1
|
Panigrahi M, Nayak SS, Rajawat D, Bose A, Bharia N, Das S, Sharma A, Dutt T. Genomic advancements in goat breeding: enhancing productivity, disease resistance, and sustainability in India's rural economy. Mamm Genome 2025:10.1007/s00335-025-10138-8. [PMID: 40434651 DOI: 10.1007/s00335-025-10138-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025]
Abstract
Goats are vital to the rural economy of India, contributing significantly to livelihoods, nutrition, and agricultural sustainability. With a population of 148.88 million, India holds the world's largest goat population, comprising 41 recognized indigenous breeds. These goats provide milk, meat, and fiber, particularly in marginal environments. The genomic advancements in goat research have revolutionized the understanding of genetic diversity, adaptation, and trait improvement. Whole-genome sequencing (WGS), single nucleotide polymorphism (SNP) arrays and transcriptomics have unveiled genetic markers associated with production, disease resistance, and reproductive traits. Genomic tools such as the Illumina Goat SNP50K BeadChip and high-throughput sequencing technologies have facilitated the identification of selection signatures and quantitative trait loci (QTL), influencing economically important traits like milk yield, meat quality, and prolificacy. Notably, genes such as DGAT1, GHR, BMPR1B, and HSP70 have been linked to production efficiency, reproductive performance, and climate resilience. Genome-wide association studies (GWAS) and genomic selection (GS) have enabled precision breeding, enhancing genetic gains and reducing inbreeding risks. The application of RNA sequencing has provided insights into gene expression patterns governing lactation, growth, and reproductive efficiency. Epigenomic studies, focusing on DNA methylation and histone modifications, have highlighted regulatory mechanisms underpinning prolificacy and muscle development. Conservation genomics has played a pivotal role in safeguarding native breeds by assessing genetic diversity and mitigating inbreeding depression. Indicine goat breeds, such as Jamunapari, Beetal, Barbari, and Black Bengal, exhibit unique genetic adaptations to diverse agro-climatic conditions, emphasizing the need for their conservation. Emerging technologies, including CRISPR-Cas9 gene editing, hold promise for precision breeding to enhance productivity and disease resistance. Integrating genomics with artificial intelligence (AI) and big data analytics is poised to revolutionize goat breeding and management. Future efforts should focus on expanding genomic databases, developing breed-specific reference genomes, and promoting genomic literacy among farmers to ensure sustainable goat production and improve rural livelihoods in India.
Collapse
Affiliation(s)
- Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India.
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Anal Bose
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Nishu Bharia
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Shivani Das
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| |
Collapse
|
2
|
Vasu M, Ahlawat S, Arora R, Sharma R. Deciphering the molecular drivers for cashmere/pashmina fiber production in goats: a comprehensive review. Mamm Genome 2025; 36:162-182. [PMID: 39904908 DOI: 10.1007/s00335-025-10109-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
Cashmere, also known as pashmina, is derived from the secondary hair follicles of Cashmere/Changthangi goats. Renowned as the world's most luxurious natural fiber, it holds significant economic value in the textile industry. This comprehensive review enhances our understanding of the complex biological processes governing cashmere/pashmina fiber development and quality, enabling advancements in selective breeding and fiber enhancement strategies. The review specifically examines the molecular determinants influencing fiber development, with an emphasis on keratins (KRTs) and keratin-associated proteins (KRTAPs). It also explores the roles of key molecular pathways, including Wnt, Notch, BMP, NF-kappa B, VEGF, cAMP, PI3K-Akt, ECM, cell adhesion, Hedgehog, MAPK, Ras, JAK-STAT, TGF-β, mTOR, melanogenesis, FoxO, Hippo, and Rap1 signaling. Understanding these intricate molecular cascades provides valuable insights into the mechanisms orchestrating hair follicle growth, further advancing the biology of this coveted natural fiber. Expanding multi-omics approaches will enhance breeding precision and deepen our understanding of molecular pathways influencing cashmere production. Future research should address critical gaps, such as the impact of environmental factors, epigenetic modifications, and functional studies of genetic variants. Collaboration among breeders, researchers, and policymakers is essential for translating genomic advancements into practical applications. Such efforts can promote sustainable practices, conserve biodiversity, and ensure the long-term viability of high-quality cashmere production. Aligning genetic insights with conservation strategies will support the sustainable growth of the cashmere industry while preserving its economic and ecological value.
