1
|
Wu J, Yu F, Di Z, Bian L, Yang J, Wang L, Jiang Q, Yin Y, Zhang L. Transcriptome analysis of adipose tissue and muscle of Laiwu and Duroc pigs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:134-143. [PMID: 38766520 PMCID: PMC11101945 DOI: 10.1016/j.aninu.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 05/22/2024]
Abstract
Fat content is an important trait in pig production. Adipose tissue and muscle are important sites for fat deposition and affect production efficiency and quality. To regulate the fat content in these tissues, we need to understand the mechanisms behind fat deposition. Laiwu pigs, a Chinese indigenous breed, have significantly higher fat content in both adipose tissue and muscle than commercial breeds such as Duroc. In this study, we analyzed the transcriptomes in adipose tissue and muscle of 21-d-old Laiwu and Duroc piglets. Results showed that there were 828 and 671 differentially expressed genes (DEG) in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT), respectively. Functional enrichment analysis showed that these DEG were enriched in metabolic pathways, especially carbohydrate and lipid metabolism. Additionally, in the longissimus muscle (LM) and psoas muscle (PM), 312 and 335 DEG were identified, demonstrating enrichment in the cell cycle and metabolic pathways. The protein-protein interaction (PPI) networks of these DEG were analyzed and potential hub genes were identified, such as FBP1 and SCD in adipose tissues and RRM2 and GADL1 in muscles. Meanwhile, results showed that there were common DEG between adipose tissue and muscle, such as LDHB, THRSP, and DGAT2. These findings showed that there are significant differences in the transcriptomes of the adipose tissue and muscle between Laiwu and Duroc piglets (P < 0.05), especially in metabolic patterns. This insight serves to advance our comprehensive understanding of metabolic regulation in these tissues and provide targets for fat content regulation.
Collapse
Affiliation(s)
- Jie Wu
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Fangyuan Yu
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhaoyang Di
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Liwen Bian
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jie Yang
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Lina Wang
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qingyan Jiang
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Lin Zhang
- National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
2
|
Park J. Genome-wide association study to reveal new candidate genes using single-step approaches for productive traits of Yorkshire pig in Korea. Anim Biosci 2024; 37:451-460. [PMID: 38271983 PMCID: PMC10915189 DOI: 10.5713/ab.23.0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/25/2023] [Accepted: 11/08/2023] [Indexed: 01/27/2024] Open
Abstract
OBJECTIVE The objective is to identify genomic regions and candidate genes associated with age to 105 kg (AGE), average daily gain (ADG), backfat thickness (BF), and eye muscle area (EMA) in Yorkshire pig. METHODS This study used a total of 104,380 records and 11,854 single nucleotide polymorphism (SNP) data obtained from Illumina porcine 60K chip. The estimated genomic breeding values (GEBVs) and SNP effects were estimated by single-step genomic best linear unbiased prediction (ssGBLUP). RESULTS The heritabilities of AGE, ADG, BF, and EMA were 0.50, 0.49, 0.49, and 0.23, respectively. We identified significant SNP markers surpassing the Bonferroni correction threshold (1.68×10-6), with a total of 9 markers associated with both AGE and ADG, and 4 markers associated with BF and EMA. Genome-wide association study (GWAS) analyses revealed notable chromosomal regions linked to AGE and ADG on Sus scrofa chromosome (SSC) 1, 6, 8, and 16; BF on SSC 2, 5, and 8; and EMA on SSC 1. Additionally, we observed strong linkage disequilibrium on SSC 1. Finally, we performed enrichment analyses using gene ontology and Kyoto encyclopedia of genes and genomes (KEGG), which revealed significant enrichments in eight biological processes, one cellular component, one molecular function, and one KEGG pathway. CONCLUSION The identified SNP markers for productive traits are expected to provide valuable information for genetic improvement as an understanding of their expression.
