1
|
Jaito W, Singchat W, Patta C, Thatukan C, Kumnan N, Chalermwong P, Budi T, Panthum T, Wongloet W, Wattanadilokchatkun P, Thong T, Muangmai N, Han K, Duengkae P, Phatcharakullawarawat R, Srikulnath K. Shared alleles and genetic structures in different Thai domestic cat breeds: the possible influence of common racial origins. Genomics Inform 2024; 22:12. [PMID: 39085978 PMCID: PMC11292921 DOI: 10.1186/s44342-024-00013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Over hundreds of years, cats have been domesticated and selectively bred, resulting in numerous pedigreed breeds expedited by recent cat shows and breeding associations. Concerns have been raised about the limited breeding options and the genetic implications of inbreeding, indicating challenges in maintaining genetic diversity and accurate identification in purebred cats. In this study, genetic variability and structure were examined in 5 Thai domestic cat breeds using 15 microsatellite markers and mitochondrial DNA (mtDNA) D-loop sequencing. In total, 184 samples representing the Wichien Maat (WCM), Suphalak (SL), Khao-Manee (KM), Korat (KR), and Konja (KJ) breeds were analyzed. High genetic diversity (Ho and He > 0.5) was observed in all breeds, and mtDNA analysis revealed two primary haplogroups (A and B) that were shared among all domestic cat breeds in Thailand and globally. However, minor differences were observed between Thai domestic cat breeds based on clustering analyses, in which a distinct genetic structure was observed in the WCM breed. This suggests that allele fixation for distinctive morphological traits has occurred in Thai domestic cat breeds that emerged in isolated regions with shared racial origins. Analysis of relationships among individuals within the breed revealed high identification efficiency in Thai domestic cat breeds (P(ID)sibs < 10-4). Additionally, diverse and effective individual identification can be ensured by optimizing marker efficiency by using only nine loci. This comprehensive genetic characterization provides valuable insights into conservation strategies and breeding practices for Thai domestic cat breeds.
Collapse
Grants
- 6514400931,6514400892, 6514400906, 6514400914, 6514400949 Higher Education for Industry Consortium (Hi-FI)
- 6514400931,6514400892, 6514400906, 6514400914, 6514400949 Higher Education for Industry Consortium (Hi-FI)
- 6514400931,6514400892, 6514400906, 6514400914, 6514400949 Higher Education for Industry Consortium (Hi-FI)
- 6514400931,6514400892, 6514400906, 6514400914, 6514400949 Higher Education for Industry Consortium (Hi-FI)
- 6514400931,6514400892, 6514400906, 6514400914, 6514400949 Higher Education for Industry Consortium (Hi-FI)
- 6514400931,6514400892, 6514400906, 6514400914, 6514400949 Higher Education for Industry Consortium (Hi-FI)
- 6514400931,6514400892, 6514400906, 6514400914, 6514400949 Higher Education for Industry Consortium (Hi-FI)
- 6514400931,6514400892, 6514400906, 6514400914, 6514400949 Higher Education for Industry Consortium (Hi-FI)
- 6514400931,6514400892, 6514400906, 6514400914, 6514400949 Higher Education for Industry Consortium (Hi-FI)
- FF(S-KU)17.66, FF(SRU)25.64, and FF(KU)45.67 Kasetsart University Research and Development Institute funds
- FF(S-KU)17.66, FF(SRU)25.64, and FF(KU)45.67 Kasetsart University Research and Development Institute funds
- FF(S-KU)17.66, FF(SRU)25.64, and FF(KU)45.67 Kasetsart University Research and Development Institute funds
- FF(S-KU)17.66, FF(SRU)25.64, and FF(KU)45.67 Kasetsart University Research and Development Institute funds
- 3/2564 Thailand Science Research and Innovation (TSRI) grant through the Kasetsart University Reinventing University Program 2021
- 3/2564 Thailand Science Research and Innovation (TSRI) grant through the Kasetsart University Reinventing University Program 2021
- Higher Education for Industry Consortium (Hi–FI)
- International SciKU Branding (ISB), Faculty of Science, Kasetsart University
- High-Quality Research Graduate Development Cooperation Project between Kasetsart University and the National Science and Technology Development Agency (NSTDA)
Collapse
Affiliation(s)
- Wattanawan Jaito
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Sciences for Industry, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Mind Pets Animal Hospital, 169/10 Khlongsongtonnun, Latkrabang, Bangkok, 10520, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Sciences for Industry, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
| | - Chananya Patta
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Sciences for Industry, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Mind Pets Animal Hospital, 169/10 Khlongsongtonnun, Latkrabang, Bangkok, 10520, Thailand
| | - Chadaphon Thatukan
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Sciences for Industry, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Mind Pets Animal Hospital, 169/10 Khlongsongtonnun, Latkrabang, Bangkok, 10520, Thailand
| | - Nichakorn Kumnan
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Sciences for Industry, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Mind Pets Animal Hospital, 169/10 Khlongsongtonnun, Latkrabang, Bangkok, 10520, Thailand
| | - Piangjai Chalermwong
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Sciences for Industry, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Mind Pets Animal Hospital, 169/10 Khlongsongtonnun, Latkrabang, Bangkok, 10520, Thailand
| | - Trifan Budi
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Wongsathit Wongloet
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Pish Wattanadilokchatkun
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Thanyapat Thong
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | - Narongrit Muangmai
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand
| | - Kyudong Han
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Department of Microbiology, Dankook University, Cheonan, 31116, Korea
- Bio-Medical Engineering Core Facility Research Center, Dankook University, Cheonan, 31116, Korea
| | - Prateep Duengkae
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand
| | | | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Sciences for Industry, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok, 10900, Thailand.
