1
|
Peng W, Zhang Y, Gao L, Wang S, Liu M, Sun E, Lu K, Zhang Y, Li B, Li G, Cao J, Yang M, Guo Y, Wang M, Zhang Y, Wang Z, Han Y, Fan S, Huang L. Investigation of selection signatures of dairy goats using whole-genome sequencing data. BMC Genomics 2025; 26:234. [PMID: 40069586 PMCID: PMC11899394 DOI: 10.1186/s12864-025-11437-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Dairy goats, a livestock species with a long history of milk production, are essential for the economic advancement of nations, particularly in regions experiencing growth. In this study, we gathered whole-genome resequencing data of 58 goats, including 34 dairy goats and 24 wild goats (Bezoar), to explore the selection signatures linked to milk production traits using ROH (Runs of homozygosity), CLR (composite likelihood ratio), Fst (Fixation index), XP-EHH (Ex-tended haplotype homozygosity across populations) and XP-CLR(Cross-population composite likelihood ratio test) methods. Analysis of five tests of selection signatures for dairy goats revealed a total of 210 genes, with 24 genes consistently identified in at least two approaches. These genes are associated with milk fat, milk protein, and fat yield. Gene enrichment analysis highlighted important GO and KEGG pathways related to milk production, such as the "acyl-CoA metabolic process", "glycerolipid biosynthetic process", "cellular response to fatty ac-id", "hormone metabolic process", "Galactose metabolism". Additionally, genes linked to repro-duction, immune response, and environmental adaptation were identified in dairy goats. The findings from our study offer profound understanding into the critical economic features of dairy goats and offer practical guidance for the improvement and development of crossbreeding initiatives across different dairy goat breeds.
Collapse
Affiliation(s)
- Weifeng Peng
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China.
| | - Yiyuan Zhang
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Lei Gao
- State Key Laboratory for Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Shuping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Mengting Liu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Enrui Sun
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Kaixin Lu
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Yunxia Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Bing Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Guoyin Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Jingya Cao
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Mingsheng Yang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
- Field Observation and Research Station of Green Agriculture in Dancheng County, Zhoukou, China
| | - Yanfeng Guo
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Mengyun Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Yuming Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Zihan Wang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Yan Han
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Shuhua Fan
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China.
- Fuxi Laboratory, Zhoukou, China.
| | - Li Huang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China.
| |
Collapse
|
2
|
Khan MI, Bertram H, Schmitt AO, Ramzan F, Gültas M. Computational Identification of Milk Trait Regulation Through Transcription Factor Cooperation in Murciano-Granadina Goats. BIOLOGY 2024; 13:929. [PMID: 39596884 PMCID: PMC11591944 DOI: 10.3390/biology13110929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024]
Abstract
The Murciano-Granadina goat (MUG) is a renowned dairy breed, known for its adaptability and resilience, as well as for its exceptional milk traits characterized by high protein and fat content, along with low somatic cell counts. These traits are governed by complex biological processes, crucial in shaping phenotypic diversity. Thus, it is imperative to explore the factors regulating milk production and lactation for this breed. In this study, we investigated the genetic architecture of seven milk traits in MUGs, employing a two-step computational analysis to examine genotype-phenotype associations. Initially, a random forest algorithm identified the relative importance of each single-nucleotide polymorphism (SNP) in determining the traits of interest. The second step applied an information theory-based approach to exploring the complex