Collapse
Affiliation(s)
- Mahanthi Vasu
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Sonika Ahlawat
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India.
| | - Reena Arora
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Rekha Sharma
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| |
Collapse
|
3
|
Nayak SS, Rajawat D, Jain K, Sharma A, Gondro C, Tarafdar A, Dutt T, Panigrahi M. A comprehensive review of livestock development: insights into domestication, phylogenetics, diversity, and genomic advances. Mamm Genome 2024; 35:577-599. [PMID: 39397083 DOI: 10.1007/s00335-024-10075-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/27/2024] [Indexed: 10/15/2024]
Abstract
Livestock plays an essential role in sustaining human livelihoods, offering a diverse range of species integral to food security, economic stability, and cultural traditions. The domestication of livestock, which began over 10,000 years ago, has driven significant genetic changes in species such as cattle, buffaloes, sheep, goats, and pigs. Recent advancements in genomic technologies, including next-generation sequencing (NGS), genome-wide association studies (GWAS), and genomic selection, have dramatically enhanced our understanding of these genetic developments. This review brings together key research on the domestication process, phylogenetics, genetic diversity, and selection signatures within major livestock species. It emphasizes the importance of admixture studies and evolutionary forces like natural selection, genetic drift, and gene flow in shaping livestock populations. Additionally, the integration of machine learning with genomic data offers new perspectives on the functional roles of genes in adaptation and evolution. By exploring these genomic advancements, this review provides insights into genetic variation and evolutionary processes that could inform future approaches to improving livestock management and adaptation to environmental challenges, including climate change.
Collapse
Affiliation(s)
- Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Karan Jain
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Cedric Gondro
- Department of Animal Science, Michigan State University, East Lansing, MI, 48824, USA
| | - Ayon Tarafdar
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India.
| |
Collapse
|
4
|
Bertolini F, Schiavo G, Bovo S, Ribani A, Dall'Olio S, Zambonelli P, Gallo M, Fontanesi L. Signatures of selection analyses reveal genomic differences among three heavy pig breeds that constitute the genetic backbone of a dry-cured ham production system. Animal 2024; 18:101335. [PMID: 39405958 DOI: 10.1016/j.animal.2024.101335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 11/18/2024] Open
Abstract
The Italian pig farming industry is unique in its focus on raising heavy pigs primarily for the production of high-quality dry-cured hams. These products require pigs to be slaughtered at a live weight of around 170 kg at 9 months of age. The primary breeds used in this system are Italian Duroc, Italian Landrace, and Italian Large White which are crossed to produce lines that meet standard requirements. Over the past four decades, selection and breeding programmes for these breeds have been subjected to distinct selective pressures to highlight the characteristics of each breed. In this study, we investigated the genome of these breeds by analysing high-density single nucleotide polymorphism data from over 9 000 pigs to scan for signatures of selection using four different methods, two within breeds and two across breeds. This allowed to identify the genomic regions that differentiate these breeds as well as any relevant genes and biological terms. On a global scale, we found that the Italian Duroc breed exhibited a higher genetic differentiation from the Italian Landrace and Italian Large White breeds, with a pairwise FST value of 0.20 compared with the 0.13 between Italian Landrace and Italian Large White. This may reflect either their different origins or the different breeding goals, which are more similar for the Italian Landrace and Italian Large White breeds. Despite these genetic differences at a global level, few signatures of selection regions reached complete fixation, possibly due to challenges in detecting selection linked to quantitative polygenic traits. The differences among the three breeds are confirmed by the low level of overlap in the regions detected. Genetic enrichment analyses of the three breeds revealed pathways and genes related to various productive traits associated with growth and fat deposition. This may indicate a common selection direction aimed at enhancing specific production traits, though different biological mechanisms are likely targeted by the same directional selection in these three breeds. Therefore, these genes may play a critical role in determining the distinctive characteristics of Italian Duroc, Italian Landrace, and Italian Large White, and potentially influence the traits in crossbred pigs derived from them. Overall, the insights gained from this study will contribute to understanding how directional selection has shaped the genome of these heavy pig breeds and to better address selection strategies aimed at enhancing the meat processing industry linked with dry-cured ham production chains.