Collapse
Affiliation(s)
- Jun Park
- Department of Animal Biotechnology, Jeonbuk National University, Jeonju 54896,
Korea
| |
Collapse
|
3
|
Xu Z, Wu J, Zhang Y, Qiao M, Zhou J, Feng Y, Li Z, Sun H, Lin R, Song Z, Zhao H, Li L, Chen N, Li Y, Oyelami FO, Peng X, Mei S. Genome-wide detection of selection signatures in Jianli pigs reveals novel cis-regulatory haplotype in EDNRB associated with two-end black coat color. BMC Genomics 2024; 25:23. [PMID: 38166718 PMCID: PMC10763394 DOI: 10.1186/s12864-023-09943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Jianli pig, a renowned indigenous breed in China, has the characteristics of a two-end black (TEB) coat color, excellent meat quality, strong adaptability and increased prolificacy. However, there is limited information available regarding the genetic diversity, population structure and genomic regions under selection of Jianli pig. On the other hand, the genetic mechanism of TEB coat color has remained largely unknown. RESULTS In this study, the whole genome resequencing of 30 Jianli pigs within a context of 153 individuals representing 13 diverse breeds was performed. The population structure analysis revealed that Jianli pigs have close genetic relationships with the Tongcheng pig breed, their geographical neighbors. Three methods (observed heterozygosity, expected heterozygosity, and runs of homozygosity) implied a relatively high level of genetic diversity and, a low inbreeding coefficient in Jianli compared with other pigs. We used Fst and XP-EHH to detect the selection signatures in Jianli pigs compared with Asian wild boar. A total of 451 candidate genes influencing meat quality (CREBBP, ADCY9, EEPD1 and HDAC9), reproduction (ESR1 and FANCA), and coat color (EDNRB, MITF and MC1R), were detected by gene annotation analysis. Finally, to fine-map the genomic region for the two-end black (TEB) coat color phenotype in Jianli pigs, we performed three signature selection methods between the TEB coat color and no-TEB coat color pig breeds. The current study, further confirmed that the EDNRB gene is a candidate gene for TEB color phenotype found in Chinese pigs, including Jinhua pigs, and the haplotype harboring 25 SNPs in the EDNRB gene may promote the formation of TEB coat color. Further ATAC-seq and luciferase reporter assays of these regions suggest that the 25-SNPs region was a strong candidate causative mutation that regulates the TEB coat color phenotype by altering enhancer function. CONCLUSION Our results advanced the understanding of the genetic mechanism behind artificial selection, and provided further resources for the protection and breeding improvement of Jianli pigs.
Collapse
Affiliation(s)
- Zhong Xu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Junjing Wu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Yu Zhang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Mu Qiao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Jiawei Zhou
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Yue Feng
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Zipeng Li
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Hua Sun
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Ruiyi Lin
- (College of Animal Sciences, College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhongxu Song
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Haizhong Zhao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Lianghua Li
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Nanqi Chen
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Yujie Li
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, 430064, China
| | | | - Xianwen Peng
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, 430064, China.
- Hubei Hongshan Laboratory, Wuhan, 430064, China.
| | - Shuqi Mei
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, 430064, China.
- Hubei Hongshan Laboratory, Wuhan, 430064, China.
