - 0.44 (CN vs. LW) to 0.77 (GFW vs. LW). By integrating the GWAS signals with RNA-seq data from 500 samples (representing 87 tissue types from 16 animals), we detected tissues that were relevant to each of the six traits, e.g. liver, muscle and the gastrointestinal (GI) tract were the most relevant tissues for LW, and leukocytes and macrophages were the most relevant cells for CN. For the six traits, 54 quantitative trait loci (QTL) were identified covering 81 candidate genes on 21 ovine autosomes. Multiple candidate genes showed strong tissue-specific expression, e.g. BNC1 (associated with MFD) and CHRNB1 (LW) were specifically expressed in skin and muscle, respectively. By conducting phenome-wide association studies (PheWAS) in humans, we found that orthologues of several of these candidate genes were significantly (FDR < 0.05) associated with similar traits in humans, e.g. BNC1 was significantly associated with MFD in sheep and with hair colour in humans, and CHRNB1 was significantly associated with LW in sheep and with body mass index in humans. CONCLUSIONS Our findings provide novel insights into the biological and genetic mechanisms underlying wool and growth traits, and thus will contribute to the genetic improvement and gene mapping of complex traits in sheep.
Collapse
Affiliation(s)
- Bingru Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hanpeng Luo
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xixia Huang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Chen Wei
- College of Animal Science, Xinjiang Agricultural University, Urumqi, China
| | - Jiang Di
- Key Laboratory of Genetics Breeding and Reproduction of the Fine Wool Sheep & Cashmere Goat in Xinjiang, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Yuezhen Tian
- Key Laboratory of Genetics Breeding and Reproduction of the Fine Wool Sheep & Cashmere Goat in Xinjiang, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Xuefeng Fu
- Key Laboratory of Genetics Breeding and Reproduction of the Fine Wool Sheep & Cashmere Goat in Xinjiang, Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, China
| | - Bingjie Li
- Scotland's Rural College (SRUC), Roslin Institute Building, Midlothian, EH25 9RG, UK
| | - George E Liu
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Lingzhao Fang
- MRC Human Genetics Unit at the Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| | - Shengli Zhang
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding, and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| | - Kechuan Tian
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.
| |
Collapse
|
6
|
Esmaeili-Fard SM, Gholizadeh M, Hafezian SH, Abdollahi-Arpanahi R. Genome-wide association study and pathway analysis identify NTRK2 as a novel candidate gene for litter size in sheep. PLoS One 2021; 16:e0244408. [PMID: 33481819 PMCID: PMC7822323 DOI: 10.1371/journal.pone.0244408] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Litter size is one of the most important economic traits in sheep. Identification of gene variants that are associated with the prolificacy rate is an important step in breeding program success and profitability of the farm. So, to identify genetic mechanisms underlying the variation in litter size in Iranian Baluchi sheep, a two-step genome-wide association study (GWAS) was performed. GWAS was conducted using genotype data from 91 Baluchi sheep. Estimated breeding values (EBVs) for litter size calculated for 3848 ewes and then used as the response variable. Besides, a pathway analysis using GO and KEGG databases were applied as a complementary approach. A total of three single nucleotide polymorphisms (SNPs) associated with litter size were identified, one each on OAR2, OAR10, and OAR25. The SNP on OAR2 is located within a novel putative candidate gene, Neurotrophic receptor tyrosine kinase 2. This gene product works as a receptor which is essential for follicular assembly, early follicular growth, and oocyte survival. The SNP on OAR25 is located within RAB4A which is involved in blood vessel formation and proliferation through angiogenesis. The SNP on OAR10 was not associated with any gene in the 1Mb span. Moreover, gene-set analysis using the KEGG database identified several pathways, such as Ovarian steroidogenesis, Steroid hormone biosynthesis, Calcium signaling pathway, and Chemokine signaling. Also, pathway analysis using the GO database revealed several functional terms, such as cellular carbohydrate metabolic, biological adhesion, cell adhesion, cell junction, and cell-cell adherens junction, among others. This is the first study that reports the NTRK2 gene affecting litter size in sheep and our study of this gene functions showed that this gene could be a good candidate for further analysis.
Collapse
Affiliation(s)
- Seyed Mehdi Esmaeili-Fard
- Department of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
- * E-mail:
| | - Mohsen Gholizadeh
- Department of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
| | - Seyed Hasan Hafezian
- Department of Animal Sciences and Fisheries, Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran
| | | |
Collapse
|
7
|
Abdalla EA, Id‐Lahoucine S, Cánovas A, Casellas J, Schenkel FS, Wood BJ, Baes CF. Discovering lethal alleles across the turkey genome using a transmission ratio distortion approach. Anim Genet 2020; 51:876-889. [PMID: 33006154 PMCID: PMC7702127 DOI: 10.1111/age.13003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2020] [Indexed: 12/23/2022]
Abstract
Deviation from Mendelian inheritance expectations (transmission ratio distortion, TRD) has been observed in several species, including the mouse and humans. In this study, TRD was characterized in the turkey genome using both allelic (specific- and unspecific-parent TRD) and genotypic (additive- and dominance-TRD) parameterizations within a Bayesian framework. In this study, we evaluated TRD for 23 243 genotyped Turkeys across 56 393 autosomal SNPs. The analyses included 500 sires, 2013 dams and 11 047 offspring (trios). Three different haplotype sliding windows of 4, 10 and 20 SNPs were used across the autosomal chromosomes. Based on the genotypic parameterizations, 14 haplotypes showed additive and dominance TRD effects highlighting regions with a recessive TRD pattern. In contrast, the allelic model uncovered 12 haplotype alleles with the allelic TRD pattern which showed an underrepresentation of heterozygous offspring in addition to the absence of homozygous animals. For regions with the allelic pattern, only one particular region showed a parent-specific TRD where the penetrance was high via the dam, but low via the sire. The gene set analysis uncovered several gene ontology functional terms, Reactome pathways and several Medical Subject Headings that showed significant enrichment of genes associated with TRD. Many of these gene ontology functional terms (e.g. mitotic spindle assembly checkpoint, DRM complex and Aneuploidy), Reactome pathways (e.g. Mismatch repair) and Medical Subject Headings (e.g. Adenosine monophosphate) are known to be related to fertility, embryo development and lethality. The results of this study revealed potential novel candidate lethal haplotypes, functional terms and pathways that may enhance breeding programs in Turkeys through reducing mortality and improving reproduction rate.
