1
|
Congiu M, Cesarani A, Falchi L, Macciotta NPP, Dimauro C. Combined Use of Univariate and Multivariate Approaches to Detect Selection Signatures Associated with Milk or Meat Production in Cattle. Genes (Basel) 2024; 15:1516. [PMID: 39766784 PMCID: PMC11675734 DOI: 10.3390/genes15121516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVES The aim of this study was to investigate the genomic structure of the cattle breeds selected for meat and milk production and to identify selection signatures between them. METHODS A total of 391 animals genotyped at 41,258 SNPs and belonging to nine breeds were considered: Angus (N = 62), Charolais (46), Hereford (31), Limousin (44), and Piedmontese (24), clustered in the Meat group, and Brown Swiss (42), Holstein (63), Jersey (49), and Montbéliarde (30), clustered in the Milk group. The population stratification was analyzed by principal component analysis (PCA), whereas selection signatures were identified by univariate (Wright fixation index, FST) and multivariate (canonical discriminant analysis, CDA) approaches. Markers with FST values larger than three standard deviations from the chromosomal mean were considered interesting. Attention was focused on markers selected by both techniques. RESULTS A total of 10 SNPs located on seven different chromosomes (7, 10, 14, 16, 17, 18, and 24) were identified. Close to these SNPs (±250 kb), 165 QTL and 51 genes were found. The QTL were grouped in 45 different terms, of which three were significant (Bonferroni correction < 0.05): milk fat content, tenderness score, and length of productive life. Moreover, genes mainly associated with milk production, immunity and environmental adaptation, and reproduction were mapped close to the common SNPs. CONCLUSIONS The results of the present study suggest that the combined use of univariate and multivariate approaches can help to better identify selection signatures due to directional selection.
Collapse
Affiliation(s)
- Michele Congiu
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy; (M.C.); (L.F.); (N.P.P.M.); (C.D.)
| | - Alberto Cesarani
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy; (M.C.); (L.F.); (N.P.P.M.); (C.D.)
- Animal and Dairy Science Department, University of Georgia, Athens, GA 30602, USA
| | - Laura Falchi
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy; (M.C.); (L.F.); (N.P.P.M.); (C.D.)
| | - Nicolò Pietro Paolo Macciotta
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy; (M.C.); (L.F.); (N.P.P.M.); (C.D.)
| | - Corrado Dimauro
- Dipartimento di Agraria, Università degli Studi di Sassari, 07100 Sassari, Italy; (M.C.); (L.F.); (N.P.P.M.); (C.D.)
| |
Collapse
|
2
|
Hervás-Rivero C, Mejuto-Vázquez N, López-Carbonell D, Altarriba J, Diaz C, Molina A, Rodríguez-Bermúdez R, Piedrafita J, Baro JA, Varona L. Runs of Homozygosity Islands in Autochthonous Spanish Cattle Breeds. Genes (Basel) 2024; 15:1477. [PMID: 39596677 PMCID: PMC11593383 DOI: 10.3390/genes15111477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND/OBJECTIVES Understanding the genetic architecture of autochthonous European cattle breeds is important for developing effective conservation strategies and sustainable breeding programs. Spanish beef cattle, which trace their origins to ancient migrations from the Near East with later admixture from African populations, exhibit a rich genetic diversity shaped by environmental adaptation and selective breeding. Runs of Homozygosity (ROH) are extended stretches of identical genetic material inherited from both parents. They serve as indicators of inbreeding and selection signatures within populations. ROH islands, or regions of the genome where ROH segments are highly concentrated across individuals within a breed, indicate genomic regions under selective pressure. METHODS This study explores the distribution of ROH islands across seven Spanish beef cattle breeds (Asturiana de los Valles, Avileña-Negra Ibérica, Bruna dels Pirineus, Morucha, Retinta, Pirenaica, and Rubia Gallega). By analyzing high-density SNP data, we characterized ROH patterns and identified genomic regions with high levels of homozygosity, which may indicate selection pressures or common ancestry. RESULTS Our findings revealed breed-specific ROH patterns as well as shared ROH islands, underscoring genetic relationships and differentiation among the breeds. Notably, Morucha displayed the highest number of ROH, while Asturiana de los Valles had the fewest. FROH values, which indicate genomic inbreeding, varied among the breeds, with Morucha and Retinta being associated with higher values. We identified 57 ROH islands, with shared regions among populations that suggest common ancestral selection pressures. Key genes within these regions, like MSTN, are associated with muscle growth, body weight, and fertility. CONCLUSIONS This study offers valuable insights for breeding strategies and conservation efforts, highlighting the genetic diversity and historical background of Spanish cattle breeds.
Collapse
Affiliation(s)
- C. Hervás-Rivero
- Instituto Agroalimentario de Aragón (IA2), Departamento de Anatomía, Embriología y Genética, Facultad de Veterinaria, Universidad de Zaragoza, C. Miguel Servet, 177, 50013 Zaragoza, Spain; (C.H.-R.); (D.L.-C.); (J.A.)
| | - N. Mejuto-Vázquez
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Universidad de Santiago de Compostela, Av. Carvallo Calero, 27002 Lugo, Spain; (N.M.-V.); (R.R.-B.)
| | - D. López-Carbonell
- Instituto Agroalimentario de Aragón (IA2), Departamento de Anatomía, Embriología y Genética, Facultad de Veterinaria, Universidad de Zaragoza, C. Miguel Servet, 177, 50013 Zaragoza, Spain; (C.H.-R.); (D.L.-C.); (J.A.)
| | - J. Altarriba
- Instituto Agroalimentario de Aragón (IA2), Departamento de Anatomía, Embriología y Genética, Facultad de Veterinaria, Universidad de Zaragoza, C. Miguel Servet, 177, 50013 Zaragoza, Spain; (C.H.-R.); (D.L.-C.); (J.A.)
| | - C. Diaz
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain
| | - A. Molina
- Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, 14071 Córdoba, Spain;
| | - R. Rodríguez-Bermúdez
- Departamento de Anatomía, Producción Animal y Ciencias Clínicas Veterinarias, Facultad de Veterinaria, Universidad de Santiago de Compostela, Av. Carvallo Calero, 27002 Lugo, Spain; (N.M.-V.); (R.R.-B.)
| | - J. Piedrafita
- Departamento de Ciencia Animal y de los Alimentos, Facultat de Veterinaria, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain;
| | - J. A. Baro
- Departamento de Ciencias Agroforestales, ETS de Ingenierías Agrarias, Universidad de Valladolid, 34004 Palencia, Spain;
| | - L. Varona
- Instituto Agroalimentario de Aragón (IA2), Departamento de Anatomía, Embriología y Genética, Facultad de Veterinaria, Universidad de Zaragoza, C. Miguel Servet, 177, 50013 Zaragoza, Spain; (C.H.-R.); (D.L.-C.); (J.A.)