genetic architecture of quantitative milk traits, focusing on epistatic interactions that may have been overlooked in the first step. These approaches allowed us to identify an almost distinct set of candidate genes for each trait. In contrast, by analyzing the promoter regions of these genes, we revealed common regulatory networks among the milk traits under study. These findings are crucial for understanding the molecular mechanisms underlying gene regulation, and they highlight the pivotal role of transcription factors (TFs) and their preferential interactions in the development of these traits. Notably, TFs such as DBP, HAND1E47, HOXA4, PPARA, and THAP1 were consistently identified for all traits, highlighting their important roles in immunity within the mammary gland and milk production during lactation.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany;
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany;
- Department of Livestock Production and Management, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Hendrik Bertram
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany;
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany;
| | - Armin Otto Schmitt
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany;
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
| | - Faisal Ramzan
- Institute of Animal and Dairy Sciences, Faculty of Animal Husbandry, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Mehmet Gültas
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany;
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
| |
Collapse
|
3
|
Arenas-Báez P, Torres-Hernández G, Castillo-Hernández G, Hernández-Rodríguez M, Sánchez-Gutiérrez RA, Vargas-López S, González-Maldonado J, Domínguez-Martínez PA, Granados-Rivera LD, Maldonado-Jáquez JA. Coat Color in Local Goats: Influence on Environmental Adaptation and Productivity, and Use as a Selection Criterion. BIOLOGY 2023; 12:929. [PMID: 37508360 PMCID: PMC10376610 DOI: 10.3390/biology12070929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/16/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
This paper aims to review, systematically synthesize, and analyze fragmented information about the importance of coat color in local goats and its relationship with productivity and other important traits. Topics on current research on color expression are addressed, the relationship that has as a mechanism of environmental adaptation, its relationship with the production of meat, milk, and derivates, and the economic value of this characteristic. The use of this attribute as a tool to establish selection criteria in breeding programs based on results reported in the scientific literature is significant, particularly for low-income production systems, where the implementation of classic genetic improvement schemes is limited due to the lack of productive information, which is distinctive of extensive marginal or low scaled production systems around the world.
Collapse
Affiliation(s)
- Pablo Arenas-Báez
- Unidad Regional Universitaria de Zonas Áridas, Universidad Autónoma Chapingo, Bermejillo, Durango 35230, Mexico
| | | | - Gabriela Castillo-Hernández
- Colegio de Postgraduados, Campus Montecillo, Montecillo, Texcoco 56264, Mexico
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54714, Mexico
| | | | - Ricardo Alonso Sánchez-Gutiérrez
- Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Campo Experimental Zacatecas, Calera, Zacatecas 98500, Mexico
| | | | - Juan González-Maldonado
- Instituto de Ciencias Agrícolas, Universidad Autónoma de Baja California, Mexicali 21750, Mexico
| | - Pablo Alfredo Domínguez-Martínez
- Colegio de Postgraduados, Campus Montecillo, Montecillo, Texcoco 56264, Mexico
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Valle del Guadiana, Durango 34170, Mexico
| | - Lorenzo Danilo Granados-Rivera
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Genera Terán, General Terán 67400, Mexico
| | - Jorge Alonso Maldonado-Jáquez
- Colegio de Postgraduados, Campus Montecillo, Montecillo, Texcoco 56264, Mexico
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental La Laguna, Matamoros 27440, Mexico
| |
Collapse
|
4
|
Wang F, Zha Z, He Y, Li J, Zhong Z, Xiao Q, Tan Z. Genome-Wide Re-Sequencing Data Reveals the Population Structure and Selection Signatures of Tunchang Pigs in China. Animals (Basel) 2023; 13:1835. [PMID: 37889708 PMCID: PMC10252034 DOI: 10.3390/ani13111835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 09/29/2023] Open