Collapse
Affiliation(s)
- E. A. Abdalla
- Centre for Genetic Improvement of Livestock, Department of Animal BiosciencesUniversity of GuelphGuelphONN1G 2W1Canada
| | - S. Id‐Lahoucine
- Centre for Genetic Improvement of Livestock, Department of Animal BiosciencesUniversity of GuelphGuelphONN1G 2W1Canada
| | - A. Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal BiosciencesUniversity of GuelphGuelphONN1G 2W1Canada
| | - J. Casellas
- Departament de Ciència Animal i dels AlimentsUniversitat Autònoma de BarcelonaBellaterra08193Spain
| | - F. S. Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal BiosciencesUniversity of GuelphGuelphONN1G 2W1Canada
| | - B. J. Wood
- Centre for Genetic Improvement of Livestock, Department of Animal BiosciencesUniversity of GuelphGuelphONN1G 2W1Canada
- Hybrid TurkeysC‐650 Riverbend Drive, Suite CKitchenerONN2K 3S2Canada
- School of Veterinary ScienceUniversity of QueenslandGattonQld4343Australia
| | - C. F. Baes
- Centre for Genetic Improvement of Livestock, Department of Animal BiosciencesUniversity of GuelphGuelphONN1G 2W1Canada
- Institute of Genetics, Vetsuisse FacultyUniversity of BernBern3001Switzerland
| |
Collapse
|
8
|
Oliveira Júnior GA, Santos DJA, Cesar ASM, Boison SA, Ventura RV, Perez BC, Garcia JF, Ferraz JBS, Garrick DJ. Fine mapping of genomic regions associated with female fertility in Nellore beef cattle based on sequence variants from segregating sires. J Anim Sci Biotechnol 2019; 10:97. [PMID: 31890201 PMCID: PMC6913038 DOI: 10.1186/s40104-019-0403-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/11/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Impaired fertility in cattle limits the efficiency of livestock production systems. Unraveling the genetic architecture of fertility traits would facilitate their improvement by selection. In this study, we characterized SNP chip haplotypes at QTL blocks then used whole-genome sequencing to fine map genomic regions associated with reproduction in a population of Nellore (Bos indicus) heifers. METHODS The dataset comprised of 1337 heifers genotyped using a GeneSeek® Genomic Profiler panel (74677 SNPs), representing the daughters from 78 sires. After performing marker quality control, 64800 SNPs were retained. Haplotypes carried by each sire at six previously identified QTL on BTAs 5, 14 and 18 for heifer pregnancy and BTAs 8, 11 and 22 for antral follicle count were constructed using findhap software. The significance of the contrasts between the effects of every two paternally-inherited haplotype alleles were used to identify sires that were heterozygous at each QTL. Whole-genome sequencing data localized to the haplotypes from six sires and 20 other ancestors were used to identify sequence variants that were concordant with the haplotype contrasts. Enrichment analyses were applied to these variants using KEGG and MeSH libraries. RESULTS A total of six (BTA 5), six (BTA 14) and five (BTA 18) sires were heterozygous for heifer pregnancy QTL whereas six (BTA 8), fourteen (BTA 11), and five (BTA 22) sires were heterozygous for number of antral follicles' QTL. Due to inadequate representation of many haplotype alleles in the sequenced animals, fine mapping analysis could only be reliably performed for the QTL on BTA 5 and 14, which had 641 and 3733 concordant candidate sequence variants, respectively. The KEGG "Circadian rhythm" and "Neurotrophin signaling pathway" were significantly associated with the genes in the QTL on BTA 5 whereas 32 MeSH terms were associated with the QTL on BTA 14. Among the concordant sequence variants, 0.2% and 0.3% were classified as missense variants for BTAs 5 and 14, respectively, highlighting the genes MTERF2, RTMB, ENSBTAG00000037306 (miRNA), ENSBTAG00000040351, PRKDC, and RGS20. The potential causal mutations found in the present study were associated with biological processes such as oocyte maturation, embryo development, placenta development and response to reproductive hormones. CONCLUSIONS The identification of heterozygous sires by positionally phasing SNP chip data and contrasting haplotype effects for previously detected QTL can be used for fine mapping to identify potential causal mutations and candidate genes. Genomic variants on genes MTERF2, RTBC, miRNA ENSBTAG00000037306, ENSBTAG00000040351, PRKDC, and RGS20, which are known to have influence on reproductive biological processes, were detected.