| |
Collapse
|
3
|
Wirth A, Duda J, Emmerling R, Götz KU, Birkenmaier F, Distl O. Analyzing Runs of Homozygosity Reveals Patterns of Selection in German Brown Cattle. Genes (Basel) 2024; 15:1051. [PMID: 39202411 PMCID: PMC11354284 DOI: 10.3390/genes15081051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
An increasing trend in ancestral and classical inbreeding coefficients as well as inbreeding depression for longevity were found in the German Brown population. In addition, the proportion of US Brown Swiss genes is steadily increasing in German Browns. Therefore, the aim of the present study was to analyze the presence and genomic localization of runs of homozygosity (ROH) in order to evaluate their associations with the proportion of US Brown Swiss genes and survival rates of cows to higher lactations. Genotype data were sampled in 2364 German Browns from 258 herds. The final data set included 49,693 autosomal SNPs. We identified on average 35.996 ± 7.498 ROH per individual with a mean length of 8.323 ± 1.181 Mb. The genomic inbreeding coefficient FROH was 0.122 ± 0.032 and it decreased to 0.074, 0.031 and 0.006, when genomic homozygous segments > 8 Mb (FROH>8), >16 Mb (FROH>16) and >32 Mb (FROH>32) were considered. New inbreeding showed the highest correlation with FROH>32, whereas ancestral inbreeding coefficients had the lowest correlations with FROH>32. The correlation between the classical inbreeding coefficient and FROH was 0.572. We found significantly lower FROH, FROH>4, FROH>8 and FIS for US Brown Swiss proportions <60% compared to >80%. Cows surviving to the 2nd, 4th, 6th, 8th, and 10th lactation had lower genomic inbreeding for FROH and up to FROH>32, which was due to a lower number of ROH and a shorter average length of ROH. The strongest ROH island and consensus ROH shared by 50% of the animals was found on BTA 6 at 85-88 Mb. The genes located in this genomic region were associated with longevity (NPFFR2 and ADAMTS3), udder health and morphology (SLC4A4, NPFFR2, GC and RASSF6), milk production, milk protein percentage, coagulation properties of milk and milking speed (CSN3). On BTA 2, a ROH island was detected only in animals with <60% US Brown Swiss genes. Genes within this region are predominantly important for dual-purpose cattle breeds including Original Browns. For cows reaching more than 9 lactations, an exclusive ROH island was identified on BTA 7 with genes assumed to be associated with longevity. The analysis indicated that genomic homozygous regions important for Original Browns are still present and also ROH containing genes affecting longevity may have been identified. The breeding of German Browns should prevent any further increase in genomic inbreeding and run a breeding program with balanced weights on production, robustness and longevity.
Collapse
Affiliation(s)
- Anna Wirth
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), 30559 Hannover, Germany;
| | - Jürgen Duda
- Landeskuratorium der Erzeugerringe für Tierische Veredelung in Bayern e.V. (LKV), 80687 München, Germany;
| | - Reiner Emmerling
- Bavarian State Research Center for Agriculture, Institute of Animal Breeding, 85586 Poing-Grub, Germany; (R.E.); (K.-U.G.)
| | - Kay-Uwe Götz
- Bavarian State Research Center for Agriculture, Institute of Animal Breeding, 85586 Poing-Grub, Germany; (R.E.); (K.-U.G.)
| | - Franz Birkenmaier
- Amt für Ernährung, Landwirtschaft und Forsten, 87439 Kempten, Germany;
| | - Ottmar Distl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover (Foundation), 30559 Hannover, Germany;
| |
Collapse
|
4
|
Falchi L, Cesarani A, Criscione A, Hidalgo J, Garcia A, Mastrangelo S, Macciotta NPP. Effect of genotyping density on the detection of runs of homozygosity and heterozygosity in cattle. J Anim Sci 2024; 102:skae147. [PMID: 38798158 PMCID: PMC11197001 DOI: 10.1093/jas/skae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024] Open
Abstract
Runs of homozygosity (ROHom) are contiguous stretches of homozygous regions of the genome. In contrast, runs of heterozygosity (ROHet) are heterozygosity-rich regions. The detection of these two types of genomic regions (ROHom and ROHet) is influenced by the parameters involved in their identification and the number of available single-nucleotide polymorphisms (SNPs). The present study aimed to test the effect of chip density in detecting ROHom and ROHet in the Italian Simmental cattle breed. A sample of 897 animals were genotyped at low density (50k SNP; 397 individuals), medium density (140k SNP; 348 individuals), or high density (800k SNP; 152 individuals). The number of ROHom and ROHet per animal (nROHom and nROHet, respectively) and their average length were calculated. ROHom or ROHet shared by more than one animal and the number of times a particular SNP was inside a run were also computed (SNPROHom and SNPROHet). As the chip density increased, the nROHom increased, whereas their average length decreased. In contrast, the nROHet decreased and the average length increased as the chip density increased. The most repeated ROHom harbored no genes, whereas in the most repeated ROHet four genes (SNRPN, SNURF, UBE3A, and ATP10A) previously associated with reproductive traits were found. Across the 3 datasets, 31 SNP, located on Bos taurus autosome (BTA) 6, and 37 SNP (located on BTA21) exceeded the 99th percentile in the distribution of the SNPROHom and SNPROHet, respectively. The genomic region on BTA6 mapped the SLIT2, PACRGL, and KCNIP4 genes, whereas 19 and 18 genes were mapped on BTA16 and BTA21, respectively. Interestingly, most of genes found through the ROHet analysis were previously reported to be related to health, reproduction, and fitness traits. The results of the present study confirm that the detection of ROHom is more reliable when the chip density increases, whereas the ROHet trend seems to be the opposite. Genes and quantitative trait loci (QTL) mapped in the highlighted regions confirm that ROHet can be due to balancing selection, thus related to fitness traits, health, and reproduction, whereas ROHom are mainly involved in production traits. The results of the present study strengthened the usefulness of these parameters in analyzing the genomes of livestock and their biological meaning.
Collapse
Affiliation(s)
- Laura Falchi
- Dipartimento di Agraria, Università degli Studi di Sassari, Sassari 07100, Italy
| | - Alberto Cesarani
- Dipartimento di Agraria, Università degli Studi di Sassari, Sassari 07100, Italy
- Department of Animal and Dairy Science, University of Georgia, Athens 30602, USA
| | - Andrea Criscione
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università degli Studi di Catania, Catania 95123, Italy
| | - Jorge Hidalgo
- Department of Animal and Dairy Science, University of Georgia, Athens 30602, USA
| | - Andre Garcia
- American Angus Association, Angus Genetics Inc., Saint Joseph, MO, USA
| | - Salvatore Mastrangelo
- Dipartimento di Scienze Agrarie, Alimentari, e Forestali, Università degli Studi di Palermo, Palermo 90128, Italy
| | | |
Collapse
|
5
|
Criscione A, Chessari G, Cesarani A, Ablondi M, Asti V, Bigi D, Bordonaro S, Ciampolini R, Cipolat-Gotet C, Congiu M, De Palo P, Landi V, Macciotta NPP, Matassino D, Portolano B, Riggio S, Sabbioni A, Sardina MT, Senczuk G, Tumino S, Vasini M, Ciani E, Mastrangelo S. Analysis of ddRAD-seq data provides new insights into the genomic structure and patterns of diversity in Italian donkey populations. J Anim Sci 2024; 102:skae165. [PMID: 38874306 PMCID: PMC11214105 DOI: 10.1093/jas/skae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024] Open
Abstract
With more than 150 recognized breeds, donkeys assume relevant economic importance, especially in developing countries. Even if the estimated number of heads worldwide is 53M, this species received less attention than other livestock species. Italy has traditionally been considered one of the cradles of European donkey breeding, and despite a considerable loss of biodiversity, today still counts nine autochthonous populations. A total of 220 animals belonging to nine different populations were genotyped using the double-digest restriction site associated DNA (ddRAD) sequencing to investigate the pattern of diversity using a multi-technique approach. A total of 418,602,730 reads were generated and successfully demultiplexed to obtain a medium-density SNP genotypes panel with about 27K markers. The diversity indices showed moderate levels of variability. The genetic distances and relationships, largely agree with the breeding history of the donkey populations under investigation. The results highlighted the separation of populations based on their genetic origin or geographical proximity between breeding areas, showed low to moderate levels of admixture, and indicated a clear genetic difference in some cases. For some breeds, the results also validate the success of proper management conservation plans. Identified runs of homozygosity islands, mapped within genomic regions related to immune response and local adaptation, are consistent with the characteristics of the species known for its rusticity and adaptability. This study is the first exhaustive genome-wide analysis of the diversity of Italian donkey populations. The results emphasized the high informativeness of genome-wide markers retrieved through the ddRAD approach. The findings take on great significance in designing and implementing conservation strategies. Standardized genotype arrays for donkey species would make it possible to combine worldwide datasets to provide further insights into the evolution of the genomic structure and origin of this important genetic resource.