| |
Collapse
|
4
|
Feng X, Diao S, Liu Y, Xu Z, Li G, Ma Y, Su Z, Liu X, Li J, Zhang Z. Exploring the mechanism of artificial selection signature in Chinese indigenous pigs by leveraging multiple bioinformatics database tools. BMC Genomics 2023; 24:743. [PMID: 38053015 PMCID: PMC10699062 DOI: 10.1186/s12864-023-09848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Chinese indigenous pigs in Yunnan exhibit considerable phenotypic diversity, but their population structure and the biological interpretation of signatures of artificial selection require further investigation. To uncover population genetic diversity, migration events, and artificial selection signatures in Chinese domestic pigs, we sampled 111 Yunnan pigs from four breeds in Yunnan which is considered to be one of the centres of livestock domestication in China, and genotyped them using Illumina Porcine SNP60K BeadChip. We then leveraged multiple bioinformatics database tools to further investigate the signatures and associated complex traits. RESULTS Population structure and migration analyses showed that Diannanxiaoer pigs had different genetic backgrounds from other Yunnan pigs, and Gaoligongshan may undergone the migration events from Baoshan and Saba pigs. Intriguingly, we identified a possible common target of sharing artificial selection on a 265.09 kb region on chromosome 5 in Yunnan indigenous pigs, and the genes on this region were associated with cardiovascular and immune systems. We also detected several candidate genes correlated with dietary adaptation, body size (e.g., PASCIN1, GRM4, ITPR2), and reproductive performance. In addition, the breed-sharing gene MMP16 was identified to be a human-mediated gene. Multiple lines of evidence at the mammalian genome, transcriptome, and phenome levels further supported the evidence for the causality between MMP16 variants and the metabolic diseases, brain development, and cartilage tissues in Chinese pigs. Our results suggested that the suppression of MMP16 would directly lead to inactivity and insensitivity of neuronal activity and skeletal development in Chinese indigenous pigs. CONCLUSION In this study, the population genetic analyses and identification of artificial selection signatures of Yunnan indigenous pigs help to build an understanding of the effect of human-mediated selection mechanisms on phenotypic traits in Chinese indigenous pigs. Further studies are needed to fully characterize the process of human-mediated genes and biological mechanisms.
Collapse
Affiliation(s)
- Xueyan Feng
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shuqi Diao
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuqiang Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhiting Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Guangzhen Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Ye Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhanqin Su
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jiaqi Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhe Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Yang H, Wang L, Yin L, Tang Z, Wang Z, Liu X, Xiang T, Yu M, Liu X, Li C. Searching for new signals for susceptibility to umbilical hernia through genome-wide association analysis in three pig breeds. Anim Genet 2023; 54:798-802. [PMID: 37705280 DOI: 10.1111/age.13347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 06/26/2023] [Accepted: 07/21/2023] [Indexed: 09/15/2023]
Abstract
Umbilical hernia (UH) is a prevalent congenital disorder in pigs, resulting in considerable economic losses and severe animal welfare issues. In the present study, we conducted a genome-wide association study (GWAS) using the GeneSeek 50K Chip in 2777 pigs (Duroc, n = 1267; Landrace, n = 696; and Yorkshire, n = 814) to explore the candidate genes underlying the risk of umbilical hernia in pigs. After quality control analyses, 2748 animals and 48 524 single nucleotide polymorphisms (SNPs) were retained for subsequent GWAS analysis using the FarmCPU model. The heritability of umbilical hernias was estimated to 0.51 ± 0.04, indicating a reasonable basis for investigating genetic markers associated with this disorder. We identified 54 SNPs and 517 candidate genes that showed significant associations with susceptibility to umbilical hernia across the combined population of the three pig breeds. Gene enrichment analyses highlighted several crucial pathways for platelet degranulation, inflammatory mediator regulation of TRP channels and ion transport. These findings provide further insights into the underlying genetic architecture of umbilical hernias in pigs.
