1
|
Edwards VL, McComb E, Gleghorn JP, Forney L, Bavoil PM, Ravel J. Three-dimensional models of the cervicovaginal epithelia to study host-microbiome interactions and sexually transmitted infections. Pathog Dis 2022; 80:6655985. [PMID: 35927516 PMCID: PMC9419571 DOI: 10.1093/femspd/ftac026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/14/2022] [Accepted: 08/02/2022] [Indexed: 02/03/2023] Open
Abstract
2D cell culture systems have historically provided controlled, reproducible means to analyze host-pathogen interactions observed in the human reproductive tract. Although inexpensive, straightforward, and requiring a very short time commitment, these models recapitulate neither the functionality of multilayered cell types nor the associated microbiome that occurs in a human. Animal models have commonly been used to recreate the complexity of human infections. However, extensive modifications of animal models are required to recreate interactions that resemble those in the human reproductive tract. 3D cell culture models have emerged as alternative means of reproducing vital elements of human infections at a fraction of the cost of animal models and on a scale that allows for replicative experiments. Here, we describe a new 3D model that utilizes transwells with epithelial cells seeded apically and a basolateral extracellular matrix (ECM)-like layer. The model produced tissues with morphologic and physiological resemblance to human cervical and vaginal epithelia, including mucus levels produced by cervical cells. Infection by Chlamydia trachomatis and Neisseria gonorrhoeae was demonstrated, as well as the growth of bacterial species observed in the human vaginal microbiota. This enabled controlled mechanistic analyses of the interactions between host cells, the vaginal microbiota, and STI pathogens. Affordable and semi high-throughput 3D models of the cervicovaginal epithelia that are physiologically relevant by sustaining vaginal bacterial colonization, and facilitate studies of chlamydial and gonococcal infections.
Collapse
Affiliation(s)
- Vonetta L Edwards
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | | | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, Newark, DE, United States
| | - Larry Forney
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Patrik M Bavoil
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States,Department of Microbial Pathogenesis, University of Maryland, Baltimore, MD, United States
| | - Jacques Ravel
- Corresponding author: Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Health Science Research Facility (HSRDF), 670 W. Baltimore Street, Baltimore, MD 21201, United States. Tel: +1 410-706-5674; E-mail:
| |
Collapse
|
2
|
Moscicki AB, Shi B, Huang H, Barnard E, Li H. Cervical-Vaginal Microbiome and Associated Cytokine Profiles in a Prospective Study of HPV 16 Acquisition, Persistence, and Clearance. Front Cell Infect Microbiol 2020; 10:569022. [PMID: 33102255 PMCID: PMC7546785 DOI: 10.3389/fcimb.2020.569022] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/21/2020] [Indexed: 01/08/2023] Open
Abstract
Persistent human papillomavirus (HPV) infections is necessary for the development of cervical cancers. Consequently, understanding the biologic mechanisms resulting in clearance is key in cancer prevention. Similar to other mucosal sites, it is expected that the local microbiome plays a significant role in shaping the immune response responsible for HPV clearance. Using cervical wash repository samples from a prospective study of HPV in women, this study investigates the microbiome and its associated inflammatory milieu during HPV 16 pre-acquisition, persistence and clearance states. For comparison, samples from women with no history of HPV ever during the study period were selected. We showed that 9 of 13 inflammatory cytokines were found to be significantly increased in the immediate post-clearance visit compared to the pre-acquisition or infection visits. Gardnerella vaginalis was associated with higher levels of inflammatory cytokines. Women with no history of HPV infection had similar cytokine profiles as those with HPV 16 post-clearance. This in vivo study documented an immune response shortly after HPV 16 clearance. G. vaginalis appeared to be involved in shaping this immune response. The appearance of G. vaginalis may have resulted from a shift from anti-microbial to anti-viral immune response with loss of bacterial control. The similar high levels of cytokines seen in women with no history of HPV suggest that a certain level of inflammatory surveillance is required to maintain an HPV negative state. This data may inform therapies such as probiotics or pro-inflammatory agents for treatment of persistent HPV.
