1
|
Brugiapaglia S, Spagnolo F, Curcio C. Unlocking the Potential of Bioactive Compounds in Pancreatic Cancer Therapy: A Promising Frontier. Biomolecules 2025; 15:725. [PMID: 40427617 PMCID: PMC12109016 DOI: 10.3390/biom15050725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2025] [Revised: 05/07/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is a highly challenging malignancy to treat, with a high mortality rate and limited therapeutic options. Despite advances in cancer research, the prognosis for patients diagnosed with PDA is often poor due to late-stage detection and resistance to conventional therapies. Consequently, there is growing interest in the potential of bioactive compounds as alternative or adjuvant treatments, given their ability to target multiple aspects of cancer biology, offering a more holistic approach to treatment. In the context of PDA, certain bioactive compounds, such as polyphenols (found in fruits, vegetables, and tea), flavonoids, carotenoids and compounds in cruciferous vegetables, have shown potential in inhibiting cancer cell growth, reducing inflammation, and promoting cancer cell apoptosis. This review aims to elucidate the mechanisms, by which these bioactive compounds exert their effects, modulating the oxidative stress, influencing inflammatory pathways and regulating cell survival and death. It also highlights current clinical trials that are paving the way toward incorporating these natural agents into mainstream treatment strategies, with the goal of boosting the efficacy of conventional therapies for PDA.
Collapse
Affiliation(s)
- Silvia Brugiapaglia
- Department of Molecular Biotechnology and Health Sciences, Piazza Nizza 44b, 10126 Turin, Italy;
| | - Ferdinando Spagnolo
- School of Advanced Defence Studies, Defence Research & Analysis Institute, Piazza della Rovere 83, 00165 Rome, Italy;
- Defense Institute for Biomedical Sciences, Via Santo Stefano Rotondo 4, 00184 Rome, Italy
| | - Claudia Curcio
- Department of Molecular Biotechnology and Health Sciences, Piazza Nizza 44b, 10126 Turin, Italy;
| |
Collapse
|
2
|
Mostafa MAH, Khojah HMJ. Nanoparticle-based delivery systems for phytochemicals in cancer therapy: molecular mechanisms, clinical evidence, and emerging trends. Drug Dev Ind Pharm 2025:1-17. [PMID: 40116905 DOI: 10.1080/03639045.2025.2483425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/16/2025] [Accepted: 03/17/2025] [Indexed: 03/23/2025]
Abstract
OBJECTIVE This review examines recent advancements in nanoparticle-based delivery systems for phytochemicals, focusing on their role in overcoming multidrug resistance, improving therapeutic efficacy, and facilitating clinical translation. SIGNIFICANCE This review highlights recent advances in nanoparticle-enabled phytochemical delivery to enhance bioavailability, improve therapeutic outcomes, and enable targeted applications. By comparing various nanoparticle systems, formulation methods, and efficacy data, it identifies gaps in current research and guides the development of more effective, next-generation phytochemical-loaded nanocarriers. METHODS A systematic review of literature published between 2000 and 2024 was conducted using PubMed, Scopus, and Web of Science. Articles focusing on nanoparticle-based phytochemical delivery in cancer therapy were included. KEY FINDINGS Compounds such as curcumin, resveratrol, quercetin, and epigallocatechin gallate demonstrate enhanced anti-cancer efficacy when encapsulated in nanoparticles, leading to improved bioavailability, increased tumor cell targeting, and reduced toxicity. Clinical trials indicate tumor regression and fewer adverse effects. Emerging approaches-such as nanogels, hybrid nanoparticles, and combination therapies with immune checkpoint inhibitors-further refine treatment efficacy. CONCLUSIONS Nanoparticle-based delivery systems significantly improve the therapeutic potential of phytochemicals, making them promising candidates for safer, more effective cancer treatments. However, challenges related to regulatory guidelines, scalability, and long-term safety must be addressed to fully realize their clinical potential.