Collapse
Affiliation(s)
- Hui Yang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Lei Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Lilin Yin
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Zhenshuang Tang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Zhangxu Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Xiangdong Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Tao Xiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Mei Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Xiaolei Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| | - Changchun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education and College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Li J, Guan D, Halstead MM, Islas-Trejo AD, Goszczynski DE, Ernst CW, Cheng H, Ross P, Zhou H. Transcriptome annotation of 17 porcine tissues using nanopore sequencing technology. Anim Genet 2023; 54:35-44. [PMID: 36385508 DOI: 10.1111/age.13274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 11/18/2022]
Abstract
The annotation of animal genomes plays an important role in elucidating molecular mechanisms behind the genetic control of economically important traits. Here, we employed long-read sequencing technology, Oxford Nanopore Technology, to annotate the pig transcriptome across 17 tissues from two Yorkshire littermate pigs. More than 9.8 million reads were obtained from a single flow cell, and 69 781 unique transcripts at 50 108 loci were identified. Of these transcripts, 16 255 were found to be novel isoforms, and 22 344 were found at loci that were novel and unannotated in the Ensembl (release 102) and NCBI (release 106) annotations. Novel transcripts were mostly expressed in cerebellum, followed by lung, liver, spleen, and hypothalamus. By comparing the unannotated transcripts to existing databases, there were 21 285 (95.3%) transcripts matched to the NT database (v5) and 13 676 (61.2%) matched to the NR database (v5). Moreover, there were 4324 (19.4%) transcripts matched to the SwissProt database (v5), corresponding to 11 356 proteins. Tissue-specific gene expression analyses showed that 9749 transcripts were highly tissue-specific, and cerebellum contained the most tissue-specific transcripts. As the same samples were used for the annotation of cis-regulatory elements in the pig genome, the transcriptome annotation generated by this study provides an additional and complementary annotation resource for the Functional Annotation of Animal Genomes effort to comprehensively annotate the pig genome.
Collapse
Affiliation(s)
- Jinghui Li
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Dailu Guan
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Michelle M Halstead
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Alma D Islas-Trejo
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Daniel E Goszczynski
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Catherine W Ernst
- Department of Animal Science, Michigan State University, East Lansing, Michigan, USA
| | - Hao Cheng
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Pablo Ross
- Department of Animal Science, University of California Davis, Davis, California, USA
| | - Huaijun Zhou
- Department of Animal Science, University of California Davis, Davis, California, USA
| |
Collapse
|
7
|
Tang Z, Yin L, Yin D, Zhang H, Fu Y, Zhou G, Zhao Y, Wang Z, Liu X, Li X, Zhao S. Development and application of an efficient genomic mating method to maximize the production performances of three-way crossbred pigs. Brief Bioinform 2023; 24:6961793. [PMID: 36575830 DOI: 10.1093/bib/bbac587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022] Open
Abstract
Creating synthetic lines is the standard mating mode for commercial pig production. Traditional mating performance was evaluated through a strictly designed cross-combination test at the 'breed level' to maximize the benefits of production. The Duroc-Landrace-Yorkshire (DLY) three-way crossbred production system became the most widely used breeding scheme for pigs. Here, we proposed an 'individual level' genomic mating procedure that can be applied to commercial pig production with efficient algorithms for estimating marker effects and for allocating the appropriate boar-sow pairs, which can be freely accessed to public in our developed HIBLUP software at https://www.hiblup.com/tutorials#genomic-mating. A total of 875 Duroc boars, 350 Landrace-Yorkshire sows and 3573 DLY pigs were used to carry out the genomic mating to assess the production benefits theoretically. The results showed that genomic mating significantly improved the performances of progeny across different traits compared with random mating, such as the feed conversion rate, days from 30 to 120 kg and eye muscle area could be improved by -0.12, -4.64 d and 2.65 cm2, respectively, which were consistent with the real experimental validations. Overall, our findings indicated that genomic mating is an effective strategy to improve the performances of progeny by maximizing their total genetic merit with consideration of both additive and dominant effects. Also, a herd of boars from a richer genetic source will increase the effectiveness of genomic mating further.
