1
|
Mou J, Zheng W, Wei D, Li D, Fan R, Tang Q. CD200-CD200R affects cisplatin and paclitaxel sensitivity by regulating cathepsin K-mediated p65 NF-κB signaling in cervical cancer. Heliyon 2023; 9:e19220. [PMID: 37654464 PMCID: PMC10465862 DOI: 10.1016/j.heliyon.2023.e19220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
Background CD200-CD200R plays a critical role in regulating the human tumor microenvironment, but its role in cervical cancer remains unclear. Methods A total of 62 paraffin blocks of tumor tissues were collected from cervical cancer patients. Expression of CD200 and cathepsin K (CTSK) in cancer tissues and para-cancerous tissues was analyzed by immunohistochemistry. Stably transfected CD200 cells were established in HeLa and SiHa cells. Human THP-1 monocytes were induced to differentiate into M2 macrophages. HeLa and SiHa cells were cultured in conditioned medium from M2 macrophages to observe the effects of CD200-CD200R on invasion, CTSK, p65NF-κB, and cisplatin or paclitaxel sensitivity in cervical cancer cells. HeLa cells were injected to induce xenograft tumors in mice, and a CTSK inhibitor, MK-0822, was used to confirm the regulation of CTSK and paclitaxel sensitivity by CD200-CD200R in vivo. Results A significant decrease in CD200 and CTSK expression was found in tumor cancer tissues compared with para-cancerous tissues. Only CD200 overexpression did not affect cervical cell invasion, but CD200-CD200R could enhance the cell invasion and resistance to cisplatin or paclitaxel. Meanwhile, expression of CTSK and p-p65NF-κB in cancer cells stably transfected with CD200 was obviously increased after culture in conditioned medium from M2 macrophages compared with transfection with the plasmid control. In vivo, CTSK inhibition significantly suppressed the effects of CD200-CD200R overexpression on the response to paclitaxel by suppressing the CTSK-mediated NF-κB pathway. Conclusions CD200-CD200R regulates CTSK-mediated NF-κB pathway to affect cisplatin or paclitaxel sensitivity in cervical cancer, which provides a possible immunotherapeutic target and combination strategy for advanced cervical cancer.
Collapse
Affiliation(s)
- Junjun Mou
- Department of Radiotherapy, Yantai Yuhuangding Hospital, Yantai, 264000, China
| | - Wei Zheng
- Department of Gynecology, Yantai Yuhuangding Hospital, Yantai, 264000, China
| | - Dong Wei
- Department of Radiotherapy, Yantai Yuhuangding Hospital, Yantai, 264000, China
| | - Dalei Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, 264000, China
| | - Rong Fan
- Yantai Raphael Biotechnology Co.,Ltd, 264200, China
| | - Qing Tang
- Department of Gynecology, Yantai Yuhuangding Hospital, Yantai, 264000, China
| |
Collapse
|
2
|
Hamilton M, Turpin V, Ayoub A, Reihani A, Arredondo J, Ask K, Clark DA, Foster WG. Circulating CD200 is increased in the secretory phase of women with endometriosis as is endometrial mRNA, and endometrial stromal cell CD200R1 is increased in spite of reduced mRNA. Am J Reprod Immunol 2023; 89:e13655. [PMID: 36379046 DOI: 10.1111/aji.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
PROBLEM Estrogen-dependent extrauterine implantation and growth of menstrual endometrial tissue affects roughly 10% of reproductive age women and depends on suppression of local innate immune defenses to prevent ectopic tissue rejection. Immunohistochemistry has shown the immune check-point inhibitor CD200 which can suppress rejection is expressed in eutopic endometrium and in ectopic deposits. Soluble CD200 accumulated in venules draining eutopic and ectopic endometrium of endometriosis cases in the secretory phase but not proliferative phase of the menstrual cycle, and should be increased in the circulation. METHOD OF STUDY Sera from endometriosis and non-endometriosis controls were tested by ELISA for CD200. Endometrial CD200, CD200R1 and CD200R2 mRNA in eutopic was quantified by RT-PCR and localized by in situ hybridization. CD200R1 protein was quantified by immunohistochemistry. RESULTS Secretory phase serum CD200 was elevated in women with endometriosis compared to controls. Serum CD200 correlated with matched endometrial CD200 mRNA levels. Expression of mRNA for CD200R1 which signals immune suppression was decreased whereas mRNA for the CD200R2 activating receptor was increased. In situ staining of CD200R1 and CD200R2 mRNA showed both receptors were expressed and the fraction of CD200R that is CD200R1 was reduced in secretory and menstrual phase endometriosis endometrium consistent with the RT-PCR result. By contrast, CD200R1 protein and CD200R1 fraction of total CD200R protein were increased in endometriosis. CONCLUSIONS Failure to suppress circulating CD200 levels in the secretory phase had an 87% specificity and 90% sensitivity for endometriosis. CD200 and increased CD200R1 expression may facilitate development of ectopic deposits by suppressing rejection mechanisms.