Collapse
Affiliation(s)
- Mahmoud A H Mostafa
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University (Assiut Branch), Assiut, Egypt
| | - Hani M J Khojah
- Department of Pharmacy Practice, College of Pharmacy, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|
3
|
Wawrzak-Pienkowska K, Pienkowski T, Tankiewicz-Kwedlo A, Ciborowski M, Kurek K, Pawlak D. Differences in treatment outcome between translational platforms in developing therapies for gastrointestinal cancers. Eur J Pharmacol 2025; 991:177309. [PMID: 39870234 DOI: 10.1016/j.ejphar.2025.177309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/11/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
The variability in translational models profoundly impacts the outcomes and predictive value of preclinical studies for gastrointestinal (GI) cancer treatments. Preclinical models, including 2D cell cultures, 3D organoids, patient-derived xenografts (PDXs), and animal models, provide distinct advantages and limitations in replicating the complex tumor microenvironment (TME) of human cancers. Each model's unique biological and structural differences contribute to discrepancies in treatment responses, challenging the direct translation of experimental results to clinical settings. While 2D cell cultures are cost-effective and suitable for high-throughput screening, they lack the 3D architecture and cellular interactions of the in vivo TME. Organoids offer a more comprehensive 3D structure that better mirrors tumor heterogeneity, yet they still face limitations in fully mimicking in vivo conditions, such as vascularization and immune cell interactions. PDXs, although more representative of human cancers due to their genetic fidelity and TME preservation, are costly and resource-intensive, with human stromal and immune components gradually replaced by murine counterparts over time. This review assesses the strengths and limitations of each model, highlighting recent advancements in translational platforms that incorporate complex TME features. Understanding the influence of model selection on treatment efficacy predictions is essential for enhancing the reliability of preclinical findings and advancing personalized therapeutic strategies for GI cancers.
Collapse
Affiliation(s)
- Katarzyna Wawrzak-Pienkowska
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, Sklodowskiej MC 24A Street, 15-276, Bialystok, Poland; Department of Gastroenterology, Hepatology and Internal Diseases, Voivodeship Hospital in Bialystok, Sklodowskiej MC 26, 15-278, Bialystok, Poland
| | - Tomasz Pienkowski
- Clinical Research Center, Medical University of Bialystok, Sklodowskiej MC 24A, 15-276, Bialystok, Poland
| | - Anna Tankiewicz-Kwedlo
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222, Białystok, Poland
| | - Michal Ciborowski
- Clinical Research Center, Medical University of Bialystok, Sklodowskiej MC 24A, 15-276, Bialystok, Poland
| | - Krzysztof Kurek
- Department of Gastroenterology and Internal Medicine, Medical University of Bialystok, Sklodowskiej MC 24A Street, 15-276, Bialystok, Poland
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222, Białystok, Poland.
| |
Collapse
|
4
|
Stefanova D, Yordanov Y, Bogdanova R, Voycheva C, Tzankov B, Popova T, Kondeva-Burdina M, Tzankova V, Toncheva-Moncheva N, Tzankova D, Slavkova M. In Vitro Evaluation of the Safety and Antineoplastic Effects in Gastrointestinal Tumors of Nanostructured Lipid Carriers Loaded with Berberine. Pharmaceutics 2025; 17:331. [PMID: 40142995 PMCID: PMC11945150 DOI: 10.3390/pharmaceutics17030331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Natural substances have been a widely studied source of both pharmaceutical excipients and drugs. Berberine (BRB) is a benzylisoquinoline alkaloid isolated from different plant sources. It possesses various pharmacological properties including antibacterial, antitumor, antidiabetic, neuroprotective, hepatoprotective, anti-inflammatory, antioxidant, etc. However, the limited aqueous solubility hinders its application. Nanosized drug delivery systems are an innovative approach for addressing various challenges regarding drug delivery via different routes of administration. Their utilization could improve the solubility of active constituents. Methods: A melt-emulsification and ultrasonication technique was applied for the preparation of nanostructured lipid carriers (NLCs). They were thoroughly physicochemically characterized by the means of Dynamic Light Scattering, TEM, FTIR, DSC, TGA, and In Vitro release. The In Vitro efficacy and safety were evaluated on cholangiocarcinoma, colorectal adenocarcinoma, hepatocellular carcinoma, lymphoma, fibroblast, and cardioblast cells, as well as rat liver microsomes by means of cytotoxicity assays and the comet assay. Results: The obtained nanoparticles had a spherical shape and size around 158.2 ± 1.8 nm with negative zeta potential. They revealed successful drug loading and improved dissolution of berberine in physiological conditions. The In Vitro safety studies showed that loading BRB in NLCs resulted in improved or retained cytotoxicity to tumor cell lines and reduced cytotoxicity to normal cell lines and liver microsomes. The NLC itself increased microsomal malondialdehyde (MDA) and comet formation. Conclusions: A successful preparation of NLCs with berberine is presented. The nanocarriers show favorable physicochemical and biopharmaceutical properties. The cellular experiments show that the NLC loading of berberine could improve its anticancer efficacy and safety. These findings highlight the potential applicability of berberine in gastrointestinal neoplasms and build the foundation for future practical translation.