Collapse
Affiliation(s)
- Gerson A. Oliveira Júnior
- Department of Veterinary Medicine, University of São Paulo (USP), Faculty of Animal Science and Food Engineer, Pirassununga, SP Brazil
- Department of Animal Bioscience, Center for Genetic Improvement of Livestock, University of Guelph, Guelph, ON Canada
| | - Daniel J. A. Santos
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, USA
| | - Aline S. M. Cesar
- Department of Animal Science, University of São Paulo (USP), Piracicaba, SP Brazil
| | - Solomon A. Boison
- Department of Sustainable Agricultural Systems, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ricardo V. Ventura
- Department of Animal Bioscience, Center for Genetic Improvement of Livestock, University of Guelph, Guelph, ON Canada
- Department of Animal Nutrition and Production, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), Pirassununga, Brazil
| | - Bruno C. Perez
- Department of Veterinary Medicine, University of São Paulo (USP), Faculty of Animal Science and Food Engineer, Pirassununga, SP Brazil
| | - José F. Garcia
- Department of Support, Production and Animal Health, School of Veterinary Medicine, São Paulo State University (Unesp), Araçatuba, SP Brazil
| | - José Bento S. Ferraz
- Department of Veterinary Medicine, University of São Paulo (USP), Faculty of Animal Science and Food Engineer, Pirassununga, SP Brazil
| | - Dorian J. Garrick
- School of Agriculture, Massey University, Ruakura Ag Centre, Hamilton, New Zealand
| |
Collapse
|
9
|
Oliveira HR, Lourenco DAL, Masuda Y, Misztal I, Tsuruta S, Jamrozik J, Brito LF, Silva FF, Cant JP, Schenkel FS. Single-step genome-wide association for longitudinal traits of Canadian Ayrshire, Holstein, and Jersey dairy cattle. J Dairy Sci 2019; 102:9995-10011. [PMID: 31477296 DOI: 10.3168/jds.2019-16821] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 07/08/2019] [Indexed: 11/19/2022]
Abstract
Estimating single nucleotide polymorphism (SNP) effects over time is essential to identify and validate candidate genes (or quantitative trait loci) associated with time-dependent variation of economically important traits and to better understand the underlying mechanisms of lactation biology. Therefore, in this study, we aimed to estimate time-dependent effects of SNP and identifying candidate genes associated with milk (MY), fat (FY), and protein (PY) yields, and somatic cell score (SCS) in the first 3 lactations of Canadian Ayrshire, Holstein, and Jersey breeds, as well as suggest their potential pattern of phenotypic effect over time. Random regression coefficients for the additive direct genetic effect were estimated for each animal using single-step genomic BLUP, based on 2 random regression models: one considering MY, FY, and PY in the first 3 lactations and the other considering SCS in the first 3 lactations. Thereafter, SNP solutions were obtained for random regression coefficients, which were used to estimate the SNP effects over time (from 5 to 305 d in lactation). The top 1% of SNP that showed a high magnitude of SNP effect in at least 1 d in lactation were selected as relevant SNP for further analyses of candidate genes, and clustered according to the trajectory of their SNP effects over time. The majority of SNP selected for MY, FY, and PY increased the magnitude of their effects over time, for all breeds. In contrast, for SCS, most selected SNP decreased the magnitude of their effects over time, especially for the Holstein and Jersey breeds. In general, we identified a different set of candidate genes for each breed, and similar genes were found across different lactations for the same trait in the same breed. For some of the candidate genes, the suggested pattern of phenotypic effect changed among lactations. Among the lactations, candidate genes (and their suggested phenotypic effect over time) identified for the second and third lactations were more similar to each other than for the first lactation. Well-known candidate genes with major effects on milk production traits presented different suggested patterns of phenotypic effect across breeds, traits, and lactations in which they were identified. The candidate genes identified in this study can be used as target genes in studies of gene expression.
Collapse
Affiliation(s)
- H R Oliveira
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil.
| | - D A L Lourenco
- Department of Animal and Dairy Science, University of Georgia, Athens 30602
| | - Y Masuda
- Department of Animal and Dairy Science, University of Georgia, Athens 30602
| | - I Misztal
- Department of Animal and Dairy Science, University of Georgia, Athens 30602
| | - S Tsuruta
- Department of Animal and Dairy Science, University of Georgia, Athens 30602
| | - J Jamrozik
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Canadian Dairy Network, Guelph, ON, N1K 1E5, Canada
| | - L F Brito
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907
| | - F F Silva
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-000, Brazil
| | - J P Cant
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - F S Schenkel
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
10
|
Murakami H, Todaka H, Uchiyama J, Sato R, Sogawa K, Sakaguchi M, Tsukamoto K. A point mutation to the long terminal repeat of bovine leukemia virus related to viral productivity and transmissibility. Virology 2019; 537:45-52. [PMID: 31445323 DOI: 10.1016/j.virol.2019.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022]
Abstract
It is important to establish the molecular basis of the high transmissibility of bovine leukemia virus (BLV) to develop new methods of preventing viral transmission. Hence, the aim of this study was to determine whether some strains had transmission advantages. First, we determined the whole BLV genome sequences of all 34 BLV-infected cows from one farm. Phylogenetic analysis divided strains into 26 major and 8 minor strains. The major strains dominantly spread independent of host factor, bovine leucocyte antigen. Further analysis, with molecular clones, associated transmissibility with viral productivity in vitro. In addition, the two groups could be classified by group-specific mutations. The reverse genetic approach demonstrated that a spontaneous mutation at nucleotide 175 of the BLV genome, which is located in the viral promoter region, could alter viral productivity by changing viral transactivation, suggesting that BLV transmissibility is affected by a spontaneous mutation associated with viral productivity.