Abstract
Tunchang pig is one population of Hainan pig in the Hainan Province of China, with the characteristics of delicious meat, strong adaptability, and high resistance to diseases. To explore the genetic diversity and population structure of Tunchang pigs and uncover their germplasm characteristics, 10 unrelated Tunchang pigs were re-sequenced using the Illumina NovaSeq 150 bp paired-end platform with an average depth of 10×. Sequencing data from 36 individuals of 7 other pig breeds (including 4 local Chinese pig breeds (5 Jinhua, 5 Meishan, 5 Rongchang, and 6 Wuzhishan), and 3 commonly used commercial pig breeds (5 Duorc, 5 Landrace, and 5 Large White)) were downloaded from the NCBI public database. After analysis of genetic diversity and population structure, it has been found that compared to commercial pigs, Tunchang pigs have higher genetic diversity and are genetically close to native Chinese breeds. Three methods, FST, θπ, and XP-EHH, were used to detect selection signals for three breeds of pigs: Tunchang, Duroc, and Landrace. A total of 2117 significantly selected regions and 201 candidate genes were screened. Gene enrichment analysis showed that candidate genes were mainly associated with good adaptability, disease resistance, and lipid metabolism traits. Finally, further screening was conducted to identify potential candidate genes related to phenotypic traits, including meat quality (SELENOV, CBR4, TNNT1, TNNT3, VPS13A, PLD3, SRFBP1, and SSPN), immune regulation (CD48, FBL, PTPRH, GNA14, LOX, SLAMF6, CALCOCO1, IRGC, and ZNF667), growth and development (SYT5, PRX, PPP1R12C, and SMG9), reproduction (LGALS13 and EPG5), vision (SLC9A8 and KCNV2), energy metabolism (ATP5G2), cell migration (EPS8L1), and olfaction (GRK3). In summary, our research results provide a genomic overview of the genetic variation, genetic diversity, and population structure of the Tunchang pig population, which will be valuable for breeding and conservation of Tunchang pigs in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Qian Xiao
- School of Animal Science and Technology, Hainan University, Haikou 570228, China; (F.W.)
| | - Zhen Tan
- School of Animal Science and Technology, Hainan University, Haikou 570228, China; (F.W.)
| |
Collapse
|
5
|
Tian S, Li W, Zhong Z, Wang F, Xiao Q. Genome-wide re-sequencing data reveals the genetic diversity and population structure of Wenchang chicken in China. Anim Genet 2023; 54:328-337. [PMID: 36639920 DOI: 10.1111/age.13293] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/14/2022] [Accepted: 12/31/2022] [Indexed: 01/15/2023]
Abstract
Wenchang (WC) chicken, the only indigenous chicken breed listed in Chinese genetic resources in Hainan province, is well known for its excellent meat quality and is sold all over southeast Asia. In recent years, the number of WC has decreased sharply with considerable variability in the quality at market. To explore the genetic diversity and population structure of WC chickens, the whole-genome data of 235 WC individuals from three conservation farms were obtained using the Illumina 150 bp paired-end platform and used in conjunction with the sequencing data from 123 individuals from other chicken breeds (including eight Chinese indigenous chicken breeds and three foreign or commercial breeds) downloaded from a public database. A total of 12 111 532 SNPs were identified, of which 11 541 878 SNPs were identified in WC. The results of gene enrichment analyses revealed that the SNPs harbored in WC genomes are mainly related to environmental adaptation, disease resistance and meat quality traits. Genetic diversity statistics, quantified by expected heterozygosity, observed heterozygosity, linkage disequilibrium, nucleotide diversity and fixation statistics, indicated that WC displays high genetic diversity compared with other Chinese indigenous chicken breeds. Genetic structure analyses showed that each population displayed great differentiation between WC and the other breeds, indicating the uniqueness of WC. In conclusion, the results of our study provide the first genomic overview of genetic variants, genetic diversity and population structure of WC from three conservation farms. This information will be valuable for the future breeding and conservation of WC and other surveyed populations.