Collapse
Affiliation(s)
- Denitsa Stefanova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (D.S.); (Y.Y.); (R.B.); (M.K.-B.); (V.T.)
| | - Yordan Yordanov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (D.S.); (Y.Y.); (R.B.); (M.K.-B.); (V.T.)
| | - Radostina Bogdanova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (D.S.); (Y.Y.); (R.B.); (M.K.-B.); (V.T.)
| | - Christina Voycheva
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (B.T.); (T.P.); (M.S.)
| | - Borislav Tzankov
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (B.T.); (T.P.); (M.S.)
| | - Teodora Popova
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (B.T.); (T.P.); (M.S.)
| | - Magdalena Kondeva-Burdina
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (D.S.); (Y.Y.); (R.B.); (M.K.-B.); (V.T.)
| | - Virginia Tzankova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (D.S.); (Y.Y.); (R.B.); (M.K.-B.); (V.T.)
| | - Natalia Toncheva-Moncheva
- Institute of Polymers, Bulgarian Academy of Sciences, bl.103 Akad. G. Bonchev Str., 1113 Sofia, Bulgaria;
| | - Diana Tzankova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University—Sofia, 1000 Sofia, Bulgaria;
| | - Marta Slavkova
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria; (B.T.); (T.P.); (M.S.)
| |
Collapse
|
5
|
Saadh MJ, Ehymayed HM, Alazzawi TS, Fahdil AA, Athab ZH, Yarmukhamedov B, Al-Anbari HHA, Shallal MM, Alsaikhan F, Farhood B. Role of circRNAs in regulating cell death in cancer: a comprehensive review. Cell Biochem Biophys 2025; 83:109-133. [PMID: 39243349 DOI: 10.1007/s12013-024-01492-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/09/2024]
Abstract
Despite multiple diagnostic and therapeutic advances, including surgery, radiation therapy, and chemotherapy, cancer preserved its spot as a global health concern. Prompt cancer diagnosis, treatment, and prognosis depend on the discovery of new biomarkers and therapeutic strategies. Circular RNAs (circRNAs) are considered as a stable, conserved, abundant, and varied group of RNA molecules that perform multiple roles such as gene regulation. There is evidence that circRNAs interact with RNA-binding proteins, especially capturing miRNAs. An extensive amount of research has presented the substantial contribution of circRNAs in various types of cancer. To fully understand the linkage between circRNAs and cancer growth as a consequence of various cell death processes, including autophagy, ferroptosis, and apoptosis, more research is necessary. The expression of circRNAs could be controlled to limit the occurrence and growth of cancer, providing a more encouraging method of cancer treatment. Consequently, it is critical to understand how circRNAs affect various forms of cancer cell death and evaluate whether circRNAs could be used as targets to induce tumor death and increase the efficacy of chemotherapy. The current study aims to review and comprehend the effects that circular RNAs exert on cell apoptosis, autophagy, and ferroptosis in cancer to investigate potential cancer treatment targets.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of dentist, National University of Science and Technology, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical technical college, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Bekhzod Yarmukhamedov
- Department of Surgical Dentistry and Dental Implantology, Tashkent State Dental Institute, Tashkent, Uzbekistan
- Department of Scientific affairs, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Jalouli M. Emerging Role of Hypoxia-Inducible Factors (HIFs) in Modulating Autophagy: Perspectives on Cancer Therapy. Int J Mol Sci 2025; 26:1752. [PMID: 40004215 PMCID: PMC11855875 DOI: 10.3390/ijms26041752] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/08/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Hypoxia-inducible factors (HIFs) are master regulators of cellular responses to low oxygen levels and modulate autophagy, a conserved process essential for maintaining homeostasis. Under hypoxic conditions, HIFs regulate the expression of autophagy-related genes and influence autophagic flux and cellular stress responses. Dysregulated hypoxia-induced autophagy promotes cancer cell survival, metabolism, and metastasis, thereby contributing to treatment resistance. Targeting HIF-mediated pathways or modulating autophagic processes offers the potential to improve traditional cancer therapies and overcome drug resistance. Pharmacological inhibitors of HIFs or autophagy, either alone or in combination with other treatments, may disrupt the pro-survival mechanisms within the hypoxic tumor microenvironment. Further research is needed to elucidate the intricate interplay between HIF signaling and the autophagy machinery in cancer cells. Understanding these processes could pave the way for novel therapeutic strategies to enhance treatment outcomes and combat drug resistance. This review highlights the complex relationship between HIFs and autophagy in cancer development and therapy, offering insights into how targeting these pathways may improve patient outcomes.