Collapse
Affiliation(s)
- Hironobu Murakami
- Laboratory of Animal Health Ⅱ, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan.
| | - Haruna Todaka
- Laboratory of Animal Health Ⅱ, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Jumpei Uchiyama
- Laboratory of Veterinary Microbiology Ⅰ, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Reiichiro Sato
- Laboratory of Clinical Veterinary Medicine for Large Animal, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Kazuyuki Sogawa
- Laboratory of Biochemistry, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Masahiro Sakaguchi
- Laboratory of Veterinary Microbiology Ⅰ, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Kenji Tsukamoto
- Laboratory of Animal Health Ⅱ, School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| |
Collapse
|
11
|
Abdalla E, Lopes F, Byrem T, Weigel K, Rosa G. Genomic prediction of bovine leukosis incidence in a US Holstein population. Livest Sci 2019. [DOI: 10.1016/j.livsci.2019.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Huang H, Cao J, Guo G, Li X, Wang Y, Yu Y, Zhang S, Zhang Q, Zhang Y. Genome-wide association study identifies QTLs for displacement of abomasum in Chinese Holstein cattle1. J Anim Sci 2019; 97:1133-1142. [PMID: 30715382 DOI: 10.1093/jas/skz031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/17/2019] [Indexed: 12/28/2022] Open
Abstract
Displacement of abomasum (DA) is one of the most common and important disorders in dairy cattle. The objective of the present study was to detect the quantitative trait loci (QTL) for DA in Chinese Holstein using single-step genomic BLUP methodology. A total of 60,556 producer-recorded DA event records from 32,190 cows, together with 2,336 genotyped animals with 40,054 SNP markers, were used for the analysis. Genomic data were incorporated into a threshold model for variance component estimation, and the estimated heritability of DA was 0.108 (SE = 0.086). Results of genome-wide association studies were reported as the proportion of genetic variance explained 20-SNP windows. Eight QTLs covering 129 genes on Bos taurus autosomes 2, 4, 7, 10, 14, 17, 20 showed associations with DA. Ten genes, namely BMP4, SOCS4, GCH1, DDHD1, ATG14, ACBP/DBI, SMO, AHCYL2, CYP7A1, and CACNA1A, involved in insulin metabolism and lipid metabolism pathways may be considered as candidate genes of DA in dairy. The identified QTLs, biological pathways, and associated genes underlying DA identified from the present study will contribute to the understanding of the genetic architecture of this complex disease.
Collapse
Affiliation(s)
- Hetian Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jie Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Gang Guo
- Beijing Sunlon Livestock Development Co. Ltd., Beijing, China
| | - Xizhi Li
- Beijing Sunlon Livestock Development Co. Ltd., Beijing, China
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Qin Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yi Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory of Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Yudin NS, Podkolodnyy NL, Agarkova TA, Ignatieva EV. Prioritization of genes associated with the pathogenesis of leukosis in cattle. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj18.451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Selection by means of genetic markers is a promising approach to the eradication of infectious diseases in farm animals, especially in the absence of effective methods of treatment and prevention. Bovine leukemia virus (BLV) is spread throughout the world and represents one of the biggest problems for the livestock production and food security in Russia. However, recent genome-wide association studies have shown that sensitivity/resistance to BLV is polygenic. The aim of this study was to create a catalog of cattle genes and genes of other mammalian species involved in the pathogenesis of BLV-induced infection and to perform gene prioritization using bioinformatics methods. Based on manually collected information from a range of open sources, a total of 446 genes were included in the catalog of cattle genes and genes of other mammals involved in the pathogenesis of BLV-induced infection. The following criteria were used to prioritize 446 genes from the catalog: (1) the gene is associated with leukemia according to a genome-wide association study; (2) the gene is associated with leukemia according to a case-control study; (3) the role of the gene in leukemia development has been studied using knockout mice; (4) protein-protein interactions exist between the gene-encoded protein and either viral particles or individual viral proteins; (5) the gene is annotated with Gene Ontology terms that are overrepresented for a given list of genes; (6) the gene participates in biological pathways from the KEGG or REACTOME databases, which are over-represented for a given list of genes; (7) the protein encoded by the gene has a high number of protein-protein interactions with proteins encoded by other genes from the catalog. Based on each criterion, a rank was assigned to each gene. Then the ranks were summarized and an overall rank was determined. Prioritization of 446 candidate genes allowed us to identify 5 genes of interest (TNF,LTB,BOLA-DQA1,BOLA-DRB3,ATF2), which can affect the sensitivity/resistance of cattle to leukemia.
Collapse
Affiliation(s)
- N. S. Yudin
- Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
| | - N. L. Podkolodnyy
- Institute of Cytology and Genetics, SB RAS; Institute of Computational Mathematics and Mathematical Geophysics, SB RAS
| | - T. A. Agarkova
- Siberian Federal Research Center of Agro-BioTechnologies, RAS
| | - E. V. Ignatieva
- Institute of Cytology and Genetics, SB RAS; Novosibirsk State University
| |
Collapse
|
14
|
Pacheco HA, da Silva S, Sigdel A, Mak CK, Galvão KN, Texeira RA, Dias LT, Peñagaricano F. Gene Mapping and Gene-Set Analysis for Milk Fever Incidence in Holstein Dairy Cattle. Front Genet 2018; 9:465. [PMID: 30364193 PMCID: PMC6192420 DOI: 10.3389/fgene.2018.00465] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 09/24/2018] [Indexed: 01/02/2023] Open
Abstract
Milk fever is an important metabolic disorder that affects dairy cows around parturition. It is associated with a breakdown in the mechanisms of calcium homeostasis, resulting in very low blood calcium levels (hypocalcemia). The main objective of this study was to dissect the genetic basis underlying milk fever incidence in Holstein cattle. Data consisted of 31.6 k producer-recorded lactation incidence records from 15.3 k cows. The analysis included a whole-genome scan and a subsequent gene-set analysis in order to reveal individual genes, genetic mechanisms and biological pathways implicated in the incidence of periparturient hypocalcemia. The association analysis identified at least eight different genomic regions that explain considerable amounts of additive genetic variance for milk fever incidence. Notably, some of these regions harbor genes, such as CYP27A1, CYP2J2, GC, SNAI2, and PIM1, that are directly involved in vitamin D metabolic pathway. Moreover, the gene-set analysis revealed several functional terms, such as calcium ion binding, calcium ion transportation, T cell differentiation, B cell activation, protein phosphorylation, apoptosis, and protein kinase activity, among others, that could be implicated in the development of periparturient hypocalcemia. Overall, this comprehensive study contributes to a better understanding of the genetic control of this complex disease. In addition, these findings may contribute to the development of novel breeding strategies for reducing the incidence of milk fever in dairy cattle.