Collapse
Affiliation(s)
- Andrea Criscione
- Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, Catania, Italy
| | - Giorgio Chessari
- Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, Catania, Italy
- Department of Animal Sciences, Georg-August-University Göttingen, Göttingen, Germany
| | - Alberto Cesarani
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
- Department of Animal and Dairy Science, University of Georgia, Athens, USA
| | - Michela Ablondi
- Dipartimento di Scienze Medico-Veterinarie, University of Parma, Parma, Italy
| | - Vittoria Asti
- Dipartimento di Scienze Medico-Veterinarie, University of Parma, Parma, Italy
| | - Daniele Bigi
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, University of Bologna, Bologna, Italy
| | - Salvatore Bordonaro
- Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, Catania, Italy
| | | | | | - Michele Congiu
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | - Pasquale De Palo
- Dipartimento di Medicina Veterinaria, University of Bari Aldo Moro, Valenzano, Italy
| | - Vincenzo Landi
- Dipartimento di Medicina Veterinaria, University of Bari Aldo Moro, Valenzano, Italy
| | | | - Donato Matassino
- Consorzio per la Sperimentazione, Divulgazione e Applicazione di Biotecniche Innovative, Benevento, Italy
| | - Baldassare Portolano
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Silvia Riggio
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Alberto Sabbioni
- Dipartimento di Scienze Medico-Veterinarie, University of Parma, Parma, Italy
| | - Maria Teresa Sardina
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| | - Gabriele Senczuk
- Dipartimento di Agricoltura, Ambiente e Alimenti, University of Molise, Campobasso, Italy
| | - Serena Tumino
- Dipartimento di Agricoltura, Alimentazione e Ambiente, University of Catania, Catania, Italy
| | - Matteo Vasini
- Associazione Nazionale Allevatori delle Razze Equine ed Asinine Italiane, ANAREAI, Roma, Italy
| | - Elena Ciani
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, University of Bari Aldo Moro, Bari, Italy
| | - Salvatore Mastrangelo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, Italy
| |
Collapse
|
6
|
Senczuk G, Macrì M, Di Civita M, Mastrangelo S, Del Rosario Fresno M, Capote J, Pilla F, Delgado JV, Amills M, Martínez A. The demographic history and adaptation of Canarian goat breeds to environmental conditions through the use of genome-wide SNP data. Genet Sel Evol 2024; 56:2. [PMID: 38172652 PMCID: PMC10763158 DOI: 10.1186/s12711-023-00869-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The presence of goats in the Canary Islands dates back to the late 1st millennium BC, which coincides with the colonization by the Amazigh settlers. However, the exact geographic origin of Canarian goats is uncertain since the Amazigh peoples were distributed over a wide spatial range. Nowadays, three Canarian breeds (Palmera, Majorera and Tinerfeña) are officially recognized, along with two distinct South and North Tinerfeña ecotypes, with the South Tinerfeña and Majorera goats thriving in arid and dry semi-desertic environments and the Palmera and North Tinerfeña goats are adapted to humid and temperate areas that are influenced by trade winds. Genotypes for 224 Canarian goats were generated using the Illumina Goat single nucleotide polymorphism (SNP)50 BeadChip. By merging these data with the genotypes from 1007 individuals of African and Southern European ancestry, our aim was to ascertain the geographic origin of the Canarian goats and identify genes associated with adaptation to diverse environmental conditions. RESULTS The diversity indices of the Canarian breeds align with most of those of the analyzed local breeds from Africa and Europe, except for the Palmera goats that showed lower levels of genetic variation. The Canarian breeds demonstrate a significant genetic differentiation compared to other populations, which indicates a history of prolonged geographic isolation. Moreover, the phylogenetic reconstruction indicated that the ancestry of the Canarian goats is fundamentally North African rather than West African. The ADMIXTURE and the TreeMix analyses showed no evidence of gene flow between Canarian goats and other continental breeds. The analysis of runs of homozygosity (ROH) identified 13 ROH islands while the window-based FST method detected 25 genomic regions under selection. Major signals of selection were found on Capra hircus (CHI) chromosomes 6, 7, and 10 using various comparisons and methods. CONCLUSIONS This genome-wide analysis sheds new light on the evolutionary history of the four breeds that inhabit the Canary Islands. Our findings suggest a North African origin of the Canarian goats. In addition, within the genomic regions highlighted by the ROH and FST approaches, several genes related to body size and heat tolerance were identified.
Collapse
Affiliation(s)
- Gabriele Senczuk
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy.
| | - Martina Macrì
- Animal Breeding Consulting S.L., 14014, Córdoba, Spain
- Universidad de Córdoba, 14071, Córdoba, Spain
| | - Marika Di Civita
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Salvatore Mastrangelo
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128, Palermo, Italy
| | | | - Juan Capote
- Instituto Canario de Investigaciones Científicas, 38260, Tenerife, Spain
| | - Fabio Pilla
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | | | - Marcel Amills
- CRAG, CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | | |
Collapse
|
7
|
Zhao H, Sun G, Mu X, Li X, Wang J, Zhao M, Zhang G, Ji R, Chen C, Gao G, Wang J. Genome-wide selective signatures mining the candidate genes for egg laying in goose. BMC Genomics 2023; 24:750. [PMID: 38057756 DOI: 10.1186/s12864-023-09852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Improving the egg production of goose is a crucial goal of breeding, because genetics is the key factor affecting egg production. Thus, we sequenced the genomes of 55 Chinese indigenous geese from six breeds, which were divided into the high egg-laying group (ZE, HY, and SC) and low egg-laying group (ZD, LH, and ST). Based on the results of the inter-population selection signal analysis, we mined the selected genome regions in the high egg-laying germplasm population to identify the key candidate genes affecting the egg-laying traits. RESULTS According to the whole-genome sequencing data, the average sequencing depth reached 11.75X. The genetic relationships among those six goose breeds coincided with the breed's geographical location. The six selective signal detection results revealed that the most selected regions were located on Chr2 and Chr12. In total, 12,051 single-nucleotide polymorphism (SNP) sites were selected in all six methods. Using the enrichment results of candidate genes, we detected some pathways involved in cell differentiation, proliferation, and female gonadal development that may cause differences in egg production. Examples of these pathways were the PI3K-Akt signaling pathway (IGF2, COMP, and FGFR4), animal organ morphogenesis (IGF2 and CDX4), and female gonad development (TGFB2). CONCLUSION On analyzing the genetic background of six local goose breeds by using re-sequencing data, we found that the kinship was consistent with their geographic location. 107 egg-laying trait-associated candidate genes were mined through six selection signal analysis. Our study provides a critical reference for analyzing the molecular mechanism underlying differences in reproductive traits and molecular breeding of geese.