Collapse
Affiliation(s)
- Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
7
|
Rafiyan M, Tootoonchi E, Golpour M, Davoodvandi A, Reiter RJ, Asemi R, Sharifi M, Rasooli Manesh SM, Asemi Z. Melatonin for gastric cancer treatment: where do we stand? NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:1265-1282. [PMID: 39287677 DOI: 10.1007/s00210-024-03451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Gastric cancer (GC) is the third leading reason of death in men and the fourth in women. Studies have documented an inhibitory function of melatonin on the proliferation, progression and invasion of GC cells. MicroRNAs (miRNAs) are small, non-coding RNAs that play an important function in regulation of biological processes and gene expression of the cells. Some studies reported that melatonin can suppress the progression of GC by regulating the exosomal miRNAs. Thus, melatonin represents a promising potential therapeutic agent for subjects with GC. Herein, we evaluate the existing data of both in vivo and in vitro studies to clarify the molecular processes involved in the therapeutic effects of melatonin in GC. The data emphasize the critical function of melatonin in several signaling ways by which it may inhibit cancer cell proliferation, decrease chemo-resistance, induce apoptosis as well as limit invasion, angiogenesis, and metastasis. This review provides a resource that identifies some of the mechanisms by which melatonin controls GC enlargement. In light of the findings, melatonin should be considered a novel and testable therapeutic mediator for GC treatment.
Collapse
Affiliation(s)
- Mahdi Rafiyan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Elham Tootoonchi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdieh Golpour
- Student Research Committee, Mazandarn University of Medical Sciences, Sari, Mazandaran, Iran
| | - Amirhossein Davoodvandi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
8
|
Ibrahim N, Alsadi N, Yasavoli-Sharahi H, Shahbazi R, Hebbo MJ, Kambli D, Balcells F, Matar C. Berberine Inhibits Breast Cancer Stem Cell Development and Decreases Inflammation: Involvement of miRNAs and IL-6. Curr Dev Nutr 2025; 9:104532. [PMID: 39896297 PMCID: PMC11786844 DOI: 10.1016/j.cdnut.2024.104532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/04/2024] [Accepted: 12/12/2024] [Indexed: 02/04/2025] Open
Abstract
Background Breast cancer (BC) is a health concern worldwide and is often accompanied by depressive symptoms in patients. In BC, elevated interleukin-6 (IL-6) levels contribute to an inflammatory signature linked to cancer stem cell (CSC) stemness and depressive behaviors. Bioactive food components, such as berberine (BBR), have preventative effects against BC by targeting CSCs. Objectives This study aimed to investigate the effects of BBR on breast CSC proliferation, on levels of specific micro (mi)RNAs and IL-6 in vitro and in vivo, and in alleviating depressive-like behaviors in mice with BC. Methods Mammosphere formation assays were conducted by treating murine 4T1 and human MDA-MB-231 BC cell lines with BBR. qPCR analysis of miRNAs miR-let-7c and miR-34a-5p was performed on 4T1 CSCs exposed to BBR. BBR was administered orally to female BALB/c, followed by injection with mammary carcinoma cells to induce BC. Behavioral tests were conducted to assess depressive-like behaviors. Tumor tissues were collected for ex vivo mammosphere assays, miRNA expression analysis, and IL-6 detection by ELISA. Serum was also collected for IL-6 analysis. Results BBR treatment inhibited mammosphere formation and proliferation of CSCs derived from 4T1 and MDA-MB-231 cell lines. Quantification of mammosphere formation showed a significant decrease in both cell lines at 75 μM BBR (4T1: P < 0.001; MDA-MB-231: P < 0.0001). BBR upregulated the expression of miRNAs miR-let-7c and miR-34a in both cell lines, with miR-34a showing a significant increase (P < 0.001) and let-7c showing a significant increase (P < 0.05) in expression. In vivo, oral administration of BBR reduced mammosphere formation in breast tumor tissues (P < 0.0001) and elevated expression of miR-145 and miR-34a, with both showing significant upregulation (P < 0.0001), indicating its potential tumor-suppressive effects. BBR treatment resulted in a significant decrease in serum IL-6 levels (P < 0.05), suggesting anti-inflammatory properties, while the IL-6 in tumor tissue did not show significant changes (P > 0.05). However, no significant differences were observed in depressive-like behaviors between control and treatment groups. Conclusions BBR may have the potential to be used as an "Epi-Natural Compound" to prevent cancer by reducing inflammation and affecting epigenetics.
