1
|
Kleinau G, Chini B, Andersson L, Scheerer P. The role of G protein-coupled receptors and their ligands in animal domestication. Anim Genet 2024; 55:893-906. [PMID: 39324206 DOI: 10.1111/age.13476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
The domestication of plants and animals has resulted in one of the most significant cultural and socio-economical transitions in human history. Domestication of animals, including human-supervised reproduction, largely uncoupled particular animal species from their natural, evolutionary history driven by environmental and ecological factors. The primary motivations for domesticating animals were, and still are, producing food and materials (e.g. meat, eggs, honey or milk products, wool, leather products, jewelry and medication products) to support plowing in agriculture or in transportation (e.g. horse, cattle, camel and llama) and to facilitate human activities (for hunting, rescuing, therapeutic aid, guarding behavior and protecting or just as a companion). In recent years, decoded genetic information from more than 40 domesticated animal species have become available; these studies have identified genes and mutations associated with specific physiological and behavioral traits contributing to the complex genetic background of animal domestication. These breeding-altered genomes provide insights into the regulation of different physiological areas, including information on links between e.g. endocrinology and behavior, with important pathophysiological implications (e.g. for obesity and cancer), extending the interest in domestication well beyond the field. Several genes that have undergone selection during domestication and breeding encode specific G protein-coupled receptors, a class of membrane-spanning receptors involved in the regulation of a number of overarching functions such as reproduction, development, body homeostasis, metabolism, stress responses, cognition, learning and memory. Here we summarize the available literature on variations in G protein-coupled receptors and their ligands and how these have contributed to animal domestication.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Berlin, Germany
| | - Bice Chini
- CNR, Institute of Neuroscience, Vedano al Lambro, Italy, and NeuroMI - Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Berlin, Germany
| |
Collapse
|
2
|
Kaelin CB, McGowan KA, Trotman JC, Koroma DC, David VA, Menotti-Raymond M, Graff EC, Schmidt-Küntzel A, Oancea E, Barsh GS. Molecular and genetic characterization of sex-linked orange coat color in the domestic cat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624608. [PMID: 39605675 PMCID: PMC11601623 DOI: 10.1101/2024.11.21.624608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The Sex-linked orange mutation in domestic cats causes variegated patches of reddish/yellow hair and is a defining signature of random X-inactivation in female tortoiseshell and calico cats. Unlike the situation for most coat color genes, there is no apparent homolog for Sex-linked orange in other mammals. We show that the Sex-linked orange is caused by a 5 kb deletion that leads to ectopic and melanocyte-specific expression of the Rho GTPase Activating Protein 36 ( Arhgap36 ) gene. Single cell RNA-seq studies from fetal cat skin reveal that red/yellow hair color is caused by reduced expression of melanogenic genes that are normally activated by the Melanocortin 1 receptor (Mc1r)-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway, but the Mc1r gene and its ability to stimulate cAMP accumulation is intact. Instead, we show that increased expression of Arhgap36 in melanocytes leads to reduced levels of the PKA catalytic subunit (PKA C ); thus, Sex-linked orange is genetically and biochemically downstream of Mc1r . Our findings solve a comparative genomic conundrum, provide in vivo evidence for the ability of Arhgap36 to inhibit PKA, and reveal a molecular explanation for a charismatic color pattern with a rich genetic history.
Collapse
|
3
|
Kaelin CB, McGowan KA, Hutcherson AD, Delay JM, Li JH, Kiener S, Jagannathan V, Leeb T, Murphy WJ, Barsh GS. Ancestry dynamics and trait selection in a designer cat breed. Curr Biol 2024; 34:1506-1518.e7. [PMID: 38531359 PMCID: PMC11162505 DOI: 10.1016/j.cub.2024.02.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
The Bengal cat breed was developed from intercrosses between the Asian leopard cat, Prionailurus bengalensis, and the domestic cat, Felis catus, with a last common ancestor approximately 6 million years ago. Predicted to derive ∼94% of their genome from domestic cats, regions of the leopard cat genome are thought to account for the unique pelage traits and ornate color patterns of the Bengal breed, which are similar to those of ocelots and jaguars. We explore ancestry distribution and selection signatures in the Bengal breed by using reduced representation and whole-genome sequencing from 947 cats. The mean proportion of leopard cat DNA in the Bengal breed is 3.48%, lower than predicted from breed history, and is broadly distributed, covering 93% of the Bengal genome. Overall, leopard cat introgressions do not show strong signatures of selection across the Bengal breed. However, two popular color traits in Bengal cats, charcoal and pheomelanin intensity, are explained by selection of leopard cat genes whose expression is reduced in a domestic cat background, consistent with genetic incompatibility resulting from hybridization. We characterize several selective sweeps in the Bengal genome that harbor candidate genes for pelage and color pattern and that are associated with domestic, rather than leopard, cat haplotypes. We identify the molecular and phenotypic basis of one selective sweep as reduced expression of the Fgfr2 gene, which underlies glitter, a trait desired by breeders that affects hair texture and light reflectivity.
