1
|
Gu LH, Wu RR, Zheng XL, Fu A, Xing ZY, Chen YY, He ZC, Lu LZ, Qi YT, Chen AH, Zhang YP, Xu TS, Peng MS, Ma C. Genomic insights into local adaptation and phenotypic diversity of Wenchang chickens. Poult Sci 2024; 103:103376. [PMID: 38228059 PMCID: PMC10823079 DOI: 10.1016/j.psj.2023.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/02/2023] [Accepted: 12/08/2023] [Indexed: 01/18/2024] Open
Abstract
Wenchang chicken, a prized local breed in Hainan Province of China renowned for its exceptional adaptability to tropical environments and good meat quality, is deeply favored by the public. However, an insufficient understanding of its population architecture and the unclear genetic basis that governs its typical attributes have posed challenges in the protection and breeding of this precious breed. To address these gaps, we conducted whole-genome resequencing on 200 Wenchang chicken samples derived from 10 distinct strains, and we gathered data on an array of 21 phenotype traits. Population genomics analysis unveiled distinctive population structures in Wenchang chickens, primarily attributed to strong artificial selection for different feather colors. Selection sweep analysis identified a group of candidate genes, including PCDH9, DPF3, CDIN1, and SUGCT, closely linked to adaptations that enhance resilience in tropical island habitats. Genome-wide association studies (GWAS) highlighted potential candidate genes associated with diverse feather color traits, encompassing TYR, RAB38, TRPM1, GABARAPL2, CDH1, ZMIZ1, LYST, MC1R, and SASH1. Through the comprehensive analysis of high-quality genomic and phenotypic data across diverse Wenchang chicken resource groups, this study unveils the intricate genetic backgrounds and population structures of Wenchang chickens. Additionally, it identifies multiple candidate genes linked to environmental adaptation, feather color variations, and production traits. These insights not only provide genetic reference for the purification and breeding of Wenchang chickens but also broaden our understanding of the genetic basis of phenotypic diversity in chickens.
Collapse
Affiliation(s)
- Li-Hong Gu
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571199, China
| | - Ran-Ran Wu
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Li Zheng
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571199, China
| | - An Fu
- Wenchang City Wenchang Chicken Research Institute, Wenchang 571300, China
| | - Zeng-Yang Xing
- Wenchang Long-quan Wenchang Chicken Industrial Co., Ltd., Wenchang 571346, China
| | - Yi-Yong Chen
- Hainan Chuang Wen Wenchang Chicken Industry Co., Ltd., Wenchang 571321, China
| | - Zhong-Chun He
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571199, China
| | - Li-Zhi Lu
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yan-Tao Qi
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571199, China
| | - An-Hong Chen
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571199, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution & Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming 650091, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tie-Shan Xu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Min-Sheng Peng
- Wenchang City Wenchang Chicken Research Institute, Wenchang 571300, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Ma
- Wenchang City Wenchang Chicken Research Institute, Wenchang 571300, China.
| |
Collapse
|
2
|
Li S, Zhang X, Dong X, Guo R, Nan J, Yuan J, Schlebusch CM, Sheng Z. Genetic structure and characteristics of Tibetan chickens. Poult Sci 2023; 102:102767. [PMID: 37321029 PMCID: PMC10404676 DOI: 10.1016/j.psj.2023.102767] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 06/17/2023] Open
Abstract
Tibetan chicken is one of the most common and widely distributed highland breeds, and is often used as a model organism for understanding genetic adaptation to extreme environments in Tibet. Despite its apparent geographical diversity and large variations in plumage patterns, the genetic differences within breed were not accounted for in most studies and have not been systematically investigated. In order to reveal and genetically differentiate the current existing TBC sub-populations that might have major implications for genomic research in TBCs, we systematically evaluated the population structure and demography of current TBC populations. Based on 344 whole-genome sequenced birds including 115 Tibetan chickens that were mostly sampled from family-farms across Tibet, we revealed a clear separation of Tibetan chickens into 4 sub-populations that broadly aligns with their geographical distribution. Moreover, population structure, population size dynamics, and the extent of admixture jointly suggest complex demographic histories of these sub-populations, including possible multiple origins, inbreeding, and introgressions. While most of the candidate selected regions found between the TBC sub-populations and Red Jungle fowls were nonoverlapping, 2 genes RYR2 and CAMK2D were revealed as strong selection candidates in all 4 sub-populations. These 2 previously identified high altitude associated genes indicated that the sub-populations responded to similar selection pressures in an independent but functionally similar fashion. Our results demonstrate robust population structure in Tibetan chickens that will help inform future genetic analyses on chickens and other domestic animals alike in Tibet, recommending thoughtful experimental design.
Collapse
Affiliation(s)
- Shijun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaojian Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyu Dong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiyang Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiuhong Nan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingwei Yuan
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Carina M Schlebusch
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Zheya Sheng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|