Collapse
Affiliation(s)
- F Bertolini
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy.
| | - G Schiavo
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - S Bovo
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - A Ribani
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - S Dall'Olio
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - P Zambonelli
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - M Gallo
- Associazione Nazionale Allevatori Suini, Roma, Italy
| | - L Fontanesi
- Animal and Food Genomics Group, Division of Animal Sciences, Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Ayyat MS, El-Monem UMA, Moustafa MMA, Al-Sagheer AA, Mahran MD, El-Attrouny MM. Genetic assessment of litter size, body weight, carcass traits and gene expression profiles in exotic and indigenous rabbit breeds: a study on New Zealand White, Californian, and Gabali rabbits in Egypt. Trop Anim Health Prod 2024; 56:244. [PMID: 39172291 PMCID: PMC11341605 DOI: 10.1007/s11250-024-04082-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024]
Abstract
Rabbits are essential for commercial meat production due to their efficient growth and productivity, breeds like New Zealand White (NZW), Californian (CAL), and Gabali (GAB) rabbits offer unique genetic traits in litter, growth, and carcass traits. This study aimed to evaluate heritability (h2), genetic and phenotypic correlations (rg and rp) for litter size, body weight and carcass traits across California (CAL), New Zealand white (NZW) and Gabali (GA) rabbits. Along with exploring gene expression profiles of TBC1D1, NPY, AGRP, POMC, Leptin, GH, GHR, IGF-1, CAA, GPR, ACC, CPT1, FAS, and CART in the brain, liver, and meat tissues of different rabbit breeds. The breed genotype had a significant impact on litter size (LS), litter weight (LW), body weight at 12 weeks (BW12), and daily weight gain (DWG) traits. NZW rabbits displayed superior performance in terms of litter size and litter weight, while CAL rabbits recorded the highest values for BW12 and DWG. Heritability estimates (h2) were generally low for litter size (ranging from 0.05 to 0.12) and medium for body weight (ranging from 0.16 to 0.31). Both genetic (rg) and phenotypic (rp) correlations for litter size were positive and moderate (ranging from 0.08 to 0.48), while correlations for body weight ranged from 0.21 to 0.58. Additionally, CAL rabbits exhibited higher carcass traits compared to NZW and GA rabbits. In terms of breed-specific gene expression patterns, New Zealand White (NZW) rabbits displayed the highest expression levels of key genes related to energy metabolism (TBC1D1), appetite regulation (NPY, AGRP, POMC), nutrient transport (CAA), and G protein-coupled receptors (GPR) in both brain and liver tissues. Californian (CAL) rabbits exhibited superior gene expression of the ACC gene in brain tissue and GH, GHR, and IGF-1 genes in brain and meat tissues. Gabali (GAB) rabbits demonstrated the highest expression levels of TBC1D1, NPY, AGRP, GPR, and ACC genes in meat tissues. These breed-specific gene expression differences, combined with genetic evaluation efforts, have the potential to enhance reproductive and productive performance in rabbits, offering valuable insights for rabbit breeding programs and genetic selection.
Collapse
Affiliation(s)
- Mohamed S Ayyat
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Usama M Abd El-Monem
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mahmoud M A Moustafa
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Moshtohor, Toukh, 13736, Egypt
| | - Adham A Al-Sagheer
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mohamed D Mahran
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Mahmoud M El-Attrouny
- Department of Animal Production, Faculty of Agriculture, Benha University, Moshtohor, Toukh, 13736, Egypt
| |
Collapse
|
6
|
Jogi HR, Smaraki N, Nayak SS, Rajawat D, Kamothi DJ, Panigrahi M. Single cell RNA-seq: a novel tool to unravel virus-host interplay. Virusdisease 2024; 35:41-54. [PMID: 38817399 PMCID: PMC11133279 DOI: 10.1007/s13337-024-00859-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/12/2024] [Indexed: 06/01/2024] Open
Abstract
Over the last decade, single cell RNA sequencing (scRNA-seq) technology has caught the momentum of being a vital revolutionary tool to unfold cellular heterogeneity by high resolution assessment. It evades the inadequacies of conventional sequencing technology which was able to detect only average expression level among cell populations. In the era of twenty-first century, several epidemic and pandemic viruses have emerged. Being an intracellular entity, viruses totally rely on host. Complex virus-host dynamics result when the virus tend to obtain factors from host cell required for its replication and establishment of infection. As a prevailing tool, scRNA-seq is able to understand virus-host interplay by comprehensive transcriptome profiling. Because of technological and methodological advancement, this technology is capable to recognize viral genome and host cell response heterogeneity. Further development in analytical methods with multiomics approach and increased availability of accessible scRNA-seq datasets will improve the understanding of viral pathogenesis that can be helpful for development of novel antiviral therapeutic strategies.