Collapse
Affiliation(s)
- Christopher B Kaelin
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kelly A McGowan
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - John M Delay
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | - Sarah Kiener
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; Dermfocus, University of Bern, 3001 Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; Dermfocus, University of Bern, 3001 Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; Dermfocus, University of Bern, 3001 Bern, Switzerland
| | - William J Murphy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Gregory S Barsh
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Elkin J, Martin A, Courtier-Orgogozo V, Santos ME. Analysis of the genetic loci of pigment pattern evolution in vertebrates. Biol Rev Camb Philos Soc 2023; 98:1250-1277. [PMID: 37017088 DOI: 10.1111/brv.12952] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Vertebrate pigmentation patterns are amongst the best characterised model systems for studying the genetic basis of adaptive evolution. The wealth of available data on the genetic basis for pigmentation evolution allows for analysis of trends and quantitative testing of evolutionary hypotheses. We employed Gephebase, a database of genetic variants associated with natural and domesticated trait variation, to examine trends in how cis-regulatory and coding mutations contribute to vertebrate pigmentation phenotypes, as well as factors that favour one mutation type over the other. We found that studies with lower ascertainment bias identified higher proportions of cis-regulatory mutations, and that cis-regulatory mutations were more common amongst animals harbouring a higher number of pigment cell classes. We classified pigmentation traits firstly according to their physiological basis and secondly according to whether they affect colour or pattern, and identified that carotenoid-based pigmentation and variation in pattern boundaries are preferentially associated with cis-regulatory change. We also classified genes according to their developmental, cellular, and molecular functions. We found a greater proportion of cis-regulatory mutations in genes implicated in upstream developmental processes compared to those involved in downstream cellular functions, and that ligands were associated with a higher proportion of cis-regulatory mutations than their respective receptors. Based on these trends, we discuss future directions for research in vertebrate pigmentation evolution.
Collapse
Affiliation(s)
- Joel Elkin
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, 800 22nd St. NW, Suite 6000, Washington, DC, 20052, USA
| | | | - M Emília Santos
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
5
|
Beauvois H, Dufaure de Citres C, Gache V, Abitbol M. Siberian cats help in solving part of the mystery surrounding golden cats. Anim Genet 2021; 52:482-491. [PMID: 33970502 DOI: 10.1111/age.13076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 12/01/2022]
Abstract
Golden cats have been appreciated since the beginning of the cat fancy. Golden is a modification of the tabby coat. In the Siberian breed, a specific golden phenotype, named sunshine, has been described. Sunshine tabby cats exhibit a warm tone of tabby, a pink nose lacking the black lining and a large light cream area around the nose. Pedigree analyses revealed an autosomal recessive inheritance pattern. A single candidate region was identified by genome-wide association study (GWAS) and homozygosity mapping. Within that region, we identified CORIN (Corin, serine peptidase) as a strong candidate gene, since CORIN variants have been identified in mice and tigers with a golden phenotype and CORIN has been described as a modifier of the ASIP (Agouti Signaling Protein) pathway. A homozygous CORIN:c.2383C>T missense variant was identified in sunshine tabby cats. Segregation of the variant was consistent with recessive inheritance. The variant was also found in three Kurilian bobtail cats and in two ToyBob cats from the 99 Lives dataset but genotyping of 106 cats from 13 breeds failed to identify carriers in cats from other breeds. The CORIN:c.2383C>T variant was predicted to change an arginine to a cysteine at position 795 in the protein: CORIN:p.(Arg795Cys). Finally, hair observation in Siberian cats was consistent with elongated ASIP signaling as golden hair showed a large yellow band instead of the short subapical one usually observed in agouti hair. These results support an association of the Siberian sunshine modification with the CORIN:c.2383C>T variant. The Siberian cat has helped us to decipher one of the golden phenotypes observed in cats and we propose that the CORIN:c.2383C>T variant represents the wbSIB (Siberian recessive wideband) allele in the domestic cat.