Collapse
Affiliation(s)
- Nour Ibrahim
- Nutritional Sciences Department, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Nawal Alsadi
- Cellular and Molecular in Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Hamed Yasavoli-Sharahi
- Cellular and Molecular in Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Roghayeh Shahbazi
- Cellular and Molecular in Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mary Joe Hebbo
- Nutritional Sciences Department, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Darshan Kambli
- Cellular and Molecular in Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Florencia Balcells
- Cellular and Molecular in Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Chantal Matar
- Nutritional Sciences Department, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Cellular and Molecular in Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Chen Z, Yu T, Wang Y, Li J, Zhang B, Zhou L. Mechanistic insights into the role of traditional Chinese medicine in treating gastric cancer. Front Oncol 2025; 14:1443686. [PMID: 39906672 PMCID: PMC11790455 DOI: 10.3389/fonc.2024.1443686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/30/2024] [Indexed: 02/06/2025] Open
Abstract
Gastric cancer remains a leading cause of cancer-related mortality worldwide, with advanced stages presenting significant challenges due to metastasis and drug resistance. Traditional Chinese Medicine (TCM) offers a promising complementary approach characterized by holistic treatment principles and minimal side effects. This review comprehensively explores the multifaceted mechanisms by which TCM addresses gastric cancer. Specifically, we detail how TCM inhibits aerobic glycolysis by downregulating key glycolytic enzymes and metabolic pathways, thereby reducing the energy supply essential for cancer cell proliferation. We examine how TCM suppresses angiogenesis by targeting the vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2) pathways, effectively starving tumors of nutrients and oxygen required for growth and metastasis. Furthermore, TCM modulates the immune microenvironment by enhancing the activity of effector immune cells such as CD4+ and CD8+ T cells and natural killer (NK) cells while reducing immunosuppressive cells like regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs). These actions collectively contribute to slowing tumor progression, inhibiting metastasis, and enhancing the body's antitumor response. The insights presented underscore the significant potential of TCM as an integral component of comprehensive gastric cancer treatment strategies, highlighting avenues for future research and clinical application to improve patient outcomes.
Collapse
Affiliation(s)
- Ziqiang Chen
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Ting Yu
- Department of Rheumatism, Third Affiliated Clinical Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yunhe Wang
- Department of Endocrinology, Metabolism and Gastroenterology, Third Affiliated Clinical Hospital to Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jiaxin Li
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Bo Zhang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Liya Zhou
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
10
|
Hashim GM, Shahgolzari M, Hefferon K, Yavari A, Venkataraman S. Plant-Derived Anti-Cancer Therapeutics and Biopharmaceuticals. Bioengineering (Basel) 2024; 12:7. [PMID: 39851281 PMCID: PMC11759177 DOI: 10.3390/bioengineering12010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 01/26/2025] Open
Abstract
In spite of significant advancements in diagnosis and treatment, cancer remains one of the major threats to human health due to its ability to cause disease with high morbidity and mortality. A multifactorial and multitargeted approach is required towards intervention of the multitude of signaling pathways associated with carcinogenesis inclusive of angiogenesis and metastasis. In this context, plants provide an immense source of phytotherapeutics that show great promise as anticancer drugs. There is increasing epidemiological data indicating that diets rich in vegetables and fruits could decrease the risks of certain cancers. Several studies have proved that natural plant polyphenols, such as flavonoids, lignans, phenolic acids, alkaloids, phenylpropanoids, isoprenoids, terpenes, and stilbenes, could be used in anticancer prophylaxis and therapeutics by recruitment of mechanisms inclusive of antioxidant and anti-inflammatory activities and modulation of several molecular events associated with carcinogenesis. The current review discusses the anticancer activities of principal phytochemicals with focus on signaling circuits towards targeted cancer prophylaxis and therapy. Also addressed are plant-derived anti-cancer vaccines, nanoparticles, monoclonal antibodies, and immunotherapies. This review article brings to light the importance of plants and plant-based platforms as invaluable, low-cost sources of anti-cancer molecules of particular applicability in resource-poor developing countries.
Collapse
Affiliation(s)
- Ghyda Murad Hashim
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Mehdi Shahgolzari
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan 65175-4171, Iran
| | - Kathleen Hefferon
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Afagh Yavari
- Department of Biology, Payame Noor University, Tehran P.O. Box 19395-3697, Iran
| | - Srividhya Venkataraman
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
11
|
Chauhan A, Yadav M, Chauhan R, Basniwal RK, Pathak VM, Ranjan A, Kapardar RK, Srivastav R, Tuli HS, Ramniwas S, Mathkor DM, Haque S, Hussain A. Exploring the Potential of Ellagic Acid in Gastrointestinal Cancer Prevention: Recent Advances and Future Directions. Oncol Ther 2024; 12:685-699. [PMID: 39222186 PMCID: PMC11574235 DOI: 10.1007/s40487-024-00296-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Gastrointestinal (GI) cancers are a significant global health concern with diverse etiologies and limited treatment options. Ellagic acid (EA), a natural polyphenolic compound, exhibits promising anticancer properties against various GI malignancies. In this article, we have reviewed recent research on the anticancer potential of EA across esophageal, gastric, colorectal, pancreatic, and liver cancers. In esophageal cancer, EA inhibits the formation of O6-methylguanine (O6-meGua) adducts induced by carcinogens like N-nitrosomethylbenzylamine (NMBA), thereby suppressing tumor growth. Additionally, EA inhibits STAT3 signaling and stabilizes tumor suppressor proteins, showing potential as an anti-esophageal cancer agent. In gastric cancer, EA regulates multiple pathways involved in cell proliferation, invasion, and apoptosis, including the p53 and PI3K-Akt signaling pathways. It also demonstrates anti-inflammatory and antioxidant effects, making it a promising therapeutic candidate against gastric cancer. In colorectal cancer (CRC), EA inhibits cell proliferation, induces apoptosis, and modulates the Wnt/β-catenin and PI3K/Akt pathways, suggesting its efficacy in preventing CRC progression. Furthermore, EA has shown promise in pancreatic cancer by inhibiting nuclear factor-kappa B, inducing apoptosis, and suppressing epithelial-mesenchymal transition. In liver cancer, EA exhibits radio-sensitizing effects, inhibits inflammatory pathways, and modulates the tumor microenvironment, offering potential therapeutic benefits against hepatocellular carcinoma. Studies on EA potential in combination therapies and the development of targeted delivery systems are required for enhanced efficacy against gastrointestinal cancers.