Collapse
Affiliation(s)
- Harsh Rajeshbhai Jogi
- Division of Veterinary Microbiology, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Nabaneeta Smaraki
- Division of Veterinary Microbiology, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Divya Rajawat
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Dhaval J. Kamothi
- Division of Pharmacology and Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| |
Collapse
|
7
|
Rajawat D, Panigrahi M, Nayak SS, Bhushan B, Mishra BP, Dutt T. Dissecting the genomic regions of selection on the X chromosome in different cattle breeds. 3 Biotech 2024; 14:50. [PMID: 38268984 PMCID: PMC10803714 DOI: 10.1007/s13205-023-03905-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024] Open
Abstract
Mammalian X and Y chromosomes independently evolved from various autosomes approximately 300 million years ago (MYA). To fully understand the relationship between genomic composition and phenotypic diversity arising due to the course of evolution, we have scanned regions of selection signatures on the X chromosome in different cattle breeds. In this study, we have prepared the datasets of 184 individuals of different cattle breeds and explored the complete X chromosome by utilizing four within-population and two between-population methods. There were 23, 25, 30, 17, 17, and 12 outlier regions identified in Tajima's D, CLR, iHS, ROH, FST, and XP-EHH. Bioinformatics analysis showed that these regions harbor important candidate genes like AKAP4 for reproduction in Brown Swiss, MBTS2 for production traits in Brown Swiss and Guernsey, CXCR3 and CITED1 for health traits in Jersey and Nelore, and BMX and CD40LG for regulation of X chromosome inactivation in Nelore and Gir. We identified genes shared among multiple methods, such as TRNAC-GCA and IL1RAPL1, which appeared in Tajima's D, ROH, and iHS analyses. The gene TRNAW-CCA was found in ROH, CLR and iHS analyses. The X chromosome exhibits a distinctive interaction between demographic factors and genetic variations, and these findings may provide new insight into the X-linked selection in different cattle breeds.
Collapse
Affiliation(s)
- Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| | - B. P. Mishra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Karnal, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP 243122 India
| |
Collapse
|
8
|
Vaidhya A, Ghildiyal K, Rajawat D, Nayak SS, Parida S, Panigrahi M. Relevance of pharmacogenetics and pharmacogenomics in veterinary clinical practice: A review. Anim Genet 2024; 55:3-19. [PMID: 37990577 DOI: 10.1111/age.13376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/03/2023] [Accepted: 10/24/2023] [Indexed: 11/23/2023]
Abstract
The recent advances in high-throughput next-generation sequencing technologies have heralded the arrival of the Big Data era. As a result, the use of pharmacogenetics in drug discovery and individualized drug therapy has transformed the field of precision medicine. This paradigm shift in drug development programs has effectively reshaped the old drug development practices, which were primarily concerned with the physiological status of patients for drug development. Pharmacogenomics bridges the gap between pharmacodynamics and pharmacokinetics, advancing current diagnostic and treatment strategies and enabling personalized and targeted drug therapy. The primary goals of pharmacogenetic studies are to improve drug efficacy and minimize toxicities, to identify novel drug targets, to estimate drug dosage for personalized medicine, and to incorporate it as a routine diagnostic for disease susceptibility. Although pharmacogenetics has numerous applications in individualized drug therapy and drug development, it is in its infancy in veterinary medicine. The objective of this review is to present an overview of historical landmarks, current developments in various animal species, challenges and future perspectives of genomics in drug development and dosage optimization for individualized medicine in veterinary subjects.