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
2
|
Tozaki T, Ohnuma A, Kikuchi M, Ishige T, Kakoi H, Hirota KI, Nagata SI. Construction of an individual identification panel for horses using insertion and deletion markers. J Equine Sci 2023; 34:83-92. [PMID: 37781568 PMCID: PMC10534061 DOI: 10.1294/jes.34.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/21/2023] [Indexed: 10/03/2023] Open
Abstract
Individual identification and paternity testing are important for avoiding inbreeding in the management of small populations of wild and domestic animals. In horse racing industries, they are extremely important for identifying and registering individuals and doping control to ensure fair competition. In this study, we constructed an individual identification panel for horses by using insertion and deletion (INDEL) markers. The panel included 39 INDEL markers selected from a whole-genome INDEL database. Genotyping of 89 Thoroughbreds showed polymorphisms with minor allele frequencies (MAFs) of 0.180-0.489 in all markers. The total probability of exclusion for paternity testing, power of discrimination, and probability of identity were 0.9994271269, >0.9999999999, and 0.9999999987, respectively. The panel was applied to 13 trios (sires, dams, and foals), and no contradictions were observed in genetic inheritance among the trios. When this panel was applied to the trios (52 trios) containing false fathers, an average of 7.3 markers excluded parentage relationships. In addition, genomic DNA extracted from the urine of six horses was partially genotyped for 39 markers, and 6-28 markers were successfully genotyped. The newly constructed panel has two advantages: a low marker mutation rate compared with short tandem repeats and a genotyping procedure that is as simple as short tandem repeat typing compared with single nucleotide variant typing. This panel can be applied for individual identification, paternity determination, and urine-sample identification in Thoroughbred horses.
Collapse
Affiliation(s)
- Teruaki Tozaki
- Genetic Analysis Department, Laboratory of
Racing Chemistry, Tochigi 320-0851, Japan
| | - Aoi Ohnuma
- Genetic Analysis Department, Laboratory of
Racing Chemistry, Tochigi 320-0851, Japan
| | - Mio Kikuchi
- Genetic Analysis Department, Laboratory of
Racing Chemistry, Tochigi 320-0851, Japan
| | - Taichiro Ishige
- Genetic Analysis Department, Laboratory of
Racing Chemistry, Tochigi 320-0851, Japan
| | - Hironaga Kakoi
- Genetic Analysis Department, Laboratory of
Racing Chemistry, Tochigi 320-0851, Japan
| | - Kei-ichi Hirota
- Genetic Analysis Department, Laboratory of
Racing Chemistry, Tochigi 320-0851, Japan
| | - Shun-ichi Nagata
- Genetic Analysis Department, Laboratory of
Racing Chemistry, Tochigi 320-0851, Japan
| |
Collapse
|
5
|
Gomez-Raya L, Gómez Izquierdo E, de Mercado de la Peña E, Garcia-Ruiz F, Rauw WM. First-degree relationships and genotyping errors deciphered by a high-density SNP array in a Duroc × Iberian pig cross. BMC Genom Data 2022; 23:14. [PMID: 35177001 PMCID: PMC8851823 DOI: 10.1186/s12863-022-01025-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Two individuals with a first-degree relationship share about 50 percent of their alleles. Parent-offspring relationships cannot be homozygous for alternative alleles (genetic exclusion). METHODS Applying the concept of genetic exclusion to HD arrays typed in animals for experimental purposes or genomic selection allows estimation of the rate of rejection of first-degree relationships as the rate at which two individuals typed for a large number of Single Nucleotide Polymorphisms (SNPs) do not share at least one allele. An Expectation-Maximization algorithm is applied to estimate parentage. In addition, genotyping errors are estimated in true parent-offspring relationships. Samples from nine candidate Duroc sires and 55 Iberian dams producing 214 Duroc × Iberian barrows were typed for the HD porcine Affymetrix array. RESULTS We were able to establish paternity and maternity of 75 and 85 piglets, respectively. Rate of rejection in true parent-offspring relationships was estimated as 0.000735. This is a lower bound of the genotyping error since rate of rejection depends on allele frequencies. After accounting for allele frequencies, our estimate of the genotyping error is 0.6%. A total of 7,744 SNPs were rejected in five or more true parent-offspring relationships facilitating identification of "problematic" SNPs with inconsistent inheritance in multiple parent-offspring relationships. CONCLUSIONS This study shows that animal experiments and routine genotyping in genomic selection allow to establish or to verify first-degree relationships as well as to estimate genotyping errors for each batch of animals or experiment.
Collapse
Affiliation(s)
- L Gomez-Raya
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de La Coruña km 7.5, 28040, Madrid, Spain.
| | - E Gómez Izquierdo
- Centro de Pruebas de Porcino, Instituto Tecnológico Agrario Junta de Castilla y León (ITACyL), Ctra Riaza-Toro S/N, 40353, Hontalbilla, Spain
| | - E de Mercado de la Peña
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Avda. Puerta de Hierro s/n, 28040, Madrid, Spain
| | - F Garcia-Ruiz
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de La Coruña km 7.5, 28040, Madrid, Spain
| | - W M Rauw
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Ctra. de La Coruña km 7.5, 28040, Madrid, Spain
| |
Collapse
|