Collapse
Affiliation(s)
- Hendyel A Pacheco
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States.,Departamento de Zootecnia, Universidade Federal do Paranaì, Curitiba, Brazil
| | - Simone da Silva
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States.,Departamento de Zootecnia, Universidade Federal do Paranaì, Curitiba, Brazil
| | - Anil Sigdel
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Chun Kuen Mak
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, United States
| | - Klibs N Galvão
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, United States
| | - Rodrigo A Texeira
- Departamento de Zootecnia, Universidade Federal do Paranaì, Curitiba, Brazil
| | - Laila T Dias
- Departamento de Zootecnia, Universidade Federal do Paranaì, Curitiba, Brazil
| | - Francisco Peñagaricano
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States.,University of Florida Genetics Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
15
|
Rezende FM, Dietsch GO, Peñagaricano F. Genetic dissection of bull fertility in US Jersey dairy cattle. Anim Genet 2018; 49:393-402. [PMID: 30109710 PMCID: PMC6175157 DOI: 10.1111/age.12710] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2018] [Indexed: 02/06/2023]
Abstract
The service sire has been recognized as an important factor affecting herd fertility in dairy cattle. Recent studies suggest that genetic factors explain part of the difference in fertility among Holstein sires. The main objective of this study was to dissect the genetic architecture of sire fertility in US Jersey cattle. The dataset included 1.5 K Jersey bulls with sire conception rate (SCR) records and 96 K single nucleotide polymorphism (SNP) markers spanning the whole genome. The analysis included whole‐genome scans for both additive and non‐additive effects and subsequent functional enrichment analyses using KEGG Pathway, Gene Ontology (GO) and Medical Subject Headings (MeSH) databases. Ten genomic regions located on eight different chromosomes explained more than 0.5% of the additive genetic variance for SCR. These regions harbor genes, such as PKDREJ,EPB41L2,PDGFD,STX2,SLC25A20 and IP6K1, that are directly implicated in testis development and spermatogenesis, sperm motility and the acrosome reaction. In addition, the genomic scan for non‐additive effects identified two regions on BTA11 and BTA25 with marked recessive effects. These regions harbor three genes—FER1L5,CNNM4 and DNAH3—with known roles in sperm biology. Moreover, the gene‐set analysis revealed terms associated with calcium regulation and signaling, membrane fusion, sperm cell energy metabolism, GTPase activity and MAPK signaling. These gene sets are directly implicated in sperm physiology and male fertility. Overall, this integrative genomic study unravels genetic variants and pathways affecting Jersey bull fertility. These findings may contribute to the development of novel genomic strategies for improving sire fertility in Jersey cattle.
Collapse
Affiliation(s)
- F M Rezende
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA.,Faculdade de Medicina Veterinária, Universidade Federal de Uberlândia, Uberlândia, MG, 38400-902, Brazil
| | - G O Dietsch
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA
| | - F Peñagaricano
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
16
|
Carignano HA, Roldan DL, Beribe MJ, Raschia MA, Amadio A, Nani JP, Gutierrez G, Alvarez I, Trono K, Poli MA, Miretti MM. Genome-wide scan for commons SNPs affecting bovine leukemia virus infection level in dairy cattle. BMC Genomics 2018; 19:142. [PMID: 29439661 PMCID: PMC5812220 DOI: 10.1186/s12864-018-4523-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 02/01/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Bovine leukemia virus (BLV) infection is omnipresent in dairy herds causing direct economic losses due to trade restrictions and lymphosarcoma-related deaths. Milk production drops and increase in the culling rate are also relevant and usually neglected. The BLV provirus persists throughout a lifetime and an inter-individual variation is observed in the level of infection (LI) in vivo. High LI is strongly correlated with disease progression and BLV transmission among herd mates. In a context of high prevalence, classical control strategies are economically prohibitive. Alternatively, host genomics studies aiming to dissect loci associated with LI are potentially useful tools for genetic selection programs tending to abrogate the viral spreading. The LI was measured through the proviral load (PVL) set-point and white blood cells (WBC) counts. The goals of this work were to gain insight into the contribution of SNPs (bovine 50KSNP panel) on LI variability and to identify genomics regions underlying this trait. RESULTS We quantified anti-p24 response and total leukocytes count in peripheral blood from 1800 cows and used these to select 800 individuals with extreme phenotypes in WBCs and PVL. Two case-control genomic association studies using linear mixed models (LMMs) considering population stratification were performed. The proportion of the variance captured by all QC-passed SNPs represented 0.63 (SE ± 0.14) of the phenotypic variance for PVL and 0.56 (SE ± 0.15) for WBCs. Overall, significant associations (Bonferroni's corrected -log10p > 5.94) were shared for both phenotypes by 24 SNPs within the Bovine MHC. Founder haplotypes were used to measure the linkage disequilibrium (LD) extent (r2 = 0.22 ± 0.27 at inter-SNP distance of 25-50 kb). The SNPs and LD blocks indicated genes potentially associated with LI in infected cows: i.e. relevant immune response related genes (DQA1, DRB3, BOLA-A, LTA, LTB, TNF, IER3, GRP111, CRISP1), several genes involved in cell cytoskeletal reorganization (CD2AP, PKHD1, FLOT1, TUBB5) and modelling of the extracellular matrix (TRAM2, TNXB). Host transcription factors (TFs) were also highlighted (TFAP2D; ABT1, GCM1, PRRC2A). CONCLUSIONS Data obtained represent a step forward to understand the biology of BLV-bovine interaction, and provide genetic information potentially applicable to selective breeding programs.