Collapse
Affiliation(s)
- Ayushi Vaidhya
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Subhashree Parida
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India
| |
Collapse
|
9
|
Sun X, Guo J, Li R, Zhang H, Zhang Y, Liu GE, Emu Q, Zhang H. Whole-Genome Resequencing Reveals Genetic Diversity and Wool Trait-Related Genes in Liangshan Semi-Fine-Wool Sheep. Animals (Basel) 2024; 14:444. [PMID: 38338087 PMCID: PMC10854784 DOI: 10.3390/ani14030444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Understanding the genetic makeup of local sheep breeds is essential for their scientific conservation and sustainable utilization. The Liangshan semi-fine-wool sheep (LSS), a Chinese semi-fine-wool breed renowned for its soft wool, was analyzed using whole-genome sequencing data including 35 LSS, 84 sheep from other domestic breeds, and 20 Asiatic mouflons. We investigated the genetic composition of LSS by conducting analyses of the population structure, runs of homozygosity, genomic inbreeding coefficients, and selection signature. Our findings indicated that LSS shares greater genetic similarity with Border Leicester and Romney sheep than with Tibetan (TIB), Yunnan (YNS), and Chinese Merino sheep. Genomic analysis indicated low to moderate inbreeding coefficients, ranging from 0.014 to 0.154. In identifying selection signals across the LSS genome, we pinpointed 195 candidate regions housing 74 annotated genes (e.g., IRF2BP2, BVES, and ALOX5). We also found the overlaps between the candidate regions and several known quantitative trait loci related to wool traits, such as the wool staple length and wool fiber diameter. A selective sweep region, marked by the highest value of cross-population extended haplotype homozygosity, encompassed IRF2BP2-an influential candidate gene affecting fleece fiber traits. Furthermore, notable differences in genotype frequency at a mutation site (c.1051 + 46T > C, Chr25: 6,784,190 bp) within IRF2BP2 were observed between LSS and TIB and YNS sheep (Fisher's exact test, p < 2.2 × 10-16). Taken together, these findings offer insights crucial for the conservation and breeding enhancement of LSS.
Collapse
Affiliation(s)
- Xueliang Sun
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.S.); (J.G.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiazhong Guo
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.S.); (J.G.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Ran Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Huanhuan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yifei Zhang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.S.); (J.G.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, MD 20705, USA
| | - Quzhe Emu
- Animal Genetics and Breeding Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, No. 7, Niusha Road, Chengdu 610066, China
| | - Hongping Zhang
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (X.S.); (J.G.)
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
10
|
Nayak SS, Panigrahi M, Rajawat D, Ghildiyal K, Sharma A, Jain K, Bhushan B, Dutt T. Deciphering climate resilience in Indian cattle breeds by selection signature analyses. Trop Anim Health Prod 2024; 56:46. [PMID: 38233536 DOI: 10.1007/s11250-023-03879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024]
Abstract
The signature of selection is a crucial concept in evolutionary biology that refers to the pattern of genetic variation which arises in a population due to natural selection. In the context of climate adaptation, the signature of selection can reveal the genetic basis of adaptive traits that enable organisms to survive and thrive in changing environmental conditions. Breeds living in diverse agroecological zones exhibit genetic "footprints" within their genomes that mirror the influence of climate-induced selective pressures, subsequently impacting phenotypic variance. It is assumed that the genomes of animals residing in these regions have been altered through selection for various climatic adaptations. These regions are known as signatures of selection and can be identified using various summary statistics. We examined genotypic data from eight different cattle breeds (Gir, Hariana, Kankrej, Nelore, Ongole, Red Sindhi, Sahiwal, and Tharparkar) that are adapted to diverse regional climates. To identify selection signature regions in this investigation, we used four intra-population statistics: Tajima's D, CLR, iHS, and ROH. In this study, we utilized Bovine 50 K chip data and four genome scan techniques to assess the genetic regions of positive selection for high-temperature adaptation. We have also performed a genome-wide investigation of genetic diversity, inbreeding, and effective population size in our target dataset. We identified potential regions for selection that are likely to be caused by adverse climatic conditions. We observed many adaptation genes in several potential selection signature areas. These include genes like HSPB2, HSPB3, HSP20, HSP90AB1, HSF4, HSPA1B, CLPB, GAP43, MITF, and MCHR1 which have been reported in the cattle populations that live in varied climatic regions. The findings demonstrated that genes involved in disease resistance and thermotolerance were subjected to intense selection. The findings have implications for marker-assisted breeding, understanding the genetic landscape of climate-induced adaptation, putting breeding and conservation programs into action.