Collapse
Affiliation(s)
- Zhenshuang Tang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Lilin Yin
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.,Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, PR China
| | - Dong Yin
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Haohao Zhang
- School of Computer Science and Technology, Wuhan University of Technology, Wuhan 430070, PR China
| | - Yuhua Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.,Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, PR China
| | - Guangliang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yunxiang Zhao
- School of Life Sciences and Engineering, Foshan University, Foshan 528225, PR China
| | - Zhiquan Wang
- Wuhan Yingzi Gene Technology Co. LTD, Wuhan 430070, PR China
| | - Xiaolei Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.,Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, PR China.,Hubei Hongshan Laboratory, Wuhan 430070, PR China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.,Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, PR China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.,Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, PR China.,Hubei Hongshan Laboratory, Wuhan 430070, PR China
| |
Collapse
|
8
|
Li C, Han J, Duan D, Liu C, Han X, Wang K, Qiao R, Li XL, Li XJ. Lymphoid enhancer binding factor 1 is associated with nose color in Yunong black pigs. Anim Genet 2023; 54:398-402. [PMID: 36649734 DOI: 10.1111/age.13292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/11/2022] [Accepted: 12/31/2022] [Indexed: 01/19/2023]
Abstract
Yunong black pig is an indigenous black pig breed being cultivated that has a pure black whole body. However, some individuals appear with a white spot on the nose. We performed case-control association studies and FST approaches in 76 animals with nose color records (26 white-nosed pigs vs. 50 black-nosed pigs) by Illumina Porcine SNP50 BeadChip data. In total, 76 SNPs, which included 2 genome-wide significant SNPs and 18 chromosome-wide suggestive SNPs, were identified by association study. The top-ranked 0.1% windows of FST results as signals under selection and 24 windows were selected. The lymphoid enhancer binding factor 1 was identified as candidate gene with strong signal in analyses of genome-wide association study and FST in black- and white-nosed pigs. Overall, our findings provide evidence that nose color is a heritable trait influenced by many loci. The results contribute to expand our understanding of pigmentation in pigs and provide SNP markers for skin color and related traits selection in Yunong black pigs. Additional research on the genetic link between nose pigmentation is needed.
Collapse
Affiliation(s)
- Cong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jinyi Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Dongdong Duan
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chuang Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xuelei Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Kejun Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Ruimin Qiao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xiu-Ling Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xin-Jian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Cheng Y, Ding S, Azad MAK, Song B, Kong X. Comparison of the Pig Breeds in the Small Intestinal Morphology and Digestive Functions at Different Ages. Metabolites 2023; 13:metabo13010132. [PMID: 36677057 PMCID: PMC9863662 DOI: 10.3390/metabo13010132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
The small intestine is the main site for digestion and absorption of nutrients, and the development of the small intestine can be affected by several factors, such as diet composition, age, and genotype. Thus, this study aimed to compare the small intestinal morphology and digestive function differences at different ages of three pig breeds. Thirty litters of newborn Taoyuan black (TB), Xiangcun black (XB), and Duroc (DR) piglets (ten litters per breed) were selected for this study. Ten piglets from each breed were selected and sampled at 1, 10, 21, and 24 days old. The results showed that the TB and XB piglets had lower growth but had higher lactase and maltase activities in the jejunum compared with the DR piglets, while most of the digestive enzyme activities in the ileum were higher in the DR piglets at different ages. The expression levels of nutrient transporters, mainly including amino acids, glucose, and fatty acids transporters, differed in the jejunum at different ages among three pig breeds and were higher in the DR piglets at 1 day old and XB piglets at 24 days old. Collectively, these findings suggest that the phenotypic differences in the growth, intestinal morphology, and digestive function among the three pig breeds mainly resulted from the differences in digestive enzymes and nutrient transporters in the intestine.