Collapse
Affiliation(s)
- Anna-Barbara Moscicki
- Division of Adolescent and Young Adult Medicine, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Baochen Shi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hazel Huang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, United States
| | - Emma Barnard
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, United States
| | - Huiying Li
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
3
|
Moscicki AB, Yao TJ, Russell JS, Farhat S, Scott M, Magpantay L, Halec G, Shiboski CH, Ryder MI. Biomarkers of oral inflammation in perinatally HIV-infected and perinatally HIV-exposed, uninfected youth. J Clin Periodontol 2019; 46:1072-1082. [PMID: 31385616 DOI: 10.1111/jcpe.13179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 06/25/2019] [Accepted: 07/22/2019] [Indexed: 12/24/2022]
Abstract
AIM To examine oral biomarkers that have been associated with periodontal disease progression in HIV-infected adults in perinatally HIV-infected and HIV-exposed but uninfected youth. MATERIAL AND METHODS This was a cross-sectional, multicentre substudy of youth participating in the Oral Health Pediatric HIV/AIDS Cohort study. Gingival crevicular fluid repository samples from participants with and without periodontal disease (using Gingival Index [GI] and Bleeding on Probing [BOP] parameters on dental examination) were tested for concentration levels of inflammatory biomarkers. Associations were assessed using Wilcoxon test and Spearman correlation. RESULTS For perinatal HIV youth (n = 129), the markers consistently elevated (p < .05) in sites with GI ≥2 and in sites with BOP were interleukin-1β, 6 and 13, macrophage inflammatory protein-1α and metalloproteinase-9. Serum tumour necrosis factor-α and soluble CD14 were positively correlated with a summary count of elevated cytokines. No associations were seen among HIV-uninfected subjects (n = 71). CONCLUSIONS The association of oral biomarkers of inflammation with clinical indicators of periodontal inflammation and systemic immune activation suggests that perinatal HIV-infected youth may be at higher risk for developing significant periodontal disease, associated with tooth loss and HIV progression. More frequent dental care of this group is needed to prevent potential periodontal progression.
Collapse
Affiliation(s)
- Anna-Barbara Moscicki
- Department of Pediatrics, Division of Adolescent and Young Adult Medicine, University of California, Los Angeles, CA, USA
| | - Tzy-Jyun Yao
- Center for Biostatistics in AIDS Research (CBAR), Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jonathan S Russell
- Center for Biostatistics in AIDS Research (CBAR), Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sepideh Farhat
- Department of Pediatrics, Division of Adolescent Medicine, University of California, San Francisco, CA, USA
| | - Mark Scott
- Department of Pediatrics, Division of Adolescent Medicine, University of California, San Francisco, CA, USA
| | - Larry Magpantay
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Gordana Halec
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Caroline H Shiboski
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | - Mark I Ryder
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, USA
| | | |
Collapse
|
4
|
Selected Immunological Mediators and Cervical Microbial Signatures in Women with Chlamydia trachomatis Infection. mSystems 2019; 4:4/4/e00094-19. [PMID: 31164450 PMCID: PMC6550367 DOI: 10.1128/msystems.00094-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the female genital ecosystem, the complex interplay between the host immune system and the resident microflora protects against urogenital pathogens, like Chlamydia trachomatis C. trachomatis is responsible for urethritis and cervicitis; however, most chlamydial infections are asymptomatic and, thus, not treated, potentially leading to severe reproductive sequelae. Here we investigated the interaction between the levels of selected immune mediators and the community state types of the cervical microbiota in C. trachomatis-infected women. Cervical samples from 42 C. trachomatis-positive women and 103 matched healthy controls were analyzed through the metagenomic analysis of the hypervariable region v4 of the 16S rRNA gene and the determination of lactoferrin, interleukin 1α (IL-1α), IL-6, alpha interferon (IFN-α), IFN-β, and IFN-γ by ELISA. Overall, C. trachomatis infection was significantly associated with a microbiota dominated by anaerobic bacteria (P = 0.000002). In addition, a network of Gardnerella vaginalis, Prevotella amnii, Prevotella buccalis, Prevotella timonensis, Aerococcus