Collapse
Affiliation(s)
- Abhishek Chauhan
- Amity Institute of Environmental Toxicology Safety and Management, Amity University, Noida, U.P., India
| | - Monika Yadav
- Cancer Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ritu Chauhan
- Department of Biotechnology, Graphic Era Deemed to be University, Dehradun, Uttarakhand, 248002, India
| | - Rupesh Kumar Basniwal
- Amity Institute of Advanced Research and Studies (M&D), Amity University, Noida, U.P., India
| | - Vinay Mohan Pathak
- Parwatiya Shiksha Sabha (PASS), Near Transport Nagar Develchaur Kham, Haldwani, Nainital, India
| | - Anuj Ranjan
- Academy of Biology and Biotechnology, Southern Federal University, Stachki 194/1, Rostov-on-Don, 344090, Russia
| | | | - Rajpal Srivastav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, India
| | - Hardeep Singh Tuli
- Department of Biosciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, 45142, Jazan, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, 45142, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 11022801, Lebanon
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, P.O. Box 345050, Dubai, United Arab Emirates.
| |
Collapse
|
12
|
Rajaram J, Mende LK, Kuthati Y. A Review of the Efficacy of Nanomaterial-Based Natural Photosensitizers to Overcome Multidrug Resistance in Cancer. Pharmaceutics 2024; 16:1120. [PMID: 39339158 PMCID: PMC11434998 DOI: 10.3390/pharmaceutics16091120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/27/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Natural photosensitizers (PS) are compounds derived from nature, with photodynamic properties. Natural PSs have a similar action to that of commercial PSs, where cancer cell death occurs by necrosis, apoptosis, and autophagy through ROS generation. Natural PSs have garnered great interest over the last few decades because of their high biocompatibility and good photoactivity. Specific wavelengths could cause phytochemicals to produce harmful ROS for photodynamic therapy (PDT). However, natural PSs have some shortcomings, such as reduced solubility and lower uptake, making them less appropriate for PDT. Nanotechnology offers an opportunity to develop suitable carriers for various natural PSs for PDT applications. Various nanoparticles have been developed to improve the outcome with enhanced solubility, optical adsorption, and tumor targeting. Multidrug resistance (MDR) is a phenomenon in which tumor cells develop resistance to a wide range of structurally and functionally unrelated drugs. Over the last decade, several researchers have extensively studied the effect of natural PS-based photodynamic treatment (PDT) on MDR cells. Though the outcomes of clinical trials for natural PSs were inconclusive, significant advancement is still required before PSs can be used as a PDT agent for treating MDR tumors. This review addresses the increasing literature on MDR tumor progression and the efficacy of PDT, emphasizing the importance of developing new nano-based natural PSs in the fight against MDR that have the required features for an MDR tumor photosensitizing regimen.
