1
|
Rudd Garces G, Farke D, Schmidt MJ, Letko A, Schirl K, Abitbol M, Leeb T, Lyons LA, Lühken G. PAX3 haploinsufficiency in Maine Coon cats with dominant blue eyes and hearing loss resembling the human Waardenburg syndrome. G3 (BETHESDA, MD.) 2024; 14:jkae131. [PMID: 38869246 PMCID: PMC11373664 DOI: 10.1093/g3journal/jkae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 02/26/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
This study investigated the dominant blue eyes (DBE) trait linked to hearing impairment and variable white spotting in Maine Coon cats. Fifty-eight animals descending from 2 different DBE lineages, the Dutch and the Topaz lines, were sampled. They comprised 48 cats from the Dutch bloodline, including 9 green-eyed and 31 blue-eyed cats, with some individuals exhibiting signs of deafness, and 8 stillborn kittens. Samples from the Topaz lineage included 10 blue-eyed animals. A brainstem auditory evoked response test revealed a reduced to absent response to auditory stimuli and absent physiological waveforms in all of the 8 examined DBE animals. We sequenced the genome of 2 affected cats from the Dutch line and searched for variants in 19 candidate genes for the human Waardenburg syndrome and pigmentary disorders. This search yielded 9 private protein-changing candidate variants in the genes PAX3, EDN3, KIT, OCA2, SLC24A5, HERC2, and TYRP1. The genotype-phenotype cosegregation was observed for the PAX3 variant within all animals from the Dutch lineage. The mutant allele was absent from 461 control genomes and 241 additionally genotyped green-eyed Maine Coons. We considered the PAX3 variant as the most plausible candidate-a heterozygous nonsense single base pair substitution in exon 6 of PAX3 (NC_051841.1:g.205,787,310G>A, XM_019838731.3:c.937C>T, XP_019694290.1:p.Gln313*), predicted to result in a premature stop codon. PAX3 variants cause auditory-pigmentary syndrome in humans, horses, and mice. Together with the comparative data from other species, our findings strongly suggest PAX3:c.937C>T (OMIA:001688-9685) as the most likely candidate variant for the DBE, deafness, and minimal white spotting in the Maine Coon Dutch line. Finally, we propose the designation of DBERE (Rociri Elvis Dominant Blue Eyes) allele in the domestic cat.
Collapse
Affiliation(s)
- Gabriela Rudd Garces
- Institute of Animal Breeding and Genetics, Justus Liebig University Giessen, 35390 Giessen, Germany
- Generatio GmbH, 69115 Heidelberg, Germany
| | - Daniela Farke
- Clinic for Small Animals, Neurosurgery, Neuroradiology and Clinical Neurology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Martin J Schmidt
- Clinic for Small Animals, Neurosurgery, Neuroradiology and Clinical Neurology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Anna Letko
- Vetsuisse Faculty, Institute of Genetics, University of Bern, 3012 Bern, Switzerland
| | - Katja Schirl
- Department of Molecular Biology, LABOKLIN GmbH & Co. KG, 97688 Bad Kissingen, Germany
| | - Marie Abitbol
- Université Claude Bernard Lyon, VetAgro Sup, 69280 Marcy-l'Etoile, France
- Institut NeuroMyoGène INMG-PNMG, CNRS UMR5261, INSERM U1315, Faculté de Médecine, Université Claude Bernard Lyon 1, Rockefeller, 69008 Lyon, France
| | - Tosso Leeb
- Vetsuisse Faculty, Institute of Genetics, University of Bern, 3012 Bern, Switzerland
| | - Leslie A Lyons
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Gesine Lühken
- Institute of Animal Breeding and Genetics, Justus Liebig University Giessen, 35390 Giessen, Germany
| |
Collapse
|
2
|
Liu X, Peng Y, Zhang X, Wang X, Chen W, Kou X, Liang H, Ren W, Khan MZ, Wang C. Coloration in Equine: Overview of Candidate Genes Associated with Coat Color Phenotypes. Animals (Basel) 2024; 14:1802. [PMID: 38929421 PMCID: PMC11200706 DOI: 10.3390/ani14121802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Variation in coat color among equids has attracted significant interest in genetics and breeding research. The range of colors is primarily determined by the type, concentration, and distribution of melanin pigments, with the balance between eumelanin and pheomelanin influenced by numerous genetic factors. Advances in genomic and sequencing technologies have enabled the identification of several candidate genes that influence coat color, thereby clarifying the genetic basis of these diverse phenotypes. In this review, we concisely categorize coat coloration in horses and donkeys, focusing on the biosynthesis and types of melanin involved in pigmentation. Moreover, we highlight the regulatory roles of some key candidate genes, such as MC1R, TYR, MITF, ASIP, and KIT, in coat color variation. Moreover, the review explores how coat color relates to selective breeding and specific equine diseases, offering valuable insights for developing breeding strategies that enhance both the esthetic and health aspects of equine species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Muhammad Zahoor Khan
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| | - Changfa Wang
- Liaocheng Research Institute of Donkey High-Efficiency Breeding and Ecological Feeding, Liaocheng University, Liaocheng 522000, China
| |
Collapse
|
3
|
McFadden A, Vierra M, Martin K, Brooks SA, Everts RE, Lafayette C. Spotting the Pattern: A Review on White Coat Color in the Domestic Horse. Animals (Basel) 2024; 14:451. [PMID: 38338094 PMCID: PMC10854722 DOI: 10.3390/ani14030451] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Traits such as shape, size, and color often influence the economic and sentimental value of a horse. Around the world, horses are bred and prized for the colors and markings that make their unique coat patterns stand out from the crowd. The underlying genetic mechanisms determining the color of a horse's coat can vary greatly in their complexity. For example, only two genetic markers are used to determine a horse's base coat color, whereas over 50 genetic variations have been discovered to cause white patterning in horses. Some of these white-causing mutations are benign and beautiful, while others have a notable impact on horse health. Negative effects range from slightly more innocuous defects, like deafness, to more pernicious defects, such as the lethal developmental defect incurred when a horse inherits two copies of the Lethal White Overo allele. In this review, we explore, in detail, the etiology of white spotting and its overall effect on the domestic horse to Spot the Pattern of these beautiful (and sometimes dangerous) white mutations.
Collapse
Affiliation(s)
- Aiden McFadden
- Etalon Inc., Menlo Park, CA 94025, USA; (M.V.); (K.M.); (R.E.E.); (C.L.)
| | - Micaela Vierra
- Etalon Inc., Menlo Park, CA 94025, USA; (M.V.); (K.M.); (R.E.E.); (C.L.)
| | - Katie Martin
- Etalon Inc., Menlo Park, CA 94025, USA; (M.V.); (K.M.); (R.E.E.); (C.L.)
| | - Samantha A. Brooks
- Department of Animal Sciences, UF Genetics Institute, University of Florida, Gainesville, FL 32611, USA;
| | - Robin E. Everts
- Etalon Inc., Menlo Park, CA 94025, USA; (M.V.); (K.M.); (R.E.E.); (C.L.)
| | - Christa Lafayette
- Etalon Inc., Menlo Park, CA 94025, USA; (M.V.); (K.M.); (R.E.E.); (C.L.)
| |
Collapse
|