1
|
Xu N, Wu Z, Pan J, Xu X, Wei Q. CAR-T cell therapy: Advances in digestive system malignant tumors. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200872. [PMID: 39377038 PMCID: PMC11456800 DOI: 10.1016/j.omton.2024.200872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Malignant tumors of the digestive system have had a notoriously dismal prognosis throughout history. Immunotherapy, radiotherapy, surgery, and chemotherapy are the primary therapeutic approaches for digestive system cancers. The rate of recurrence and metastasis, nevertheless, remains elevated. As one of the immunotherapies, chimeric antigen receptor T cell (CAR-T) therapy has demonstrated a promising antitumor effect in hematologic cancer. Despite undergoing numerous clinical trials, the ineffective antitumor effect and adverse effects of CAR-T cell therapy in the treatment of digestive system cancers continue to impede its clinical translation. It is necessary to surmount the restricted options for targeting proteins, the obstacles that impede CAR-T cell infiltration into solid tumors, and the limited survival time in vivo. We examined and summarized the developments, obstacles, and countermeasures associated with CAR-T therapy in digestive system cancers. Emphasis was placed on the regulatory functions of potential antigen targets, the tumor microenvironment, and immune evasion in CAR-T therapy. Thus, our analysis has furnished an all-encompassing comprehension of CAR-T cell therapy in digestive system cancers, which will generate tremendous enthusiasm for subsequent in-depth research into CAR-T-based therapies in digestive system cancers.
Collapse
Affiliation(s)
- Nan Xu
- Zhejiang University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Zhonglin Wu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, China
| | - Jun Pan
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310053, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Qiang Wei
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310053, China
| |
Collapse
|
2
|
Prasongtanakij S, Preedagasamzin S, Jittorntrum B, Anurathapan U, Puavilai T, Niparuck P, Chantrathammachart P, Piyajaroenkij T, Uaesoontrachoon K, Uchibori R, Ozawa K, Ohmine K, Hongeng S. Cytotoxicity and exhaustion markers of chimeric antigen receptor T cells targeting BCMA in multiple myeloma cell lines between patients and healthy donors. Eur J Haematol 2024; 112:248-256. [PMID: 37222081 DOI: 10.1111/ejh.14007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023]
Abstract
OBJECTIVES Multiple myeloma (MM) accounts for 10% of hematologic malignancies. However, most of the patients suffered from relapsed/refractory disease. We would like to expand CAR T cell therapy to treat MM using our current platform. METHODS BCMA CAR T lymphocytes were generated for volunteers or MM patients. The transduction efficiency was detected by the ddPCR technique. Immunophenotyping and exhaustion markers were monitored by flow cytometry. The efficacy of BCMA CAR T cells was tested using coculturing with BCMA CAR or mock, and the positive and negative targets, K562/hBCMA-ECTM and K562, respectively. RESULTS BCMA CAR T cells were generated from consented volunteers or MM patients and could be detected CAR BCMA expression at a mean of 4.07 ± 1.95 or 4.65 ± 1.21 copies/cell, respectively. Those modified T cells were primarily effector memory T cells. Our BCMA CAR T cells could explicitly eradicate the K562/hBCMA-ECTM cell line while the K562 cell line survived. Interestingly, the BCMA CAR, mock T cells, and peripheral blood mononuclear cells from MM patients expressed similar levels of the exhaustion makers, TIM-3, LAG-3, and PD1. CONCLUSIONS Our BCMA CAR T cells, mainly effector/effector memory, could eliminate BCMA-expressing cells in vitro and had similar levels of exhaustion markers among different populations.