Collapse
Affiliation(s)
- Hugo A. Carignano
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Genética, B1686 Hurlingham, Argentina
| | - Dana L. Roldan
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Genética, B1686 Hurlingham, Argentina
| | - María J. Beribe
- Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Pergamino, B2700 Pergamino, Argentina
| | - María A. Raschia
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Genética, B1686 Hurlingham, Argentina
| | - Ariel Amadio
- Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Rafaela, S2300, Rafaela, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan P. Nani
- Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Rafaela, S2300, Rafaela, Argentina
| | - Gerónimo Gutierrez
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Virología, B686 Hurlingham, Argentina
| | - Irene Alvarez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Virología, B686 Hurlingham, Argentina
| | - Karina Trono
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Virología, B686 Hurlingham, Argentina
| | - Mario A. Poli
- Instituto Nacional de Tecnología Agropecuaria (INTA). Centro de Investigaciones en Ciencias Veterinarias y Agronómicas (CICVyA). Instituto de Genética, B1686 Hurlingham, Argentina
| | - Marcos M. Miretti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), C1033AAJ Ciudad Autónoma de Buenos Aires, Argentina
- Grupo de Investigación en Genética Aplicada, Instituto de Biología Subtropical (GIGA - IBS), Universidad Nacional de Misiones, N3300 Posadas, Argentina
| |
Collapse
|
17
|
Fleming A, Abdalla EA, Maltecca C, Baes CF. Invited review: Reproductive and genomic technologies to optimize breeding strategies for genetic progress in dairy cattle. Arch Anim Breed 2018. [DOI: 10.5194/aab-61-43-2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract. Dairy cattle breeders have exploited technological advances that have emerged in the past in regards to reproduction and genomics. The implementation of such technologies in routine breeding programs has permitted genetic gains in traditional milk production traits as well as, more recently, in low-heritability traits like health and fertility. As demand for dairy products increases, it is important for dairy breeders to optimize the use of available technologies and to consider the many emerging technologies that are currently being investigated in various fields. Here we review a number of technologies that have helped shape dairy breeding programs in the past and present, along with those potentially forthcoming. These tools have materialized in the areas of reproduction, genotyping and sequencing, genetic modification, and epigenetics. Although many of these technologies bring encouraging opportunities for genetic improvement of dairy cattle populations, their applications and benefits need to be weighed with their impacts on economics, genetic diversity, and society.
Collapse
|
18
|
Abdollahi-Arpanahi R, Morota G, Peñagaricano F. Predicting bull fertility using genomic data and biological information. J Dairy Sci 2017; 100:9656-9666. [PMID: 28987577 DOI: 10.3168/jds.2017-13288] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 09/13/2017] [Indexed: 01/04/2023]
Abstract
The genomic prediction of unobserved genetic values or future phenotypes for complex traits has revolutionized agriculture and human medicine. Fertility traits are undoubtedly complex traits of great economic importance to the dairy industry. Although genomic prediction for improved cow fertility has received much attention, bull fertility largely has been ignored. The first aim of this study was to investigate the feasibility of genomic prediction of sire conception rate (SCR) in US Holstein dairy cattle. Standard genomic prediction often ignores any available information about functional features of the genome, although it is believed that such information can yield more accurate and more persistent predictions. Hence, the second objective was to incorporate prior biological information into predictive models and evaluate their performance. The analyses included the use of kernel-based models fitting either all single nucleotide polymorphisms (SNP; 55K) or only markers with presumed functional roles, such as SNP linked to Gene Ontology or Medical Subject Heading terms related to male fertility, or SNP significantly associated with SCR. Both single- and multikernel models were evaluated using linear and Gaussian kernels. Predictive ability was evaluated in 5-fold cross-validation. The entire set of SNP exhibited predictive correlations around 0.35. Neither Gene Ontology nor Medical Subject Heading gene sets achieved predictive abilities higher than their counterparts using random sets of SNP. Notably, kernel models fitting significant SNP achieved the best performance with increases in accuracy up to 5% compared with the standard whole-genome approach. Models fitting Gaussian kernels outperformed their counterparts fitting linear kernels irrespective of the set of SNP. Overall, our findings suggest that genomic prediction of bull fertility is feasible in dairy cattle. This provides potential for accurate genome-guided decisions, such as early culling of bull calves with low SCR predictions. In addition, exploiting nonlinear effects through the use of Gaussian kernels together with the incorporation of relevant markers seems to be a promising alternative to the standard approach. The inclusion of gene set results into prediction models deserves further research.