Collapse
Affiliation(s)
- Matthew Hamilton
- Department of Obstetrics and Gynecology, McMaster University, Health Sciences Centre, 1280 Main St. West, Hamilton, Ontario, Canada
| | - Victoria Turpin
- Department of Obstetrics and Gynecology, McMaster University, Health Sciences Centre, 1280 Main St. West, Hamilton, Ontario, Canada
| | - Anmar Ayoub
- Department of Medicine, McMaster University, Firestone Institute, St. Joseph's Hospital, Hamilton, Ontario, Canada
| | - Amir Reihani
- Department of Medicine, McMaster University, Firestone Institute, St. Joseph's Hospital, Hamilton, Ontario, Canada
| | - Jorge Arredondo
- Department of Pathology and Molecular Medicine, McMaster University, Heath Sciences Center, Hamilton, Ontario, Canada
| | - Kjetil Ask
- Department of Medicine, McMaster University, Firestone Institute, St. Joseph's Hospital, Hamilton, Ontario, Canada
| | - David A Clark
- Department of Pathology and Molecular Medicine, McMaster University, Heath Sciences Center, Hamilton, Ontario, Canada.,Department of Medicine, McMaster University, Health Sciences Centre, 1280 Main St. West, Hamilton, Ontario, Canada
| | - Warren G Foster
- Department of Obstetrics and Gynecology, McMaster University, Health Sciences Centre, 1280 Main St. West, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Liao KL, Watt KD. Mathematical Modeling and Analysis of CD200-CD200R in Cancer Treatment. Bull Math Biol 2022; 84:82. [PMID: 35792958 DOI: 10.1007/s11538-022-01039-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 06/01/2022] [Indexed: 11/26/2022]
Abstract
CD200 is a cell membrane protein that binds to its receptor, CD200 receptor (CD200R). The CD200 positive tumor cells inhibit the cellular functions of M1 and M2 macrophages and dendritic cells (DCs) through the CD200-CD200R complex, resulting in downregulation of Interleukin-10 and Interleukin-12 productions and affecting the activation of cytotoxic T lymphocytes. In this work, we provide two ordinary differential equation models, one complete model and one simplified model, to investigate how the binding affinities of CD200R and the populations of M1 and M2 macrophages affect the functions of the CD200-CD200R complex in tumor growth. Our simulations demonstrate that (i) the impact of the CD200-CD200R complex on tumor promotion or inhibition highly depends on the binding affinity of the CD200R on M2 macrophages and DCs to the CD200 on tumor cells, and (ii) a stronger binding affinity of the CD200R on M1 macrophages or DCs to the CD200 on tumor cells induces a higher tumor cell density in the CD200 positive tumor. Thus, the CD200 blockade would be an efficient treatment method in this case. Moreover, the simplified model shows that the binding affinity of CD200R on macrophages is the major factor to determine the treatment efficacy of CD200 blockade when the binding affinities of CD200R on M1 and M2 macrophages are significantly different to each other. On the other hand, both the binding affinity of CD200R and the population of macrophages are the major factors to determine the treatment efficacy of CD200 blockade when the binding affinities of CD200R on M1 and M2 macrophages are close to each other. We also analyze the simplified model to investigate the dynamics of the positive and trivial equilibria of the CD200 positive tumor case and the CD200 deficient tumor case. The bifurcation diagrams show that when M1 macrophages dominate the population, the tumor cell density of the CD200 positive tumor is higher than the one of CD200 deficient tumor. Moreover, the dynamics of tumor cell density change from tumor elimination to tumor persistence to oscillation, as the maximal proliferation rate of tumor cells increases.