Collapse
Affiliation(s)
- H Beauvois
- VetAgro Sup, Univ. Lyon, 1 avenue Bourgelat, 69280, Marcy-l'Etoile, France
| | | | - V Gache
- Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine, Université Claude Bernard Lyon I, 8 avenue Rockefeller, 69008, Rockefeller, Lyon, France
| | - M Abitbol
- VetAgro Sup, Univ. Lyon, 1 avenue Bourgelat, 69280, Marcy-l'Etoile, France.,Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine, Université Claude Bernard Lyon I, 8 avenue Rockefeller, 69008, Rockefeller, Lyon, France
| |
Collapse
|
6
|
Alhaddad H, Abdi M, Lyons LA. Patterns of allele frequency differences among domestic cat breeds assessed by a 63K SNP array. PLoS One 2021; 16:e0247092. [PMID: 33630878 PMCID: PMC7906347 DOI: 10.1371/journal.pone.0247092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/01/2021] [Indexed: 01/11/2023] Open
Abstract
Cats are ubiquitous companion animals that have been keenly associated with humans for thousands of years and only recently have been intentionally bred for aesthetically appealing coat looks and body forms. The intense selection on single gene phenotypes and the various breeding histories of cat breeds have left different marks on the genomes. Using a previously published 63K Feline SNP array dataset of twenty-six cat breeds, this study utilized a genetic differentiation-based method (di) to empirically identify candidate regions under selection. Defined as three or more overlapping (500Kb) windows of high levels of population differentiation, we identified a total of 205 candidate regions under selection across cat breeds with an average of 6 candidate regions per breed and an average size of 1.5 Mb per candidate region. Using the combined size of candidate regions of each breed, we conservatively estimate that a minimum of ~ 0.1-0.7% of the autosomal genome is potentially under selection in cats. As positive controls and tests of our methodology, we explored the candidate regions of known breed-defining genes (e.g., FGF5 for longhaired breeds) and we were able to detect the genes within candidate regions, each in its corresponding breed. For breed specific exploration of candidate regions under selection, eleven representative candidate regions were found to encompass potential candidate genes for several phenotypes such as brachycephaly of Persian (DLX6, DLX5, DLX2), curled ears of American Curl (MCRIP2, PBX1), and body-form of Siamese and Oriental (ADGRD1), which encourages further molecular investigations. The current assessment of the candidate regions under selection is empiric and detailed analyses are needed to rigorously disentangle effects of demography and population structure from artificial selection.
Collapse
Affiliation(s)
- Hasan Alhaddad
- Department of Biological Sciences, Kuwait University, Safat, Kuwait
| | - Mona Abdi
- Department of Biological Sciences, Kuwait University, Safat, Kuwait
| | - Leslie A. Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri - Columbia, Columbia, Missouri, United States of America
| |
Collapse
|
7
|
Bychkova EO, Golubeva NA, Filippova EA, Sangina LO, Markov AV. A New Mutation in the MC1R Gene Leads to Unique Carnelian Color in Kurilian Bobtails. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420010020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Abitbol M, Gache V. Copal, a new
MC
1R
allele in the domestic cat. Anim Genet 2019; 50:553-554. [DOI: 10.1111/age.12829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Marie Abitbol
- Université de Lyon, VetAgro Sup 1 avenue Bourgelat, 69280 Marcy‐l'Etoile France
- Université de Lyon, CNRS UMR5310 INSERM U1217, Université Claude Bernard Lyon I Institut NeuroMyoGène, 8 avenue Rockefeller, 69008Lyon France
| | - Vincent Gache
- Université de Lyon, CNRS UMR5310 INSERM U1217, Université Claude Bernard Lyon I Institut NeuroMyoGène, 8 avenue Rockefeller, 69008Lyon France
| |
Collapse
|
9
|
Bertolini F, Servin B, Talenti A, Rochat E, Kim ES, Oget C, Palhière I, Crisà A, Catillo G, Steri R, Amills M, Colli L, Marras G, Milanesi M, Nicolazzi E, Rosen BD, Van Tassell CP, Guldbrandtsen B, Sonstegard TS, Tosser-Klopp G, Stella A, Rothschild MF, Joost S, Crepaldi P. Signatures of selection and environmental adaptation across the goat genome post-domestication. Genet Sel Evol 2018; 50:57. [PMID: 30449276 PMCID: PMC6240954 DOI: 10.1186/s12711-018-0421-y] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 10/15/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Since goat was domesticated 10,000 years ago, many factors have contributed to the differentiation of goat breeds and these are classified mainly into two types: (i) adaptation to different breeding systems and/or purposes and (ii) adaptation to different environments. As a result, approximately 600 goat breeds have developed worldwide; they differ considerably from one another in terms of phenotypic characteristics and are adapted to a wide range of climatic conditions. In this work, we analyzed the AdaptMap goat dataset, which is composed of data from more than 3000 animals collected worldwide and genotyped with the CaprineSNP50 BeadChip. These animals were partitioned into groups based on geographical area, production uses, available records on solid coat color and environmental variables including the sampling geographical coordinates, to investigate the role of natural and/or artificial selection in shaping the genome of goat breeds. RESULTS Several signatures of selection on different chromosomal regions were detected across the different breeds, sub-geographical clusters, phenotypic and climatic groups. These regions contain genes that are involved in important biological processes, such as milk-, meat- or fiber-related production, coat color, glucose pathway, oxidative stress response, size, and circadian clock differences. Our results confirm previous findings in other species on adaptation to extreme environments and human purposes and provide new genes that could explain some of the differences between goat breeds according to their geographical distribution and adaptation to different environments. CONCLUSIONS These analyses of signatures of selection provide a comprehensive first picture of the global domestication process and adaptation of goat breeds and highlight possible genes that may have contributed to the differentiation of this species worldwide.