Collapse
Affiliation(s)
- Rostam Abdollahi-Arpanahi
- Department of Animal Sciences, University of Florida, Gainesville 32611; Department of Animal and Poultry Science, University of Tehran, Pakdasht, Iran 3391653755
| | - Gota Morota
- Department of Animal Science, University of Nebraska, Lincoln 68583
| | - Francisco Peñagaricano
- Department of Animal Sciences, University of Florida, Gainesville 32611; University of Florida Genetics Institute, Gainesville 32611.
| |
Collapse
|
19
|
Dadousis C, Pegolo S, Rosa GJM, Bittante G, Cecchinato A. Genome-wide association and pathway-based analysis using latent variables related to milk protein composition and cheesemaking traits in dairy cattle. J Dairy Sci 2017; 100:9085-9102. [PMID: 28843680 DOI: 10.3168/jds.2017-13219] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/16/2017] [Indexed: 12/19/2022]
Abstract
The aim of this study was to perform genome-wide associations (GWAS) and gene-set enrichment analyses with protein composition and cheesemaking-related latent variables (factors; F) in a cohort of 1,011 Italian Brown Swiss cows. Factor analysis was applied to identify latent structures of 26 phenotypes related to bovine milk quantity and quality, protein fractions [αS1-, αS2-, β-, and κ-casein (CN), β-lactoglobulin, and α-lactalbumin (α-LA)], coagulation and curd firming at time t (CFt) measures, and cheese properties [cheese yield (%CY) and nutrients recovery in the curd] of individual cows. Ten orthogonal F were extracted, explaining 74% of the original variability. Factor 1%CY underlined the %CY characteristics, F2CFt was related to the CFt process parameters, F3Yield was considered as descriptor of milk and solids yield, whereas F4Cheese N underscored the presence of nitrogenous compounds (N) into the cheese. Four more F were related to the milk caseins (F5αS1-β-CN, F7β-κ-CN, F8αS2-CN, and F9αS1-CN-Ph) and 1 F was linked to the whey protein (F10α-LA); 1 F underlined the udder health status (F6Udder health). All cows were genotyped with the Illumina BovineSNP50 Bead Chip v.2 (Illumina Inc., San Diego, CA). Single marker regression GWAS were fitted. Gene-set enrichment analysis was run on GWAS results, using the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway databases, to reveal ontologies or pathways associated with the F. All F but F3Yield showed significance in GWAS. Signals in 10 Bos taurus autosomes (BTA) were detected. High peaks on BTA6 (∼87 Mbp) were found for F6β-κ-CN, F5αS1-β-CN, and at the tail of BTA11 (∼104 Mbp) for F4Cheese N. Gene-set enrichment analyses showed significant results (false discovery rate at 5%) for F8αS2-CN, F1%CY, F4Cheese N, and F10α-LA. For F8αS2-CN, 33 Gene Ontology terms and 3 Kyoto Encyclopedia of Genes and Genomes categories were enriched, including terms related to ion transport and homeostasis, neuron function or part, and GnRH signaling pathway. Our results support the feasibility of factor analysis as a dimension reduction technique in genomic studies and evidenced a potential key role of αS2-CN in milk quality and composition.
Collapse
Affiliation(s)
- Christos Dadousis
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Sara Pegolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Guilherme J M Rosa
- Department of Animal Sciences and Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison 53706
| | - Giovanni Bittante
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy
| | - Alessio Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy.
| |
Collapse
|
20
|
Magnabosco CU, Lopes FB, Fragoso RC, Eifert EC, Valente BD, Rosa GJM, Sainz RD. Accuracy of genomic breeding values for meat tenderness in Polled Nellore cattle. J Anim Sci 2017; 94:2752-60. [PMID: 27482662 DOI: 10.2527/jas.2016-0279] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Zebu () cattle, mostly of the Nellore breed, comprise more than 80% of the beef cattle in Brazil, given their tolerance of the tropical climate and high resistance to ectoparasites. Despite their advantages for production in tropical environments, zebu cattle tend to produce tougher meat than Bos taurus breeds. Traditional genetic selection to improve meat tenderness is constrained by the difficulty and cost of phenotypic evaluation for meat quality. Therefore, genomic selection may be the best strategy to improve meat quality traits. This study was performed to compare the accuracies of different Bayesian regression models in predicting molecular breeding values for meat tenderness in Polled Nellore cattle. The data set was composed of Warner-Bratzler shear force (WBSF) of longissimus muscle from 205, 141, and 81 animals slaughtered in 2005, 2010, and 2012, respectively, which were selected and mated so as to create extreme segregation for WBSF. The animals were genotyped with either the Illumina BovineHD (HD; 777,000 from 90 samples) chip or the GeneSeek Genomic Profiler (GGP Indicus HD; 77,000 from 337 samples). The quality controls of SNP were Hard-Weinberg Proportion -value ≥ 0.1%, minor allele frequency > 1%, and call rate > 90%. The FImpute program was used for imputation from the GGP Indicus HD chip to the HD chip. The effect of each SNP was estimated using ridge regression, least absolute shrinkage and selection operator (LASSO), Bayes A, Bayes B, and Bayes Cπ methods. Different numbers of SNP were used, with 1, 2, 3, 4, 5, 7, 10, 20, 40, 60, 80, or 100% of the markers preselected based on their significance test (-value from genomewide association studies [GWAS]) or randomly sampled. The prediction accuracy was assessed by the correlation between genomic breeding value and the observed WBSF phenotype, using a leave-one-out cross-validation methodology. The prediction accuracies using all markers were all very similar for all models, ranging from 0.22 (Bayes Cπ) to 0.25 (Bayes B). When preselecting SNP based on GWAS results, the highest correlation (0.27) between WBSF and the genomic breeding value was achieved using the Bayesian LASSO model with 15,030 (3%) markers. Although this study used relatively few animals, the design of the segregating population ensured wide genetic variability for meat tenderness, which was important to achieve acceptable accuracy of genomic prediction. Although all models showed similar levels of prediction accuracy, some small advantages were observed with the Bayes B approach when higher numbers of markers were preselected based on their -values resulting from a GWAS analysis.