Collapse
Affiliation(s)
- Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India.
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Karan Jain
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| |
Collapse
|
11
|
Nayak SS, Panigrahi M, Rajawat D, Ghildiyal K, Sharma A, Parida S, Bhushan B, Mishra BP, Dutt T. Comprehensive selection signature analyses in dairy cattle exploiting purebred and crossbred genomic data. Mamm Genome 2023; 34:615-631. [PMID: 37843569 DOI: 10.1007/s00335-023-10021-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/24/2023] [Indexed: 10/17/2023]
Abstract
The main objective of the current research was to locate, annotate, and highlight specific areas of the bovine genome that are undergoing intense positive selection. Here, we are analyzing selection signatures in crossbred (Bos taurus X Bos indicus), taurine (Bos taurus), and indicine (Bos indicus) cattle breeds. Indicine cattle breeds found throughout India are known for their higher heat tolerance and disease resilience. More breeds and more methods can provide a better understanding of the selection signature. So, we have worked on nine distinct cattle breeds utilizing seven different summary statistics, which is a fairly extensive approach. In this study, we carried out a thorough genome-wide investigation of selection signatures using bovine 50K SNP data. We have included the genotyped data of two taurine, two crossbreds, and five indicine cattle breeds, for a total of 320 animals. During the 1950s, these indicine (cebuine) cattle breeds were exported with the aim of enhancing the resilience of taurine breeds in Western countries. For this study, we employed seven summary statistics, including intra-population, i.e., Tajima's D, CLR, iHS, and ROH and inter-population statistics, i.e., FST, XP-EHH, and Rsb. The NCBI database, PANTHER 17.0, and CattleQTL database were used for annotation after finding the important areas under selection. Some genes, including EPHA6, CTNNA2, NPFFR2, HS6ST3, NPR3, KCNIP4, LIPK, SDCBP, CYP7A1, NSMAF, UBXN2B, UGDH, UBE2K, and DAB1, were shown to be shared by three or more different approaches. Therefore, it gives evidence of the most intense selection in these areas. These genes are mostly linked to milk production and adaptability traits. This study also reveals selection regions that contain genes which are crucial to numerous biological functions, including those associated with milk production, coat color, glucose metabolism, oxidative stress response, immunity and circadian rhythms.
Collapse
Affiliation(s)
- Sonali Sonejita Nayak
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India.
| | - Divya Rajawat
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Kanika Ghildiyal
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Anurodh Sharma
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Subhashree Parida
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - Bharat Bhushan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| | - B P Mishra
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, 243122, India
| |
Collapse
|
12
|
Panigrahi M, Rajawat D, Nayak SS, Ghildiyal K, Sharma A, Jain K, Lei C, Bhushan B, Mishra BP, Dutt T. Landmarks in the history of selective sweeps. Anim Genet 2023; 54:667-688. [PMID: 37710403 DOI: 10.1111/age.13355] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
Half a century ago, a seminal article on the hitchhiking effect by Smith and Haigh inaugurated the concept of the selection signature. Selective sweeps are characterised by the rapid spread of an advantageous genetic variant through a population and hence play an important role in shaping evolution and research on genetic diversity. The process by which a beneficial allele arises and becomes fixed in a population, leading to a increase in the frequency of other linked alleles, is known as genetic hitchhiking or genetic draft. Kimura's neutral theory and hitchhiking theory are complementary, with Kimura's neutral evolution as the 'null model' and positive selection as the 'signal'. Both are widely accepted in evolution, especially with genomics enabling precise measurements. Significant advances in genomic technologies, such as next-generation sequencing, high-density SNP arrays and powerful bioinformatics tools, have made it possible to systematically investigate selection signatures in a variety of species. Although the history of selection signatures is relatively recent, progress has been made in the last two decades, owing to the increasing availability of large-scale genomic data and the development of computational methods. In this review, we embark on a journey through the history of research on selective sweeps, ranging from early theoretical work to recent empirical studies that utilise genomic data.