Collapse
Affiliation(s)
- Kang-Ling Liao
- Department of Mathematics, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Kenton D Watt
- Department of Mathematics, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
4
|
CD200S-positive granulated lymphoid cells in endometrium appear to be CD56-positive uterine NK cells. J Reprod Immunol 2022; 150:103477. [DOI: 10.1016/j.jri.2022.103477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 11/22/2022]
|
5
|
Wieland L, Engel K, Volkmer I, Krüger A, Posern G, Kornhuber ME, Staege MS, Emmer A. Overexpression of Endogenous Retroviruses and Malignancy Markers in Neuroblastoma Cell Lines by Medium-Induced Microenvironmental Changes. Front Oncol 2021; 11:637522. [PMID: 34026614 PMCID: PMC8138558 DOI: 10.3389/fonc.2021.637522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
Neuroblastoma (NB) is the commonest solid tumor outside the central nervous system in infancy and childhood with a unique biological heterogeneity. In patients with advanced, metastasizing neuroblastoma, treatment failure and poor prognosis is often marked by resistance to chemo- or immunotherapy. Thus, identification of robust biomarkers seems essential for understanding tumor progression and developing effective therapy. Here, we have studied the expression of human endogenous retroviruses (HERV) as potential targets in NB cell lines during stem-cell medium-induced microenvironmental change. Quantitative PCR revealed that relative expression of the HERV-K family and HERV-W1 ENV were increased in all three NB cell lines after incubation in stem-cell medium. Virus transcriptome analyses revealed the transcriptional activation of three endogenous retrovirus elements: HERV-R ENV (ERV3-1), HERV-E1 and HERV-Fc2 ENV (ERVFC1-1). Known malignancy markers in NB, e.g. proto-oncogenic MYC or MYCN were expressed highly heterogeneously in the three investigated NB cell lines with up-regulation of MYC and MYCN upon medium-induced microenvironmental change. In addition, SiMa cells exclusively showed a phenotype switching from loosely-adherent monolayers to low proliferating grape-like cellular aggregates, which was accompanied by an enhanced CD133 expression. Interestingly, the overexpression of HERV was associated with a significant elevation of immune checkpoint molecule CD200 in both quantitative PCR and RNA-seq analysis suggesting tumor escape mechanism in NB cell lines after incubation in serum-free stem cell medium.
Collapse
Affiliation(s)
- Lisa Wieland
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany.,Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Kristina Engel
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ines Volkmer
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Anna Krüger
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Guido Posern
- Institute for Physiological Chemistry, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Malte E Kornhuber
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Martin S Staege
- Department of Surgical and Conservative Pediatrics and Adolescent Medicine, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Alexander Emmer
- Department of Neurology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
6
|
Xin C, Zhu J, Gu S, Yin M, Ma J, Pan C, Tang J, Zhang P, Liu Y, Bai XF, Mo X, Xu M, Zhu H. CD200 is overexpressed in neuroblastoma and regulates tumor immune microenvironment. Cancer Immunol Immunother 2020; 69:2333-2343. [PMID: 32514618 DOI: 10.1007/s00262-020-02589-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/23/2020] [Indexed: 12/14/2022]
Abstract
Patients with pediatric cancers such as neuroblastoma (NB) are often unresponsive to checkpoint blockade immunotherapy. One major factor in pediatric tumor resistance to immunotherapy is considered to be the low mutation rate of pediatric tumors. Another factor may be the overexpression of additional inhibitory pathways. While analyzing the RNA-sequencing database TARGET, we found that human NB tumors overexpress immune checkpoint molecule CD200. To determine its significance and impact on tumor immune microenvironment, we analyzed 49 cases of previously untreated, surgically removed NB tumors using immunohistochemistry and multi-color flow cytometry (FACS). We found that CD200 is overexpressed in more than 90% of NB tumors. In the tumor microenvironment of NB, CD200 is mainly overexpressed in CD45- NB tumor cells, while its cognate receptor (CD200R) is mainly expressed in HLA-DR+CD14+ myeloid cells and CD11c+ dendritic cells. Low-level expression of CD200R is also observed in tumor-infiltrating CD4+ and CD8+ T cells. In NB tumors with higher CD200 expression (CD200high), we observed lower numbers of HLA-DR+CD14+ myeloid cells and less tumor-infiltrating CD4+ and CD8+ T cells. Moreover, we found that CD4+ and CD8+ T cells produced less IFN-γ and/or TNF-α in CD200high NB tumors. Thus, CD200-CD200R pathway appears to downregulate anti-tumor immunity in the tumor microenvironment of NB tumors, and blockade of this pathway may be beneficial for NB patients.
Collapse
Affiliation(s)
- Chao Xin
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmin Zhu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Song Gu
- Department of General Surgery/Surgical Oncology Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dong Fang Road, Pu Dong New District, Shanghai, 200017, China
| | - Minzhi Yin
- Department of Pathology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Ma
- Department of Pathology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ci Pan
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dong Fang Road, Pu Dong New District, Shanghai, 200127, China
| | - Jingyan Tang
- Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dong Fang Road, Pu Dong New District, Shanghai, 200127, China
| | - Peng Zhang
- Division of Immunotherapy, Institute of Human Virology, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
| | - Yang Liu
- Division of Immunotherapy, Institute of Human Virology, University of Maryland, School of Medicine, Baltimore, MD, 21201, USA
| | - Xue-Feng Bai
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Xi Mo
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Xu
- Department of General Surgery/Surgical Oncology Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dong Fang Road, Pu Dong New District, Shanghai, 200017, China.
| | - Hua Zhu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Department of Hematology and Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dong Fang Road, Pu Dong New District, Shanghai, 200127, China.