Collapse
Affiliation(s)
- Hongchang Zhao
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
- National Waterfowl of gene pool, Taizhou, 225511, China
| | - Guobo Sun
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
- National Waterfowl of gene pool, Taizhou, 225511, China
| | - Xiaohui Mu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
- National Waterfowl of gene pool, Taizhou, 225511, China
| | - Xiaoming Li
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
- National Waterfowl of gene pool, Taizhou, 225511, China
| | - Jun Wang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
- National Waterfowl of gene pool, Taizhou, 225511, China
| | - Mengli Zhao
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
- National Waterfowl of gene pool, Taizhou, 225511, China
| | - Gansheng Zhang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China
- National Waterfowl of gene pool, Taizhou, 225511, China
- Taizhou Fengda Agriculture and Animal Husbandry Technology Co., Ltd, Taizhou, 225511, China
| | - Rongchao Ji
- National Waterfowl of gene pool, Taizhou, 225511, China
- Taizhou Fengda Agriculture and Animal Husbandry Technology Co., Ltd, Taizhou, 225511, China
| | - Chao Chen
- National Waterfowl of gene pool, Taizhou, 225511, China
- Taizhou Fengda Agriculture and Animal Husbandry Technology Co., Ltd, Taizhou, 225511, China
| | - Guangliang Gao
- Chongqing Academy of Animal Science, Chongqing, 402460, China
| | - Jian Wang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, 225300, China.
- National Waterfowl of gene pool, Taizhou, 225511, China.
- Taizhou Fengda Agriculture and Animal Husbandry Technology Co., Ltd, Taizhou, 225511, China.
| |
Collapse
|
8
|
Pacheco HA, Rossoni A, Cecchinato A, Peñagaricano F. Identification of runs of homozygosity associated with male fertility in Italian Brown Swiss cattle. Front Genet 2023; 14:1227310. [PMID: 37485336 PMCID: PMC10356982 DOI: 10.3389/fgene.2023.1227310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Intensive selection for improved productivity has been accompanied by an increase in inbreeding rates and a reduction in genetic diversity. The increase in inbreeding tends to impact performance, especially fitness-related traits such as male fertility. Inbreeding can be monitored using runs of homozygosity (ROH), defined as contiguous lengths of homozygous genotypes observed in an individual's chromosome. The goal of this study was to evaluate the presence of ROH in Italian Brown Swiss cattle and assess its association with bull fertility. First, we evaluated the association between ROH and male fertility using 1,102 Italian Brown Swiss bulls with sire conception rate records and 572 K SNPs spanning the entire genome. Second, we split the entire population into 100 high-fertility and 100 low-fertility bulls to investigate the potential enrichment of ROH segments in the low-fertility group. Finally, we mapped the significant ROH regions to the bovine genome to identify candidate genes associated with sperm biology and male fertility. Notably, there was a negative association between bull fertility and the amount of homozygosity. Four different ROH regions located in chromosomes 6, 10, 11, and 24 were significantly overrepresented in low-fertility bulls (Fisher's exact test, p-value <0.01). Remarkably, these four genomic regions harbor many genes such as WDR19, RPL9, LIAS, UBE2K, DPF3, 5S-rRNA, 7SK, U6, and WDR7 that are related to sperm biology and male fertility. Overall, our findings suggest that inbreeding and increased homozygosity have a negative impact on male fertility in Italian Brown Swiss cattle. The quantification of ROH can contribute to minimizing the inbreeding rate and avoid its negative effect on fitness-related traits, such as male fertility.
Collapse
Affiliation(s)
- Hendyel A. Pacheco
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Alessio Cecchinato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Padua, Italy
| | - Francisco Peñagaricano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
9
|
Falchi L, Cesarani A, Mastrangelo S, Senczuk G, Portolano B, Pilla F, Macciotta NPP. Analysis of runs of homozygosity of cattle living in different climate zones. J Anim Sci 2023; 101:skad061. [PMID: 36802370 PMCID: PMC10066727 DOI: 10.1093/jas/skad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Aim of this study was to analyze the distribution and characteristics of runs of homozygosity in Bos taurus taurus and Bos taurus indicus breeds, as well as their crosses, farmed all around the world. With this aim in view, we used single-nucleotide polymorphisms (SNP) genotypes for 3,263 cattle belonging to 204 different breeds. After quality control, 23,311 SNPs were retained for the analysis. Animals were divided into seven different groups: 1) continental taurus, 2) temperate taurus, 3) temperate indicus, 4) temperate composite, 5) tropical taurus, 6) tropical indicus, and 7) tropical composite. The climatic zones were created according to the latitude of the breeds' country of origin: i) continental, latitude ≥ 45°; ii) temperate, 45°< Latitude >23.26°; iii) tropics, latitude ≤ 23.26°. Runs of homozygosity were computed as 15 SNPs spanning in at least 2 Mb; number of ROH per animal (nROH), average ROH length (meanMb), and ROH-based inbreeding coefficients (FROH) were also computed. Temperate indicus showed the largest nROH, whereas Temperate taurus the lowest value. Moreover, the largest meanMb was observed for Temperate taurus, whereas the lowest value for Tropics indicus. Temperate indicus breeds showed the largest FROH values. Genes mapped in the identified ROH were reported to be associated with the environmental adaptation, disease resistance, coat color determinism, and production traits. Results of the present study confirmed that runs of homozygosity could be used to identify genomic signatures due to both artificial and natural selection.
Collapse
Affiliation(s)
- Laura Falchi
- Dipartimento di Agraria, University of Sassari, 07100 Sassari, Italy
| | - Alberto Cesarani
- Dipartimento di Agraria, University of Sassari, 07100 Sassari, Italy
- Department of Animal and Dairy Science, University of Georgia, 30602 Athens, USA
| | - Salvatore Mastrangelo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - Gabriele Senczuk
- Dipartimento di Agricoltura, Ambiente e Alimenti, University of Molise, 86100 Campobasso, Italy
| | - Baldassare Portolano
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, 90128 Palermo, Italy
| | - Fabio Pilla
- Dipartimento di Agricoltura, Ambiente e Alimenti, University of Molise, 86100 Campobasso, Italy
| | | |
Collapse
|
10
|
Assessment of Genetic Diversity, Runs of Homozygosity, and Signatures of Selection in Tropical Milking Criollo Cattle Using Pedigree and Genomic Data. Genes (Basel) 2022; 13:genes13101896. [PMID: 36292782 PMCID: PMC9602073 DOI: 10.3390/genes13101896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022] Open
Abstract
The objective of this study was to evaluate the genetic diversity of the Tropical Milking Criollo cattle (TMC) breed in Mexico through parameters derived from pedigree and genomic information assessment. The pedigree file consisted of 3780 animals. Seventy-nine bovines were genotyped with the medium-density single nucleotide polymorphism chip and considered a reference population for pedigree analysis. The effective population size and the probability of gene origin used to assess the evolution of genetic diversity were calculated with pedigree information. Inbreeding coefficients were evaluated based on pedigree (FPed), the genomic relationship matrix (FGRM), and runs of homozygosity (FROH) of different length classes. The average inbreeding was 2.82 ± 2.66%, −0.7 ± 3.8%, and 10.9 ± 3.0% for FPED, FGRM, and FROH, respectively. Correlation between FPED and FROH was significant only for runs of homozygosity > 4 Mb, indicating the FPED of a population with an average equivalent complete generation of five only recovers the most recent inbreeding. The parameters of the probability of gene origin indicated the existence of genetic bottlenecks and the loss of genetic diversity in the history of the TMC cattle population; however, pedigree and genomic information revealed the existence of current sufficient genetic diversity to design a sustainable breeding program.