Collapse
Affiliation(s)
- Francesca Bertolini
- Department of Animal Science, Iowa State University, Ames, IA 50011 USA
- National Institute of Aquatic Resources, Technical University of Denmark (DTU), 2800 Lyngby, Denmark
| | - Bertrand Servin
- GenPhySE, INRA, Université de Toulouse, INPT, ENVT, 31326 Castanet Tolosan, France
| | - Andrea Talenti
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 20133 Milan, Italy
| | - Estelle Rochat
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | - Claire Oget
- GenPhySE, INRA, Université de Toulouse, INPT, ENVT, 31326 Castanet Tolosan, France
| | - Isabelle Palhière
- GenPhySE, INRA, Université de Toulouse, INPT, ENVT, 31326 Castanet Tolosan, France
| | - Alessandra Crisà
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA) - Research Centre for Animal Production and Acquaculture, 00015 Monterotondo, Roma, Italy
| | - Gennaro Catillo
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA) - Research Centre for Animal Production and Acquaculture, 00015 Monterotondo, Roma, Italy
| | - Roberto Steri
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA) - Research Centre for Animal Production and Acquaculture, 00015 Monterotondo, Roma, Italy
| | - Marcel Amills
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autonoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Licia Colli
- DIANA Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, 29100 Piacenza, Italy
- BioDNA Centro di Ricerca sulla Biodiversità e sul DNA Antico, Università Cattolica del S. Cuore, 29100 Piacenza, Italy
| | - Gabriele Marras
- Fondazione Parco Tecnologico Padano (PTP), 26900 Lodi, Italy
| | - Marco Milanesi
- DIANA Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, 29100 Piacenza, Italy
- Department of Support, Production and Animal Health, School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, Brazil
| | | | - Benjamin D. Rosen
- Animal Genomics and Improvement Laboratory, ARS USDA, Beltsville, MD 20705 USA
| | | | - Bernt Guldbrandtsen
- Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark
| | | | - Gwenola Tosser-Klopp
- GenPhySE, INRA, Université de Toulouse, INPT, ENVT, 31326 Castanet Tolosan, France
| | - Alessandra Stella
- BioDNA Centro di Ricerca sulla Biodiversità e sul DNA Antico, Università Cattolica del S. Cuore, 29100 Piacenza, Italy
| | - Max F. Rothschild
- Department of Animal Science, Iowa State University, Ames, IA 50011 USA
| | - Stéphane Joost
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Paola Crepaldi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 20133 Milan, Italy
| | - the AdaptMap consortium
- Department of Animal Science, Iowa State University, Ames, IA 50011 USA
- National Institute of Aquatic Resources, Technical University of Denmark (DTU), 2800 Lyngby, Denmark
- GenPhySE, INRA, Université de Toulouse, INPT, ENVT, 31326 Castanet Tolosan, France
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, 20133 Milan, Italy
- Laboratory of Geographic Information Systems (LASIG), School of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Recombinetics Inc, St Paul, 55104 MN USA
- Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (CREA) - Research Centre for Animal Production and Acquaculture, 00015 Monterotondo, Roma, Italy
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autonoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
- DIANA Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti, Università Cattolica del S. Cuore, 29100 Piacenza, Italy
- BioDNA Centro di Ricerca sulla Biodiversità e sul DNA Antico, Università Cattolica del S. Cuore, 29100 Piacenza, Italy
- Fondazione Parco Tecnologico Padano (PTP), 26900 Lodi, Italy
- Department of Support, Production and Animal Health, School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, Brazil
- Animal Genomics and Improvement Laboratory, ARS USDA, Beltsville, MD 20705 USA
- Center for Quantitative Genetics and Genomics, Aarhus University, 8830 Tjele, Denmark
| |
Collapse
|