Collapse
Affiliation(s)
- Somsak Prasongtanakij
- Research, Academics and Innovation Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sarinthip Preedagasamzin
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Bunyada Jittorntrum
- Research, Academics and Innovation Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Teeraya Puavilai
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pimjai Niparuck
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Thanakrit Piyajaroenkij
- Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | - Ryosuke Uchibori
- Division of Immuno-Gene & Cell Therapy, Jichi Medical University, Tochigi-ken, Japan
| | - Keiya Ozawa
- Division of Immuno-Gene & Cell Therapy, Jichi Medical University, Tochigi-ken, Japan
| | - Ken Ohmine
- Division of Immuno-Gene & Cell Therapy, Jichi Medical University, Tochigi-ken, Japan
- Department of Medicine, School of Medicine, Jichi Medical University, Tochigi-ken, Japan
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Sawaisorn P, Atjanasuppat K, Uaesoontrachoon K, Rattananon P, Treesuppharat W, Hongeng S, Anurathapan U. Comparison of the efficacy of second and third generation lentiviral vector transduced CAR CD19 T cells for use in the treatment of acute lymphoblastic leukemia both in vitro and in vivo models. PLoS One 2023; 18:e0281735. [PMID: 36780428 PMCID: PMC9925013 DOI: 10.1371/journal.pone.0281735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
T cells genetically engineered to express a chimeric antigen receptor (CAR) specifically binding to a CD19 antigen has become the frontline of hematological malignancies immunotherapy. Their remarkable antitumor effect has exerted complete remission in treating B-cell malignancies. Although successful patient treatment has been shown, improvement to the structure of CAR to enhance its safety and efficacy profile is warranted. Transduction with a lentiviral vector (LVV) leading to the expression of CARs is also a critical step in redirecting T cells to target specific tumor antigens. To improve the efficacy of CD19 CARs in this study, the transduction ability of second and third generations LVV were compared. Ex vivo expansion of CD19 CARs T cells from healthy donors' peripheral blood mononuclear cells was performed after transduction of T cells with second and third generations LVV. Transduction efficacy of transduced T cells was determined to show a higher percentage in the third generations LVV transduced cells, with no changes in viability and identity of cells characterized by immunophenotyping. Testing the cytotoxic capacity of third generations LVV-transduced T cells against target cells showed higher reactivity against control cells. Cytokine expression was detected on the CD19 CARs T cells, suggesting that these cells limit in vitro growth of B-cell leukemia via secretion of the pro-inflammatory cytokine IFN γ. To investigate whether the third generation LVV transduced T cells can limit CD19 lymphoma growth in vivo, an analysis of tumor burden in a mouse model assessed by bioluminescence imaging was performed. We found that, in the presence of CD19 CARs T cells, the level of tumor burden was markedly reduced. In addition, an increase in the length of survival in mice receiving CAR-CD19 T cells was also observed. This suggests that transduction with third generations LVV generate a functional CAR-CD19 T cells, which may provide a safer and effective therapy for B-cell malignancies.
Collapse
Affiliation(s)
- Piamsiri Sawaisorn
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Korakot Atjanasuppat
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | | | | | - Worapapar Treesuppharat
- Thammasat University Research Unit in Mechanisms of Drug Action and Molecular Imaging, Drug Discovery and Development Center, Office of Advanced Science and Technology, Thammasat University, Pathum Thani, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Usanarat Anurathapan
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
4
|
Sawaisorn P, Atjanasuppat K, Anurathapan U, Chutipongtanate S, Hongeng S. Strategies to Improve Chimeric Antigen Receptor Therapies for Neuroblastoma. Vaccines (Basel) 2020; 8:vaccines8040753. [PMID: 33322408 PMCID: PMC7768386 DOI: 10.3390/vaccines8040753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/04/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Chimeric antigen receptors (CARs) are among the curative immunotherapeutic approaches that exploit the antigen specificity and cytotoxicity function of potent immune cells against cancers. Neuroblastomas, the most common extracranial pediatric solid tumors with diverse characteristics, could be a promising candidate for using CAR therapies. Several methods harness CAR-modified cells in neuroblastoma to increase therapeutic efficiency, although the assessment has been less successful. Regarding the improvement of CARs, various trials have been launched to overcome insufficient capacity. However, the reasons behind the inadequate response against neuroblastoma of CAR-modified cells are still not well understood. It is essential to update the present state of comprehension of CARs to improve the efficiency of CAR therapies. This review summarizes the crucial features of CARs and their design for neuroblastoma, discusses challenges that impact the outcomes of the immunotherapeutic competence, and focuses on devising strategies currently being investigated to improve the efficacy of CARs for neuroblastoma immunotherapy.
Collapse
Affiliation(s)
- Piamsiri Sawaisorn
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (P.S.); (K.A.); (U.A.)
| | - Korakot Atjanasuppat
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (P.S.); (K.A.); (U.A.)
| | - Usanarat Anurathapan
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (P.S.); (K.A.); (U.A.)
| | - Somchai Chutipongtanate
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
- Correspondence: (S.C.); (S.H.)
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (P.S.); (K.A.); (U.A.)
- Correspondence: (S.C.); (S.H.)
| |
Collapse
|