Collapse
|
11
|
Genomic inbreeding and runs of homozygosity analysis of indigenous cattle populations in southern China. PLoS One 2022; 17:e0271718. [PMID: 36006904 PMCID: PMC9409551 DOI: 10.1371/journal.pone.0271718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
Runs of homozygosity (ROH) are continuous homozygous segments from the common ancestor of parents. Evaluating ROH pattern can help to understand inbreeding level and genetic basis of important traits. In this study, three representative cattle populations including Leiqiong cattle (LQC), Lufeng cattle (LFC) and Hainan cattle (HNC) were genotyped using the Illumina BovineHD SNPs array (770K) to assess ROH pattern at genome wide level. Totally, we identified 26,537 ROH with an average of 153 ROH per individual. The sizes of ROH ranged from 0.5 to 53.26Mb, and the average length was 1.03Mb. The average of FROH ranged from 0.10 (LQC) to 0.15 (HNC). Moreover, we identified 34 ROH islands (with frequency > 0.5) across genome. Based on these regions, we observed several breed-specific candidate genes related to adaptive traits. Several common genes related to immunity (TMEM173, MZB1 and SIL1), and heat stress (DNAJC18) were identified in all three populations. Three genes related to immunity (UGP2), development (PURA) and reproduction (VPS54) were detected in both HNC and LQC. Notably, we identified several breed-specific genes related to sperm development (BRDT and SPAG6) and heat stress (TAF7) in HNC, and immunity (CDC23 and NME5) and development (WNT87) in LFC. Our findings provided valuable insights into understanding the genomic homozygosity pattern and promoting the conservation of genetic resources of Chinese indigenous cattle.
Collapse
|
12
|
Dlamini NM, Dzomba EF, Magawana M, Ngcamu S, Muchadeyi FC. Linkage Disequilibrium, Haplotype Block Structures, Effective Population Size and Genome-Wide Signatures of Selection of Two Conservation Herds of the South African Nguni Cattle. Animals (Basel) 2022; 12:ani12162133. [PMID: 36009722 PMCID: PMC9405234 DOI: 10.3390/ani12162133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
The Nguni cattle of South Africa are a Sanga breed, characterized by many eco-types and research populations that have been established in an effort to conserve the diversity within the breed. The aim of this study was to investigate the overall genetic diversity as well as similarities and differences within and between two conservation herds of the South African Nguni Cattle. Mean LD (r2) estimates were 0.413 ± 0.219 for Bartlow Combine and 0.402 ± 0.209 for Kokstad. Genome-wide average LD (r2) decreased with increasing genetic marker distance for both populations from an average of 0.76 ± 0.28 and 0.77 ± 0.27 at 0–1 kb bin to 0.31 ± 0.13 and 0.32 ± 0.13 at 900–1000 kb bin in Bartlow Combine and Kokstad populations, respectively. Variation in LD levels across autosomes was observed in both populations. The results showed higher levels of LD than previously reported in Nguni field populations and other South African breeds, especially at shorter marker distances of less than 20 kb. A total number of 77,305 and 66,237 haplotype blocks covering a total of 1570.09 Mb (61.99% genome coverage) and 1367.42 Mb (53.96% genome coverage) were detected in Bartlow Combine and Kokstad populations, respectively. A total of 18,449 haploblocks were shared between the two populations while 58,856 and 47,788 haploblocks were unique to Bartlow Combine and Kokstad populations, respectively. Effective population size (Ne) results demonstrated a rapid decrease in Ne across generations for both Bartlow Combine and Kokstad conservation herds. Two complementary methods, integrated haplotype score (iHS) and Extend Haplotype Homozygosity Test (XP-EHH), were implemented in this study to detect the selection signatures in the two herds. A total of 553 and 166 selected regions were identified in Bartlow Combine and Kokstad populations, respectively. DAVID and GO terms analysis of the regions under selection reported genes/QTLs associated with fertility, carcass weight, coat colour, immune response, and eye area pigmentation. Some genes, such as HCAR1, GNAI1, PIK3R3, WNT3, RAB5A, BOLA-N (Class IB MHC Antigen QA-2-Related), BOLA (Class IB MHC Antigen QA-2-Related), and Rab-8B, etc., were found in regions under selection in this study. Overall, the study implied reduced genetic diversity in the two herds calling for corrective measures to maintain the diversity of the South African Nguni cattle. This study presented a comprehensive analysis of the genomic architecture of South African Nguni cattle populations, providing essential genetic information of utility in the management of conservation flocks.
Collapse
Affiliation(s)
- Njabulo M. Dlamini
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa or
- Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort, Pretoria 0110, South Africa
| | - Edgar F. Dzomba
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, Pietermaritzburg 3209, South Africa or
| | - Mpumelelo Magawana
- KZN Department of Agriculture & Rural Development, Private Bag X9059, Pietermaritzburg 3200, South Africa
| | - Sphamandla Ngcamu
- KZN Department of Agriculture & Rural Development, Private Bag X9059, Pietermaritzburg 3200, South Africa
| | - Farai C. Muchadeyi
- Agricultural Research Council, Biotechnology Platform, Private Bag X5, Onderstepoort, Pretoria 0110, South Africa
- Correspondence:
| |
Collapse
|
13
|
Petretto E, Dettori ML, Pazzola M, Manca F, Amills M, Vacca GM. Mitochondrial DNA diversity of the Sardinian local cattle stock. Sci Rep 2022; 12:2486. [PMID: 35169207 PMCID: PMC8847569 DOI: 10.1038/s41598-022-06420-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
The aim of this research was to characterize the genetic diversity of the Sarda (Sa, n = 131), Sardo Bruna (SB, n = 44) and Sardo Modicana (SM, n = 26) cattle breeds, reared in the island of Sardinia (Italy). A portion of the mitochondrial DNA hypervariable region was sequenced, in order to identify a potential signature of African introgression. The FST coefficients among populations ranged between 0.056 for Sa vs SB and 0.167 for SB vs SM. AMOVA analysis indicated there was a significant differentiation of the three breeds, although most of diversity was gathered at the within-breed level. The Median Joining Network of the Sardinian sequences showed a potential founder effect signature. A MJ network including Sardinian cattle plus African, Italian, Iberian and Asian sequences, revealed the presence of haplogroup T3, already detected in Sa cattle, and the presence of Hg T1 and Hg T1′2′3, in Sa and SB. The presence of a private haplotype belonging to haplogroup T1, which is characteristic of African taurine breeds, may be due to the introgression of Sardinian breeds with African cattle, either directly (most probable source: North African cattle) or indirectly (through a Mediterranean intermediary already introgressed with African blood).