Collapse
Affiliation(s)
- Jagadeesh Rajaram
- Department of Biochemistry and Molecular Medicine, National Dong Hwa University, Hualien 974, Taiwan;
| | - Lokesh Kumar Mende
- Department of Anesthesiology, Cathy General Hospital, Taipei 106, Taiwan;
| | - Yaswanth Kuthati
- Department of Anesthesiology, Cathy General Hospital, Taipei 106, Taiwan;
| |
Collapse
|
13
|
Zhang J, Wu Y, Li Y, Li S, Liu J, Yang X, Xia G, Wang G. Natural products and derivatives for breast cancer treatment: From drug discovery to molecular mechanism. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155600. [PMID: 38614043 DOI: 10.1016/j.phymed.2024.155600] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/20/2024] [Accepted: 04/06/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Breast cancer stands as the most common malignancy among women globally and a leading cause of cancer-related mortality. Conventional treatments, such as surgery, hormone therapy, radiotherapy, chemotherapy, and small-molecule targeted therapy, often fall short of addressing the complexity and heterogeneity of certain breast cancer subtypes, leading to drug resistance and metastatic progression. Thus, the search for novel therapeutic targets and agents is imperative. Given their low toxicity and abundant variety, natural products and their derivatives are increasingly considered valuable sources for small-molecule anticancer drugs. PURPOSE This review aims to elucidate the pharmacological impacts and underlying mechanisms of active compounds found in select natural products and their derivatives, primarily focusing on breast cancer treatment. It intends to underscore the potential of these substances in combating breast cancer and guide future research directions for the development of natural product-based therapeutics. METHODS We conducted comprehensive searches in electronic databases such as PubMed, Web of Science, and Scopus until October 2023, using keywords such as 'breast cancer', 'natural products', 'derivatives', 'mechanism', 'signaling pathways', and various keyword combinations. RESULTS The review presents a spectrum of phytochemicals, including but not limited to flavonoids, polyphenols, and alkaloids, and examines their actions in various animal and cellular models of breast cancer. The anticancer effects of these natural products and derivatives are manifested through diverse mechanisms, including induction of cell death via apoptosis and autophagy, and suppression of tumor angiogenesis. CONCLUSION An increasing array of natural products and their derivatives are proving effective against breast cancer. Future therapeutic strategies can benefit from strategic enhancement of the anticancer properties of natural compounds, optimization for targeted action, improved bioavailability, and minimized side effects. The forthcoming research on natural products should prioritize these facets to maximize their therapeutic potential.
Collapse
Affiliation(s)
- Jing Zhang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Yongya Wu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Yanhong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China; Department of Rheumatology & Immunology, Laboratory of Rheumatology and Immunology, West China Hospital, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Shutong Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Jiaxi Liu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Xiao Yang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China
| | - Guiyang Xia
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, No. 5, Ocean Warehouse, Dongcheng District, Beijing, 100700, China.
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University / West China School of Nursing, Sichuan University, No. 37, Guoxue Street, Wuhou District, Chengdu, Sichuan Province, 610041, China.
| |
Collapse
|
14
|
Manzari‐Tavakoli A, Babajani A, Tavakoli MM, Safaeinejad F, Jafari A. Integrating natural compounds and nanoparticle-based drug delivery systems: A novel strategy for enhanced efficacy and selectivity in cancer therapy. Cancer Med 2024; 13:e7010. [PMID: 38491817 PMCID: PMC10943377 DOI: 10.1002/cam4.7010] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 03/18/2024] Open
Abstract
Cancer remains a leading cause of death worldwide, necessitating the development of innovative and more effective treatment strategies. Conventional cancer treatments often suffer from limitations such as systemic toxicity, poor pharmacokinetics, and drug resistance. Recently, there has been growing attention to utilizing natural compounds derived from various sources as possible cancer therapeutics. Natural compounds have demonstrated diverse bioactive properties, including antioxidant, anti-inflammatory, and antitumor effects, making them attractive candidates for cancer treatment. However, their limited solubility and bioavailability present challenges for effective delivery to cancer cells. To overcome these limitations, researchers have turned to nanotechnology-based drug delivery systems. Nanoparticles, with their small size and unique properties, can encapsulate therapeutic agents and offer benefits such as improved solubility, prolonged drug release, enhanced cellular uptake, and targeted delivery. Functionalizing nanoparticles with specific ligands further enhances their precision in recognizing and binding to cancer cells. Combining natural compounds with nanotechnology holds great promise in achieving efficient and safe cancer treatments by enhancing bioavailability, pharmacokinetics, and selectivity toward cancer cells. This review article provides an overview of the advancements in utilizing natural substances and nanotechnology-based drug delivery systems for cancer treatment. It discusses the benefits and drawbacks of various types of nanoparticles, as well as the characteristics of natural compounds that make them appealing for cancer therapy. Additionally, current research on natural substances and nanoparticles in preclinical and clinical settings is highlighted. Finally, the challenges and future perspectives in developing natural compound-nanoparticle-based cancer therapies are discussed.