| |
Collapse
|
7
|
Liu JQ, Hu A, Zhu J, Yu J, Talebian F, Bai XF. CD200-CD200R Pathway in the Regulation of Tumor Immune Microenvironment and Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1223:155-165. [PMID: 32030689 DOI: 10.1007/978-3-030-35582-1_8] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tumor-associated inflammation and immune responses are key components in the tumor microenvironment (TME) which regulate tumor growth, progression, and metastasis. Tumor-associated myeloid cells (TAMCs) are a group of cells that play multiple key roles including induction of tumor-associated inflammation/angiogenesis and regulation of tumor-specific T-cell responses. Thus, identification and characterization of key pathways that can regulate TAMCs are of critical importance for developing cancer immunotherapy. Recent studies suggest that CD200-CD200 receptor (CD200R) interaction may be important in regulating the TME via affecting TAMCs. In this chapter, we will give a brief overview of the CD200-CD200R axis, including the biology behind CD200-CD200R interaction and the role(s) it plays in tumor microenvironment and tumor growth, and activation/effector functions of T cells. We will also discuss CD200-CD200R's role as potential checkpoint molecules for cancer immunotherapy. Further investigation of the CD200-CD200R pathway will not only advance our understanding of tumor pathogenesis and immunity but also provide the rationale for CD200-CD200R-targeted immunotherapy of human cancer.
Collapse
Affiliation(s)
- Jin-Qing Liu
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Aiyan Hu
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA.,Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmin Zhu
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA.,Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianyu Yu
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA.,Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Fatemeh Talebian
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Xue-Feng Bai
- Department of Pathology, College of Medicine and Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
Clark DA, Arredondo JL, Dhesy-Thind S. The CD200 tolerance-signaling molecule and its receptor, CD200R1, are expressed in human placental villus trophoblast and in peri-implant decidua by 5 weeks' gestation. J Reprod Immunol 2015; 112:20-3. [PMID: 26123445 DOI: 10.1016/j.jri.2015.05.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 05/21/2015] [Accepted: 05/26/2015] [Indexed: 11/25/2022]
Abstract
CD200 expression in murine trophoblast and decidua prevents semi-allogeneic and LPS-induced abortions by binding to CD200 receptor-bearing cells to suppress NK activity, induces IDO in macrophages, and promotes the generation of regulatory T cell subsets. CD200 and its receptor CD200R1 reported in 7-9 weeks' gestation human villus trophoblasts are reduced in spontaneous abortion syncytiotrophoblasts. By specific antibody staining, we find that both CD200 and CD200R1 are expressed even earlier, by 5 weeks' gestation, by villus trophoblasts and by decidual cells. Expression of CD200 was validated using two independent antibodies. CD200-CD200R1 signaling may be required for human pregnancy success.
Collapse
Affiliation(s)
- David A Clark
- Department of Medicine, McMaster University, Health Sciences Center Rm. 3H1E, 1280 Main St. West, Hamilton, Ontario, Canada L8S 4K1; Toronto General Research Institute, Toronto, Ontario, Canada; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
| | - Jorge L Arredondo
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
9
|
Clark DA, Dhesy-Thind S, Arredondo JL, Ellis PM, Ramsay JA. The Receptor for the CD200 Tolerance-Signaling Molecule Associated with Successful Pregnancy is Expressed by Early-Stage Breast Cancer Cells in 80% of Patients and by Term Placental Trophoblasts. Am J Reprod Immunol 2015; 74:387-91. [DOI: 10.1111/aji.12403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/05/2015] [Indexed: 11/27/2022] Open
Affiliation(s)
- David A. Clark
- Department of Medicine; McMaster University; Health Sciences Center Rm 3H1E; Hamilton ON Canada
- Department of Molecular Medicine & Pathology; McMaster University; Hamilton ON Canada
- Affiliate Scientist; Toronto General Research Institute; Toronto ON Canada
| | - Sukhbinder Dhesy-Thind
- Department of Oncology; McMaster University and Juravinski Cancer Center; Hamilton ON Canada
| | - Jorge L. Arredondo
- Department of Molecular Medicine & Pathology; McMaster University; Hamilton ON Canada
| | - Peter M. Ellis
- Department of Oncology; McMaster University and Juravinski Cancer Center; Hamilton ON Canada
| | - Jennifer A. Ramsay
- Department of Molecular Medicine & Pathology; McMaster University; Hamilton ON Canada
| |
Collapse
|
10
|
Are animal models useful or confusing in understanding the human feto-maternal relationship? A debate. J Reprod Immunol 2015; 108:56-64. [DOI: 10.1016/j.jri.2014.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/24/2014] [Accepted: 10/29/2014] [Indexed: 11/18/2022]
|