Collapse
Affiliation(s)
- Elena Petretto
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy.,Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Maria Luisa Dettori
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy.
| | - Michele Pazzola
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Fabio Manca
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Marcel Amills
- Departament de Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.,Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Giuseppe Massimo Vacca
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| |
Collapse
|
14
|
Investigation of genetic diversity and selection signatures in Czech cattle genetic resources revealed by genome-wide analysis. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Cesarani A, Gaspa G, Correddu F, Dimauro C, Macciotta NPP. Unravelling the effect of environment on the genome of Sarda breed ewes using Runs of Homozygosity. J Anim Breed Genet 2022; 139:292-306. [PMID: 34984736 DOI: 10.1111/jbg.12666] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 02/04/2023]
Abstract
Natural adaptation and artificial selection have shaped the genome of modern livestock breeds. Among SNP-based metrics that are used to detect signatures of selection at genome-wide level, runs of homozygosity (ROH) are getting increasing popularity. In this paper, ROH distribution and features of a sample of 823 Sarda breed ewes farmed at different levels of altitude are analysed to investigate the effect of the environment on the patterns of homozygosity. A total of 46,829 (33,087 unique) ROH were detected. OAR2 exhibited the largest average number of ROH per animal. The most frequent ROH (OAR27, 38.9-44.2 Mb) was shared by 327. ROH length was statistically affected (p < 0.001) by both the altitude and temperature of the place where the flock was located. The highest probability of a SNP falling in a ROH was observed for hill ewes, whereas the smallest one for mountain. A total of 457 SNP exceeded the 99th percentile of the ROH count per SNP distribution and were considered significant. These markers mapped in eight chromosomes and they clustered into 17 ROH islands, where 80 candidate genes were mapped. Results of this study highlighted differences in the ROH distribution and features among sheep farmed in flocks located at different levels of altitude, confirming the role of environmental adaptability in shaping the genome of this breed.
Collapse
Affiliation(s)
- Alberto Cesarani
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy.,Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - Giustino Gaspa
- Department of Agricultural, Forestry and Alimentary Sciences, University of Torino, Grugliasco, Italy
| | - Fabio Correddu
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Corrado Dimauro
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | | |
Collapse
|
16
|
Genomics Confirm an Alarming Status of the Genetic Diversity of Belgian Red and Belgian White Red Cattle. Animals (Basel) 2021; 11:ani11123574. [PMID: 34944349 PMCID: PMC8697887 DOI: 10.3390/ani11123574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Genetic diversity of livestock is vitally important as it enables the adaptation of future populations to changing environments. Therefore, preserving a sufficiently large genetic diversity is key. However, for many local cattle populations, little is known about their genetic diversity such as inbreeding level, effective size etc. We studied the genetic diversity of two local Belgian red cattle populations (Belgian Red and Belgian White Red cattle) using state-of-the-art genomic techniques. These tools assessed diversity at the population and individual level, and allowed the positioning of these two breeds in an international context of 52 other (European) cattle breeds. Accordingly, we contribute to the general knowledge of European red cattle, and more specifically we help the breeders, breed organization and the government to manage the genetic diversity of both breeds. Abstract Genetic diversity is increasingly important for researchers and society. Small and local populations deserve more attention especially, as they may harbor important characteristics. Moreover, small populations are at greater risk and their genetic management is often more challenging. Likewise, European red cattle populations are threatened, as they are outcompeted by more specialized cattle breeds. In this study, we investigate the genetic diversity of two local Belgian red cattle breeds: Belgian Red and Belgian White Red cattle. A total of 270 animals were genotyped via medium density SNP arrays. Genetic diversity was assessed using runs of homozygosity screening, effective population size estimation and Fst analyses. Genomic inbreeding coefficients based on runs of homozygosity were estimated at 7.0% for Belgian Red and 6.1% for Belgian White Red cattle, and both populations had a low effective population size (68 and 86, respectively). PCA, Fst and admixture analyses revealed the relationship to 52 other international breeds, where they were closest related to some Belgian, French, Scandinavian and Dutch breeds. Moreover, Fst analyses revealed for Belgian Red cattle a signature of selection on BTA6, adjacent to the KIT gene. This study gains important knowledge on the genetic diversity of these two small local red cattle breeds, and will aid in their (genetic) management.
Collapse
|
17
|
Fabbri MC, Dadousis C, Tiezzi F, Maltecca C, Lozada-Soto E, Biffani S, Bozzi R. Genetic diversity and population history of eight Italian beef cattle breeds using measures of autozygosity. PLoS One 2021; 16:e0248087. [PMID: 34695128 PMCID: PMC8544844 DOI: 10.1371/journal.pone.0248087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
In the present study, GeneSeek GGP-LDv4 33k single nucleotide polymorphism chip was used to detect runs of homozygosity (ROH) in eight Italian beef cattle breeds, six breeds with distribution limited to Tuscany (Calvana, Mucca Pisana, Pontremolese) or Sardinia (Sarda, Sardo Bruna and Sardo Modicana) and two cosmopolitan breeds (Charolais and Limousine). ROH detection analyses were used to estimate autozygosity and inbreeding and to identify genomic regions with high frequency of ROH, which might reflect selection signatures. Comparative analysis among breeds revealed differences in length and distribution of ROH and inbreeding levels. The Charolais, Limousine, Sarda, and Sardo Bruna breeds were found to have a high frequency of short ROH (~ 15.000); Calvana and Mucca Pisana presented also runs longer than 16 Mbp. The highest level of average genomic inbreeding was observed in Tuscan breeds, around 0.3, while Sardinian and cosmopolitan breeds showed values around 0.2. The population structure and genetic distances were analyzed through principal component and multidimensional scaling analyses, and resulted in a clear separation among the breeds, with clusters related to productive purposes. The frequency of ROH occurrence revealed eight breed-specific genomic regions where genes of potential selective and conservative interest are located (e.g. MYOG, CHI3L1, CHIT1 (BTA16), TIMELESS, APOF, OR10P1, OR6C4, OR2AP1, OR6C2, OR6C68, CACNG2 (BTA5), COL5A2 and COL3A1 (BTA2)). In all breeds, we found the largest proportion of homozygous by descent segments to be those that represent inbreeding events that occurred around 32 generations ago, with Tuscan breeds also having a significant proportion of segments relating to more recent inbreeding.
Collapse
Affiliation(s)
- Maria Chiara Fabbri
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università di Firenze, Firenze, Italy
- * E-mail:
| | - Christos Dadousis
- Dipartimento di Scienze Medico‐Veterinarie, Università di Parma, Parma, Italy
| | - Francesco Tiezzi
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States of America
| | - Christian Maltecca
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States of America
| | - Emmanuel Lozada-Soto
- Department of Animal Science, North Carolina State University, Raleigh, NC, United States of America
| | - Stefano Biffani
- Institute of Agricultural Biology and Biotechnology (CNR), Milano, Italy
| | - Riccardo Bozzi
- Dipartimento di Scienze e Tecnologie Agrarie, Alimentari, Ambientali e Forestali, Università di Firenze, Firenze, Italy
| |
Collapse
|
18
|
Macciotta NPP, Colli L, Cesarani A, Ajmone-Marsan P, Low WY, Tearle R, Williams JL. The distribution of runs of homozygosity in the genome of river and swamp buffaloes reveals a history of adaptation, migration and crossbred events. Genet Sel Evol 2021; 53:20. [PMID: 33639853 PMCID: PMC7912491 DOI: 10.1186/s12711-021-00616-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/17/2021] [Indexed: 01/03/2023] Open
Abstract
Background Water buffalo is one of the most important livestock species in the world. Two types of water buffalo exist: river buffalo (Bubalus bubalis bubalis) and swamp buffalo (Bubalus bubalis carabanensis). The buffalo genome has been recently sequenced, and thus a new 90 K single nucleotide polymorphism (SNP) bead chip has been developed. In this study, we investigated the genomic population structure and the level of inbreeding of 185 river and 153 swamp buffaloes using runs of homozygosity (ROH). Analyses were carried out jointly and separately for the two buffalo types. Results The SNP bead chip detected in swamp about one-third of the SNPs identified in the river type. In total, 18,116 ROH were detected in the combined data set (17,784 SNPs), and 16,251 of these were unique. ROH were present in both buffalo types mostly detected (~ 59%) in swamp buffalo. The number of ROH per animal was larger and genomic inbreeding was higher in swamp than river buffalo. In the separated datasets (46,891 and 17,690 SNPs for river and swamp type, respectively), 19,760 and 10,581 ROH were found in river and swamp, respectively. The genes that map to the ROH islands are associated with the adaptation to the environment, fitness traits and reproduction. Conclusions Analysis of ROH features in the genome of the two water buffalo types allowed their genomic characterization and highlighted differences between buffalo types and between breeds. A large ROH island on chromosome 2 was shared between river and swamp buffaloes and contained genes that are involved in environmental adaptation and reproduction. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-021-00616-3.