Collapse
Affiliation(s)
- Yating Cheng
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100008, China
| | - Sujuan Ding
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Md. Abul Kalam Azad
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Bo Song
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100008, China
| | - Xiangfeng Kong
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100008, China
- Correspondence:
| |
Collapse
|
10
|
Fontanesi L. Genetics and genomics of pigmentation variability in pigs: A review. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.105079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Ali M, Danting S, Wang J, Sadiq H, Rasheed A, He Z, Li H. Genetic Diversity and Selection Signatures in Synthetic-Derived Wheats and Modern Spring Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:877496. [PMID: 35903232 PMCID: PMC9315363 DOI: 10.3389/fpls.2022.877496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Synthetic hexaploid wheats and their derived advanced lines were subject to empirical selection in developing genetically superior cultivars. To investigate genetic diversity, patterns of nucleotide diversity, population structure, and selection signatures during wheat breeding, we tested 422 wheat accessions, including 145 synthetic-derived wheats, 128 spring wheat cultivars, and 149 advanced breeding lines from Pakistan. A total of 18,589 high-quality GBS-SNPs were identified that were distributed across the A (40%), B (49%), and D (11%) genomes. Values of population diversity parameters were estimated across chromosomes and genomes. Genome-wide average values of genetic diversity and polymorphic information content were estimated to be 0.30 and 0.25, respectively. Neighbor-joining (NJ) tree, principal component analysis (PCA), and kinship analyses revealed that synthetic-derived wheats and advanced breeding lines were genetically diverse. The 422 accessions were not separated into distinct groups by NJ analysis and confirmed using the PCA. This conclusion was validated with both relative kinship and Rogers' genetic distance analyses. EigenGWAS analysis revealed that 32 unique genome regions had undergone selection. We found that 50% of the selected regions were located in the B-genome, 29% in the D-genome, and 21% in the A-genome. Previously known functional genes or QTL were found within the selection regions associated with phenology-related traits such as vernalization, adaptability, disease resistance, and yield-related traits. The selection signatures identified in the present investigation will be useful for understanding the targets of modern wheat breeding in Pakistan.
Collapse
Affiliation(s)
- Mohsin Ali
- Institute of Crop Sciences and CIMMYT China Office, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Sanya, China
| | - Shan Danting
- Institute of Crop Sciences and CIMMYT China Office, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Sanya, China
| | - Jiankang Wang
- Institute of Crop Sciences and CIMMYT China Office, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hafsa Sadiq
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Awais Rasheed
- Institute of Crop Sciences and CIMMYT China Office, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zhonghu He
- Institute of Crop Sciences and CIMMYT China Office, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Huihui Li
- Institute of Crop Sciences and CIMMYT China Office, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Nanfan Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Sanya, China
| |
Collapse
|
12
|
Liu H, Hou L, Zhou W, Wang B, Han P, Gao C, Niu P, Zhang Z, Li Q, Huang R, Li P. Genome-Wide Association Study and FST Analysis Reveal Four Quantitative Trait Loci and Six Candidate Genes for Meat Color in Pigs. Front Genet 2022; 13:768710. [PMID: 35464836 PMCID: PMC9023761 DOI: 10.3389/fgene.2022.768710] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Meat color is the primary criterion by which consumers evaluate meat quality. However, there are a few candidate genes and molecular markers of meat color that were reported for pig molecular breeding. The purpose of the present study is to identify the candidate genes affecting meat color and provide the theoretical basis for meat color molecular breeding. A total of 306 Suhuai pigs were slaughtered, and meat color was evaluated at 45 min and 24 h after slaughter by CIELAB color space. All individuals were genotyped using GeneSeek GGP-Porcine 80K SNP BeadChip. The genomic estimated breeding values (GEBVs), heritability, and genetic correlation of meat color were calculated by DMU software. The genome-wide association studies (GWASs) and the fixation index (FST) tests were performed to identify SNPs related to meat color, and the candidate genes within 1 Mb upstream and downstream of significant SNPs were screened by functional enrichment analysis. The heritability of L* 45 min, L* 24 h, a* 45 min, a* 24 h, b* 45 min, and b* 24 h was 0.20, 0.16, 0.30, 0.13, 0.29, and 0.22, respectively. The genetic correlation between a* (a* 45 min and a* 24 h) and L* (L* 45 min and L* 24 h) is strong, whereas the genetic correlation between b* 45 min and b* 24 h is weak. Forty-nine significant SNPs associated with meat color were identified through GWAS and FST tests. Among these SNPs, 34 SNPs were associated with L* 45 min within a 5-Mb region on Sus scrofa chromosome 11 (SSC11); 22 SNPs were associated with a* 45 min within a 14.72-Mb region on SSC16; six SNPs were associated with b* 45 min within a 4.22-Mb region on SSC13; 11 SNPs were associated with b* 24 h within a 2.12-Mb region on SSC3. These regions did not overlap with meat color–associated QTLs reported previously. Moreover, six candidate genes (HOMER1, PIK3CG, PIK3CA, VCAN, FABP3, and FKBP1B), functionally related to muscle development, phosphatidylinositol phosphorylation, and lipid binding, were detected around these significant SNPs. Taken together, our results provide a set of potential molecular markers for the genetic improvement of meat color in pigs.