Collapse
Affiliation(s)
- Shuaishuai Tian
- Hainan Key Laboratory of Tropical Animal Reproduction and Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
| | - Wei Li
- Department of Animal Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ziqi Zhong
- Hainan Key Laboratory of Tropical Animal Reproduction and Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
| | - Feifan Wang
- Hainan Key Laboratory of Tropical Animal Reproduction and Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
| | - Qian Xiao
- Hainan Key Laboratory of Tropical Animal Reproduction and Breeding and Epidemic Disease Research, College of Animal Science and Technology, Hainan University, Haikou, China
| |
Collapse
|
6
|
Magro S, Costa A, De Marchi M, Manuelian CL. Milk-related performances of Murciano-Granadina goats reared in Italy compared to cosmopolitan breeds. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Silvia Magro
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, Università di Padova, Legnaro, Italy
| | - Angela Costa
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, Università di Padova, Legnaro, Italy
| | - Massimo De Marchi
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, Università di Padova, Legnaro, Italy
| | - Carmen L. Manuelian
- Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente, Università di Padova, Legnaro, Italy
| |
Collapse
|
7
|
Genome-Wide Selective Analysis of Boer Goat to Investigate the Dynamic Heredity Evolution under Different Stages. Animals (Basel) 2022; 12:ani12111356. [PMID: 35681821 PMCID: PMC9204547 DOI: 10.3390/ani12111356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/07/2022] [Accepted: 05/23/2022] [Indexed: 12/16/2022] Open
Abstract
Boer goats, as kemp in meat-type goats, are selected and bred from African indigenous goats under a long period of artificial selection. Their advantages in multiple economic traits, particularly their plump growth, have attracted worldwide attention. The current study displayed the genome-wide selection signature analyses of South African indigenous goat (AF), African Boer (BH), and Australian Boer (AS) to investigate the hereditary basis of artificial selection in different stages. Four methods (principal component analysis, nucleotide diversity, linkage disequilibrium decay, and neighbor-joining tree) implied the genomic diversity changes with different artificial selection intensities in Boer goats. In addition, the θπ, FST, and XP-CLR methods were used to search for the candidate signatures of positive selection in Boer goats. Consequently, 339 (BH vs. AF) and 295 (AS vs. BH) candidate genes were obtained from SNP data. Especially, 10 genes (e.g., BMPR1B, DNER, ITGAL, and KIT) under selection in both groups were identified. Functional annotation analysis revealed that these genes are potentially responsible for reproduction, metabolism, growth, and development. This study used genome-wide sequencing data to identify inheritance by artificial selection. The results of the current study are valuable for future molecular-assisted breeding and genetic improvement of goats.
Collapse
|
8
|
Liu Z, Sun H, Lai W, Hu M, Zhang Y, Bai C, Liu J, Ren H, Li F, Yan S. Genome-wide re-sequencing reveals population structure and genetic diversity of Bohai Black cattle. Anim Genet 2021; 53:133-136. [PMID: 34783059 DOI: 10.1111/age.13155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 11/29/2022]
Abstract
Bohai Black (BHB) cattle, one of eight representative indigenous breeds in China, is well known for its high resistance to disease, endurance under unfavorable feeding conditions and excellent meat quality. Over recent, the number of BHB cattle has decreased sharply. To investigate the population structure and genetic diversity of this breed, the whole-genome data of 35 individuals from a conservation farm were obtained using the Illumina 150 bp paired-end platform. The results of the genetic structure and diversity analyses showed that BHB cattle had mixed Bos taurus and Bos indicus ancestry, close phylogenic relationships with Jiaxian Red and Luxi cattle and abundant genetic diversity. The bulls tested here could be divided into six families. This study presents a comprehensive evaluation of the genetic structure and diversity of the BHB cattle, and lays the theoretical basis for conservation and utilization of the valuable germplasm resource.
Collapse
Affiliation(s)
- Z Liu
- College of Animal Science, Jilin University, Changchun, 130062, China
| | - H Sun
- College of Animal Science, Jilin University, Changchun, 130062, China
| | - W Lai
- College of Animal Science, Jilin University, Changchun, 130062, China
| | - M Hu
- College of Animal Science, Jilin University, Changchun, 130062, China
| | - Y Zhang
- College of Animal Science, Jilin University, Changchun, 130062, China
| | - C Bai
- College of Animal Science, Jilin University, Changchun, 130062, China
| | - J Liu
- Shandong Binzhou Animal Science & Veterinary Medicine Academy, Binzhou, 256600, China
| | - H Ren
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, 130062, China
| | - F Li
- Shandong Binzhou Animal Science & Veterinary Medicine Academy, Binzhou, 256600, China
| | - S Yan
- College of Animal Science, Jilin University, Changchun, 130062, China
| |
Collapse
|