Collapse
Affiliation(s)
| | - Amirhesam Babajani
- Oncopathology Research Center, Department of Molecular Medicine, School of MedicineIran University of Medical SciencesTehranIran
| | - Maryam Manzari Tavakoli
- Department of PhytochemistryMedicinal Plants and Drugs Research Institute, Shahid Beheshti UniversityTehranIran
| | - Fahimeh Safaeinejad
- Traditional Medicine and Materia Medica Research CenterShahid Beheshti University of Medical SciencesTehranIran
| | - Ameneh Jafari
- Chronic Respiratory Diseases Research Center, NRITLDShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
15
|
Jafari S, Ravan M, Karimi-Sani I, Aria H, Hasan-Abad AM, Banasaz B, Atapour A, Sarab GA. Screening and identification of potential biomarkers for pancreatic cancer: An integrated bioinformatics analysis. Pathol Res Pract 2023; 249:154726. [PMID: 37591067 DOI: 10.1016/j.prp.2023.154726] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023]
Abstract
Pancreatic cancer is one of the highly invasive and the seventh most common cause of death among cancers worldwide. To identify essential genes and the involved mechanisms in pancreatic cancer, we used bioinformatics analysis to identify potential biomarkers for pancreatic cancer management. Gene expression profiles of pancreatic cancer patients and normal tissues were screened and downloaded from The Cancer Genome Atlas (TCGA) bioinformatics database. The Differentially expressed genes (DEGs) were identified among gene expression signatures of normal and pancreatic cancer, using R software. Then, enrichment analysis of the DEGs, including Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, was performed by an interactive and collaborative HTML5 gene list enrichment analysis tool (enrichr) and ToppGene. The protein-protein interaction (PPI) network was also constructed using the Search Tool for the Retrieval of Interacting Genes (STRING) database and ToppGenet web based tool followed by identifying hub genes of the top 100 DEGs in pancreatic cancer using Cytoscape software. Over 2000 DEGs with variable log2 fold (LFC) were identified among 34,706 genes. Principal component analysis showed that the top 20 DEGs, including H1-4, H1-5, H4C3, H4C2, RN7SL2, RN7SL3, RN7SL4P, RN7SKP80, SCARNA12, SCARNA10, SCARNA5, SCARNA7, SCARNA6, SCARNA21, SCARNA9, SCARNA13, SNORA73B, SNORA53, SNORA54 might distinguish pancreatic cancer from normal tissue. GO analysis showed that the top DEGs have more enriched in the negative regulation of gene silencing, negative regulation of chromatin organization, negative regulation of chromatin silencing, nucleosome positioning, regulation of chromatin silencing, and nucleosomal DNA binding. KEGG analysis identified an association between pancreatic cancer and systemic lupus erythematosus, alcoholism, neutrophil extracellular trap formation, and viral carcinogenesis. In PPI network analysis, we found that the different types of histone-encoding genes are involved as hub genes in the carcinogenesis of pancreatic cancer. In conclusion, our bioinformatics analysis identified genes that were significantly related to the prognosis of pancreatic cancer patients. These genes and pathways could serve as new potential prognostic markers and be used to develop treatments for pancreatic cancer patients.
Collapse
Affiliation(s)
- Somayeh Jafari
- Department of Molecular Medicine, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Milad Ravan
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Karimi-Sani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamid Aria
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amin Moradi Hasan-Abad
- Autoimmune Diseases Research Center, Shahid Beheshti Hospital, Kashan University of Medical Sciences, Kashan, Iran
| | - Bahar Banasaz
- Internal Medicine Department, Babol University of Medical Sciences, Babol, Iran.
| | - Amir Atapour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Gholamreza Anani Sarab
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
16
|
Davoodvandi A, Rafiyan M, Asemi Z, Matini SA. An epigenetic modulator with promising therapeutic impacts against gastrointestinal cancers: A mechanistic review on microRNA-195. Pathol Res Pract 2023; 248:154680. [PMID: 37467635 DOI: 10.1016/j.prp.2023.154680] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
Due to their high prevalence, gastrointestinal cancers are one of the key causes of cancer-related death globally. The development of drug-resistant cancer cell populations is a major factor in the high mortality rate, and it affects about half of all cancer patients. Because of advances in our understanding of cancer molecular biology, non-coding RNAs (ncRNAs) have emerged as critical factors in the initiation and development of gastrointestinal cancers. Gene expression can be controlled in several ways by ncRNAs, including through epigenetic changes, interactions between microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) and proteins, and the function of lncRNAs as miRNA precursors or pseudogenes. As lncRNAs may be detected in the blood, circulating ncRNAs have emerged as a promising new class of non-invasive cancer biomarkers for use in the detection, staging, and prognosis of gastrointestinal cancers, as well as in the prediction of therapy efficacy. In this review, we assessed the role lncRNAs play in the progression, and maintenance of colorectal cancer, and how they might be used as therapeutic targets in the future.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| | - Mahdi Rafiyan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| | - Seyed Amirhassan Matini
- Department of Pathology, School of Medicine, Kashan University of Medical Sciences, Kashan, I.R. Iran.
| |
Collapse
|