Collapse
Affiliation(s)
- Hang Liu
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
- Huaian Academy, Nanjing Agricultural University, Huaian, China
- Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Liming Hou
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
- Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Wuduo Zhou
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
| | - Binbin Wang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
- Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Pingping Han
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
| | - Chen Gao
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
- Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Peipei Niu
- Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Zongping Zhang
- Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Qiang Li
- Huaiyin Pig Breeding Farm of Huaian City, Huaian, China
| | - Ruihua Huang
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
- Huaian Academy, Nanjing Agricultural University, Huaian, China
| | - Pinghua Li
- Institute of Swine Science, Nanjing Agricultural University, Nanjing, China
- Huaian Academy, Nanjing Agricultural University, Huaian, China
- *Correspondence: Pinghua Li,
| |
Collapse
|
13
|
Wang X, Li G, Ruan D, Zhuang Z, Ding R, Quan J, Wang S, Jiang Y, Huang J, Gu T, Hong L, Zheng E, Li Z, Cai G, Wu Z, Yang J. Runs of Homozygosity Uncover Potential Functional-Altering Mutation Associated With Body Weight and Length in Two Duroc Pig Lines. Front Vet Sci 2022; 9:832633. [PMID: 35350434 PMCID: PMC8957889 DOI: 10.3389/fvets.2022.832633] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/24/2022] [Indexed: 12/29/2022] Open
Abstract
Runs of homozygosity (ROH) are widely used to investigate genetic diversity, demographic history, and positive selection signatures of livestock. Commercial breeds provide excellent materials to reveal the landscape of ROH shaped during the intense selection process. Here, we used the GeneSeek Porcine 50K single-nucleotide polymorphism (SNP) Chip data of 3,770 American Duroc (AD) and 2,096 Canadian Duroc (CD) pigs to analyze the genome-wide ROH. First, we showed that AD had a moderate genetic differentiation with CD pigs, and AD had more abundant genetic diversity and significantly lower level of inbreeding than CD pigs. In addition, sows had larger levels of homozygosity than boars in AD pigs. These differences may be caused by differences in the selective intensity. Next, ROH hotspots revealed that many candidate genes are putatively under selection for growth, sperm, and muscle development in two lines. Population-specific ROHs inferred that AD pigs may have a special selection for female reproduction, while CD pigs may have a special selection for immunity. Moreover, in the overlapping ROH hotspots of two Duroc populations, we observed a missense mutation (rs81216249) located in the growth and fat deposition-related supergene (ARSB-DMGDH-BHMT) region. The derived allele of this variant originated from European pigs and was nearly fixed in Duroc pigs. Further selective sweep and association analyses indicated that this supergene was subjected to strong selection and probably contributed to the improvement of body weight and length in Duroc pigs. These findings will enhance our understanding of ROH patterns in different Duroc lines and provide promising trait-related genes and a functional-altering marker that can be used for genetic improvement of pigs.
Collapse
Affiliation(s)
- Xiaopeng Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Guixin Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Donglin Ruan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
| | - Jianping Quan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Shiyuan Wang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Yongchuang Jiang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Jinyan Huang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Ting Gu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Linjun Hong
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Zicong Li
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou, China
| |
Collapse
|