Collapse
Affiliation(s)
| | - Licia Colli
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti-DIANA, Università Cattolica del Sacro Cuore, Piacenza, Italia.,Centro di Ricerca sulla Biodiversità e sul DNA Antico-BioDNA, Università Cattolica del Sacro Cuore, Piacenza, Italia
| | - Alberto Cesarani
- Dipartimento di Agraria, Università degli Studi di Sassari, Sassari, Italia. .,Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA.
| | - Paolo Ajmone-Marsan
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti-DIANA, Università Cattolica del Sacro Cuore, Piacenza, Italia.,Centro di Ricerca Nutrigenomica e Proteomica-PRONUTRIGEN, Università Cattolica del Sacro Cuore, Piacenza, Italia
| | - Wai Y Low
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Rick Tearle
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - John L Williams
- Dipartimento di Scienze Animali, della Nutrizione e degli Alimenti-DIANA, Università Cattolica del Sacro Cuore, Piacenza, Italia.,The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| |
Collapse
|
19
|
Saravanan KA, Panigrahi M, Kumar H, Parida S, Bhushan B, Gaur GK, Dutt T, Mishra BP, Singh RK. Genomic scans for selection signatures revealed candidate genes for adaptation and production traits in a variety of cattle breeds. Genomics 2021; 113:955-963. [PMID: 33610795 DOI: 10.1016/j.ygeno.2021.02.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 01/30/2021] [Accepted: 02/15/2021] [Indexed: 12/30/2022]
Abstract
Domestication and selection are the major driving forces responsible for the determinative genetic variability in livestock. These selection patterns create unique genetic signatures within the genome. BovineSNP50 chip data from 236 animals (seven indicine and five taurine cattle breeds) were analyzed in the present study. We implemented three complementary approaches viz. iHS (Integrated haplotype score), ROH (Runs of homozygosity), and FST, to detect selection signatures. A total of 179, 56, and 231 regions revealed 518, 277, and 267 candidate genes identified by iHS, ROH, and FST methods, respectively. We found several candidate genes (e.g., NCR3, ARID5A, HIST1H2BN, DEFB4, DEFB7, HSPA1L, HSPA1B, and DNAJB4) related to production traits and the adaptation of indigenous breeds to local environmental constraints such as heat stress and disease susceptibility. However, further studies are warranted to refine the findings using a larger sample size, whole-genome sequencing, and/or high density genotyping.
Collapse
Affiliation(s)
- K A Saravanan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| | - Harshit Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Subhashree Parida
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - G K Gaur
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Triveni Dutt
- Livestock Production & Management section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - B P Mishra
- Division of Animal Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - R K Singh
- Division of Animal Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| |
Collapse
|
20
|
Hidalgo J, Cesarani A, Garcia A, Sumreddee P, Larios N, Mancin E, García JG, Núñez R, Ramírez R. Genetic Background and Inbreeding Depression in Romosinuano Cattle Breed in Mexico. Animals (Basel) 2021; 11:ani11020321. [PMID: 33525405 PMCID: PMC7911603 DOI: 10.3390/ani11020321] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The objective of this study was to evaluate the genetic background and inbreeding depression in the Mexican Romosinuano cattle using pedigree and genomic information. Inbreeding was estimated using pedigree (FPED) and genomic information based on the genomic relationship matrix (FGRM) and runs of homozygosity (FROH). Linkage disequilibrium (LD) was evaluated using the correlation between pairs of loci, and the effective population size (Ne) was calculated based on LD and pedigree information. The pedigree file consisted of 4875 animals; 71 had genotypes. LD decreased with the increase in distance between markers, and Ne estimated using genomic information decreased from 610 to 72 animals (from 109 to 1 generation ago), the Ne estimated using pedigree information was 86.44. The number of runs of homozygosity per animal ranged between 18 and 102 segments with an average of 55. The average inbreeding was 2.98 ± 2.81, 2.98 ± 4.01, and 7.28 ± 3.68% for FPED, FGRM, and FROH, respectively. A 1% increase in inbreeding decreased birth weight by 0.103 kg and weaning weight by 0.685 kg. A strategy such as optimum genetic contributions to maximize selection response and manage the long-term genetic variability and inbreeding could lead to sustainable breeding programs for the Mexican Romosinuano cattle breed. Abstract The ultimate goal of genetic selection is to improve genetic progress by increasing favorable alleles in the population. However, with selection, homozygosity, and potentially harmful recessive alleles can accumulate, deteriorating genetic variability and hampering continued genetic progress. Such potential adverse side effects of selection are of particular interest in populations with a small effective population size like the Romosinuano beef cattle in Mexico. The objective of this study was to evaluate the genetic background and inbreeding depression in Mexican Romosinuano cattle using pedigree and genomic information. Inbreeding was estimated using pedigree (FPED) and genomic information based on the genomic relationship matrix (FGRM) and runs of homozygosity (FROH) of different length classes. Linkage disequilibrium (LD) was evaluated using the correlation between pairs of loci, and the effective population size (Ne) was calculated based on LD and pedigree information. The pedigree file consisted of 4875 animals born between 1950 and 2019, of which 71 had genotypes. LD decreased with the increase in distance between markers, and Ne estimated using genomic information decreased from 610 to 72 animals (from 109 to 1 generation ago), the Ne estimated using pedigree information was 86.44. The reduction in effective population size implies the existence of genetic bottlenecks and the decline of genetic diversity due to the intensive use of few individuals as parents of the next generations. The number of runs of homozygosity per animal ranged between 18 and 102 segments with an average of 55. The shortest and longest segments were 1.0 and 36.0 Mb long, respectively, reflecting ancient and recent inbreeding. The average inbreeding was 2.98 ± 2.81, 2.98 ± 4.01, and 7.28 ± 3.68% for FPED, FGRM, and FROH, respectively. The correlation between FPED and FGRM was −0.25, and the correlations among FPED and FROH of different length classes were low (from 0.16 to 0.31). The correlations between FGRM and FROH of different length classes were moderate (from 0.44 to 0.58), indicating better agreement. A 1% increase in population inbreeding decreased birth weight by 0.103 kg and weaning weight by 0.685 kg. A strategy such as optimum genetic contributions to maximize selection response and manage the long-term genetic variability and inbreeding could lead to more sustainable breeding programs for the Mexican Romosinuano beef cattle breed.