Collapse
|
21
|
Dadousis C, Pegolo S, Rosa GJM, Gianola D, Bittante G, Cecchinato A. Pathway-based genome-wide association analysis of milk coagulation properties, curd firmness, cheese yield, and curd nutrient recovery in dairy cattle. J Dairy Sci 2016; 100:1223-1231. [PMID: 27988128 DOI: 10.3168/jds.2016-11587] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/20/2016] [Indexed: 01/02/2023]
Abstract
It is becoming common to complement genome-wide association studies (GWAS) with gene-set enrichment analysis to deepen the understanding of the biological pathways affecting quantitative traits. Our objective was to conduct a gene ontology and pathway-based analysis to identify possible biological mechanisms involved in the regulation of bovine milk technological traits: coagulation properties, curd firmness modeling, individual cheese yield (CY), and milk nutrient recovery into the curd (REC) or whey loss traits. Results from 2 previous GWAS studies using 1,011 cows genotyped for 50k single nucleotide polymorphisms were used. Overall, the phenotypes analyzed consisted of 3 traditional milk coagulation property measures [RCT: rennet coagulation time defined as the time (min) from addition of enzyme to the beginning of coagulation; k20: the interval (min) from RCT to the time at which a curd firmness of 20 mm is attained; a30: a measure of the extent of curd firmness (mm) 30 min after coagulant addition], 6 curd firmness modeling traits [RCTeq: RCT estimated through the CF equation (min); CFP: potential asymptotic curd firmness (mm); kCF: curd-firming rate constant (% × min-1); kSR: syneresis rate constant (% × min-1); CFmax: maximum curd firmness (mm); and tmax: time to CFmax (min)], 3 individual CY-related traits expressing the weight of fresh curd (%CYCURD), curd solids (%CYSOLIDS), and curd moisture (%CYWATER) as a percentage of weight of milk processed and 4 milk nutrient and energy recoveries in the curd (RECFAT, RECPROTEIN, RECSOLIDS, and RECENERGY calculated as the % ratio between the nutrient in curd and the corresponding nutrient in processed milk), milk pH, and protein percentage. Each trait was analyzed separately. In total, 13,269 annotated genes were used in the analysis. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway databases were queried for enrichment analyses. Overall, 21 Gene Ontology and 17 Kyoto Encyclopedia of Genes and Genomes categories were significantly associated (false discovery rate at 5%) with 7 traits (RCT, RCTeq, kCF, %CYSOLIDS, RECFAT, RECSOLIDS, and RECENERGY), with some being in common between traits. The significantly enriched categories included calcium signaling pathway, salivary secretion, metabolic pathways, carbohydrate digestion and absorption, the tight junction and the phosphatidylinositol pathways, as well as pathways related to the bovine mammary gland health status, and contained a total of 150 genes spanning all chromosomes but 9, 20, and 27. This study provided new insights into the regulation of bovine milk coagulation and cheese ability that were not captured by the GWAS.
Collapse
Affiliation(s)
- C Dadousis
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy
| | - S Pegolo
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy
| | - G J M Rosa
- Department of Animal Sciences, University of Wisconsin, Madison 53706; Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison 53706
| | - D Gianola
- Department of Animal Sciences, University of Wisconsin, Madison 53706; Department of Biostatistics and Medical Informatics, University of Wisconsin, Madison 53706
| | - G Bittante
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy
| | - A Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, 35020 Legnaro, Italy.
| |
Collapse
|
22
|
Han Y, Peñagaricano F. Unravelling the genomic architecture of bull fertility in Holstein cattle. BMC Genet 2016; 17:143. [PMID: 27842509 PMCID: PMC5109745 DOI: 10.1186/s12863-016-0454-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/04/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fertility is considered an important economic trait in dairy cattle. Most studies have investigated cow fertility while bull fertility has received much less consideration. The main objective of this study was to perform a comprehensive genomic analysis in order to unravel the genomic architecture underlying sire fertility in Holstein dairy cattle. The analysis included the application of alternative genome-wide association mapping approaches and the subsequent use of diverse gene set enrichment tools. RESULTS The association analyses identified at least eight genomic regions strongly associated with bull fertility. Most of these regions harbor genes, such as KAT8, CKB, TDRD9 and IGF1R, with functions related to sperm biology, including sperm development, motility and sperm-egg interaction. Moreover, the gene set analyses revealed many significant functional terms, including fertilization, sperm motility, calcium channel regulation, and SNARE proteins. Most of these terms are directly implicated in sperm physiology and male fertility. CONCLUSIONS This study contributes to the identification of genetic variants and biological processes underlying sire fertility. These findings can provide opportunities for improving bull fertility via marker-assisted selection.
Collapse
Affiliation(s)
- Yi Han
- Department of Animal Sciences, University of Florida, 2250 Shealy Drive, Gainesville, FL, 32611, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Francisco Peñagaricano
- Department of Animal Sciences, University of Florida, 2250 Shealy Drive, Gainesville, FL, 32611, USA. .,University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|