Collapse
Affiliation(s)
- Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | | | - Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Karan Jain
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, India
| | - Bishnu Prasad Mishra
- Division of Animal Biotechnology, ICAR-National Bureau of Animal Genetic Resources, Karnal, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
13
|
Ghildiyal K, Nayak SS, Rajawat D, Sharma A, Chhotaray S, Bhushan B, Dutt T, Panigrahi M. Genomic insights into the conservation of wild and domestic animal diversity: A review. Gene 2023; 886:147719. [PMID: 37597708 DOI: 10.1016/j.gene.2023.147719] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/20/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Due to environmental change and anthropogenic activities, global biodiversity has suffered an unprecedented loss, and the world is now heading toward the sixth mass extinction event. This urges the need to step up our efforts to promote the sustainable use of animal genetic resources and plan effective strategies for their conservation. Although habitat preservation and restoration are the primary means of conserving biodiversity, genomic technologies offer a variety of novel tools for identifying biodiversity hotspots and thus, support conservation efforts. Conservation genomics is a broad area of science that encompasses the application of genomic data from thousands or tens of thousands of genome-wide markers to address important conservation biology concerns. Genomic approaches have revolutionized the way we understand and manage animal populations, providing tools to identify and preserve unique genetic variants and alleles responsible for adaptive genetic variation, reducing the deleterious consequences of inbreeding, and increasing the adaptive potential of threatened species. The advancement of genomic technologies, particularly comparative genomic approaches, and the increased accessibility of genomic resources in the form of genome-enabled taxa for non-model organisms, provides a distinct advantage in defining conservation units over traditional genetics approaches. The objective of this review is to provide an exhaustive overview of the concept of conservation genomics, discuss the rationale behind the transition from conservation genetics to genomic approaches, and emphasize the potential applications of genomic techniques for conservation purposes. We also highlight interesting case studies in both livestock and wildlife species where genomic techniques have been used to accomplish conservation goals. Finally, we address some challenges and future perspectives in this field.
Collapse
Affiliation(s)
- Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Anurodh Sharma
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Supriya Chhotaray
- Animal Genetics and Breeding Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| |
Collapse
|
14
|
Chen J, Wang Y, Qi X, Cheng H, Chen N, Ahmed Z, Chen Q, Lei C, Yang X. Genome-wide analysis emancipates genomic diversity and signature of selection in Altay white-headed cattle of Xinjiang, China. Front Genet 2023; 14:1144249. [PMID: 37065480 PMCID: PMC10098193 DOI: 10.3389/fgene.2023.1144249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/17/2023] [Indexed: 04/01/2023] Open
Abstract
Altay white-headed cattle have not received enough attention for several reasons. Due to irrational breeding and selection practices, the number of pure Altay white-headed cattle has decreased significantly and the breed is now on the eve of extinction. The genomic characterization will be a crucial step towards understanding the genetic basis of productivity and adaptability to survival under native Chinese agropastoral systems; nevertheless, no attempt has been made in Altay white-headed cattle. In the current study, we compared the genomes of 20 Altay white-headed cattle to the genomes of 144 individuals in representative breeds. Population genetic diversity revealed that the nucleotide diversity of Altay white-headed cattle was less than that of indicine breeds and comparable to that of Chinese taurus cattle. Using population structure analysis, we also found that Altay white-headed cattle carried the ancestry of the European and East Asian cattle lineage. In addition, we used three different methods (FST, θπ ratio and XP-EHH) to investigate the adaptability and white-headed phenotype of Altay white-headed cattle and compared it with Bohai black cattle. We found EPB41L5, SCG5 and KIT genes on the list of the top one percent genes, these genes might have an association with environmental adaptability and the white-headed phenotype for this breed. Our research reveals the distinctive genomic features of Altay white-headed cattle at the genome-wide level.
Collapse
Affiliation(s)
- Jialei Chen
- Life Science College, Luoyang Normal University, Luoyang, China
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yushu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xingshan Qi
- Biyang Xianan Cattle Technology and Development Company Ltd., Biyang, China
| | - Haijian Cheng
- Shandong Key Lab of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ningbo Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zulfiqar Ahmed
- Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture and Rural Affairs, and Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Shabestar, Pakistan
| | - Qiuming Chen
- College of Animal Science, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Chuzhao Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
- *Correspondence: Chuzhao Lei, ; Xueyi Yang,
| | - Xueyi Yang
- Life Science College, Luoyang Normal University, Luoyang, China
- *Correspondence: Chuzhao Lei, ; Xueyi Yang,
| |
Collapse
|