Collapse
Affiliation(s)
- Jorge Hidalgo
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (J.H.); (A.C.); (A.G.)
| | - Alberto Cesarani
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (J.H.); (A.C.); (A.G.)
| | - Andre Garcia
- Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA; (J.H.); (A.C.); (A.G.)
| | - Pattarapol Sumreddee
- Department of Livestock Development, Bureau of Biotechnology in Livestock Production, Pathum Thani 12000, Thailand;
| | - Neon Larios
- Departamento de Zootecnia, Posgrado en Producción Animal, Universidad Autónoma Chapingo, Chapingo 56230, Mexico; (N.L.); (R.N.); (R.R.)
| | - Enrico Mancin
- Department of Agronomy, Food, Natural Resources, Animals and Environment-DAFNAE, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy;
| | - José Guadalupe García
- Departamento de Zootecnia, Posgrado en Producción Animal, Universidad Autónoma Chapingo, Chapingo 56230, Mexico; (N.L.); (R.N.); (R.R.)
- Correspondence:
| | - Rafael Núñez
- Departamento de Zootecnia, Posgrado en Producción Animal, Universidad Autónoma Chapingo, Chapingo 56230, Mexico; (N.L.); (R.N.); (R.R.)
| | - Rodolfo Ramírez
- Departamento de Zootecnia, Posgrado en Producción Animal, Universidad Autónoma Chapingo, Chapingo 56230, Mexico; (N.L.); (R.N.); (R.R.)
| |
Collapse
|
21
|
Dell’Osa AH, Battacone G, Pulina G, Fois A, Tocco F, Loviselli A, Concu A, Velluzzi F. Electrical Impedance to Easily Discover Undeclared Freeze-thaw Cycles in Slaughtered Bovine Meat. JOURNAL OF ELECTRICAL BIOIMPEDANCE 2021; 12:3-10. [PMID: 34413917 PMCID: PMC8336310 DOI: 10.2478/joeb-2021-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Indexed: 06/13/2023]
Abstract
A portable electrical impedance spectroscopy device was developed to monitor the bioimpedance resistive component of bovine meat by injecting a sinusoidal current of 1 mA at 65 kHz. Both right and left longissimus dorsi muscles were trimmed from 4 slaughtered cows. The left muscle portions were frozen to -18 °C for 7 days while the right ones were meantime maintained at 5 °C. Mean value of impedance per length (Ω/cm) of frozen and thawed left samples was 31% lower than that of right non-frozen one (P = 0.0001). It was concluded that the device is reliable for monitoring the maturation of beef meat in situ with the possibility of revealing undeclared freeze-thaw cycles.
Collapse
Affiliation(s)
- A. H. Dell’Osa
- Instituto de Desarrollo Económico e Innovación, Universidad Nacional de Tierra del Fuego, Ushuaia, Argentina
| | - G. Battacone
- Department of Agricultural Science, University of Sassari, Sassari, Italy
| | - G. Pulina
- Department of Agricultural Science, University of Sassari, Sassari, Italy
| | - A. Fois
- Nomadyca Ltd, Kampala, Uganda
| | - F. Tocco
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - A. Loviselli
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - A. Concu
- 2C Technologies Ltd, Academic Spin-Off, University of Cagliari, Cagliari, Italy
| | - F. Velluzzi
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
22
|
Moscarelli A, Sardina MT, Cassandro M, Ciani E, Pilla F, Senczuk G, Portolano B, Mastrangelo S. Genome-wide assessment of diversity and differentiation between original and modern Brown cattle populations. Anim Genet 2020; 52:21-31. [PMID: 33174276 DOI: 10.1111/age.13019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 02/06/2023]
Abstract
Identifying genomic regions involved in the differences between breeds can provide information on genes that are under the influence of both artificial and natural selection. The aim of this study was to assess the genetic diversity and differentiation among four different Brown cattle populations (two original vs. two modern populations) and to characterize the distribution of runs of homozygosity (ROH) islands using the Illumina Bovine SNP50 BeadChip genotyping data. After quality control, 34 735 SNPs and 106 animals were retained for the analyses. Larger heterogeneity was highlighted for the original populations. Patterns of genetic differentiation, multidimensional scaling, and the neighboring joining tree distinguished the modern from the original populations. The FST -outlier identified several genes putatively involved in the genetic differentiation between the two groups, such as stature and growth, behavior, and adaptability to local environments. The ROH islands within both the original and the modern populations overlapped with QTL associated with relevant traits. In modern Brown (Brown Swiss and Italian Brown), ROH islands harbored candidate genes associated with milk production traits, in evident agreement with the artificial selection conducted to improve this trait in these populations. In original Brown (Original Braunvieh and Braunvieh), we identified candidate genes related with fat deposition, confirming that breeding strategies for the original Brown populations aimed to produce dual-purpose animals. Our study highlighted the presence of several genomic regions that vary between Brown populations, in line with their different breeding histories.
Collapse
Affiliation(s)
- A Moscarelli
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, 90128, Italy
| | - M T Sardina
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, 90128, Italy
| | - M Cassandro
- Dipartimento di Agronomia Animali Alimenti Risorse naturali e Ambiente, University of Padova, Legnaro, 35020, Italy
| | - E Ciani
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, University of Bari, Bari, 70124, Italy
| | - F Pilla
- Dipartimento Agricoltura, Ambiente e Alimenti, University of Molise, Campobasso, 86100, Italy
| | - G Senczuk
- Dipartimento Agricoltura, Ambiente e Alimenti, University of Molise, Campobasso, 86100, Italy
| | - B Portolano
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, 90128, Italy
| | - S Mastrangelo
- Dipartimento Scienze Agrarie, Alimentari e Forestali, University of Palermo, Palermo, 90128, Italy
| |
Collapse
|
23
|
|
24
|
Zhang K, Lenstra JA, Zhang S, Liu W, Liu J. Evolution and domestication of the Bovini species. Anim Genet 2020; 51:637-657. [PMID: 32716565 DOI: 10.1111/age.12974] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
Domestication of the Bovini species (taurine cattle, zebu, yak, river buffalo and swamp buffalo) since the early Holocene (ca. 10 000 BCE) has contributed significantly to the development of human civilization. In this study, we review recent literature on the origin and phylogeny, domestication and dispersal of the three major Bos species - taurine cattle, zebu and yak - and their genetic interactions. The global dispersion of taurine and zebu cattle was accompanied by population bottlenecks, which resulted in a marked phylogeographic differentiation of the mitochondrial and Y-chromosomal DNA. The high diversity of European breeds has been shaped through isolation-by-distance, different production objectives, breed formation and the expansion of popular breeds. The overlapping and broad ranges of taurine and zebu cattle led to hybridization with each other and with other bovine species. For instance, Chinese gayal carries zebu mitochondrial DNA; several Indonesian zebu descend from zebu bull × banteng cow crossings; Tibetan cattle and yak have exchanged gene variants; and about 5% of the American bison contain taurine mtDNA. Analysis at the genomic level indicates that introgression may have played a role in environmental adaptation.
Collapse
Affiliation(s)
- K Zhang
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - J A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht Yalelaan 104, Utrecht, 3584 CM, The Netherlands
| | - S Zhang
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - W Liu
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - J Liu
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and College of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| |
Collapse
|