christensenii, and Variovorax guangxiensis has been identified as a potential biomarker of C. trachomatis infection through multiple statistical approaches. Again, chlamydial infection was significantly correlated with an increased production of lactoferrin, IL-6, IL-1α, IFN-α, and IFN-β (P < 0.05), whereas very low levels of IFN-γ were observed in C. trachomatis-infected women, levels similar to those detected in healthy women. Our findings show a distinctive signature of C. trachomatis genital infection, characterized by a specific bacterial network, constituted by anaerobes, as well as by increased levels of lactoferrin and proinflammatory cytokines (IL-1α, IL-6, IFN-α, and IFN-β), accompanied by low levels of IFN-γ.IMPORTANCE To our knowledge, this is the first study that investigated the association of C. trachomatis with the cervical levels of lactoferrin and selected inflammatory mediators and their correlation with the different community state types characterizing the female genital ecosystem. C. trachomatis, known as the leading cause of bacterial sexually transmitted diseases, continues to be an important public health problem worldwide for its increasing incidence and the risk of developing severe reproductive sequelae, like pelvic inflammatory disease and infertility. Specifically, C. trachomatis tend to persist in the female genital tract, leading to a chronic inflammatory state characterized by increased production of immune mediators responsible for tissue damage. Therefore, our study may help to broaden the knowledge on the complex interplay between the female genital microbiota and the host immune system in response to C. trachomatis infection.
Collapse
|
5
|
Ter Horst R, Jaeger M, Smeekens SP, Oosting M, Swertz MA, Li Y, Kumar V, Diavatopoulos DA, Jansen AFM, Lemmers H, Toenhake-Dijkstra H, van Herwaarden AE, Janssen M, van der Molen RG, Joosten I, Sweep FCGJ, Smit JW, Netea-Maier RT, Koenders MMJF, Xavier RJ, van der Meer JWM, Dinarello CA, Pavelka N, Wijmenga C, Notebaart RA, Joosten LAB, Netea MG. Host and Environmental Factors Influencing Individual Human Cytokine Responses. Cell 2017; 167:1111-1124.e13. [PMID: 27814508 DOI: 10.1016/j.cell.2016.10.018] [Citation(s) in RCA: 319] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/03/2016] [Accepted: 10/11/2016] [Indexed: 02/08/2023]
Abstract
Differences in susceptibility to immune-mediated diseases are determined by variability in immune responses. In three studies within the Human Functional Genomics Project, we assessed the effect of environmental and non-genetic host factors of the genetic make-up of the host and of the intestinal microbiome on the cytokine responses in humans. We analyzed the association of these factors with circulating mediators and with six cytokines after stimulation with 19 bacterial, fungal, viral, and non-microbial metabolic stimuli in 534 healthy subjects. In this first study, we show a strong impact of non-genetic host factors (e.g., age and gender) on cytokine production and circulating mediators. Additionally, annual seasonality is found to be an important environmental factor influencing cytokine production. Alpha-1-antitrypsin concentrations partially mediate the seasonality of cytokine responses, whereas the effect of vitamin D levels is limited. The complete dataset has been made publicly available as a comprehensive resource for future studies. PAPERCLIP.
Collapse
Affiliation(s)
- Rob Ter Horst
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Martin Jaeger
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Sanne P Smeekens
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Marije Oosting
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Morris A Swertz
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Groningen 9700RB, the Netherlands
| | - Yang Li
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Groningen 9700RB, the Netherlands
| | - Vinod Kumar
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Groningen 9700RB, the Netherlands
| | - Dimitri A Diavatopoulos
- Laboratory of Pediatric Infectious Diseases and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Anne F M Jansen
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Heidi Lemmers
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Helga Toenhake-Dijkstra
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Antonius E van Herwaarden
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Matthijs Janssen
- Department of Rheumatology, Rijnstate Hospital, Arnhem, Gelderland 6815AD, the Netherlands
| | - Renate G van der Molen
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Irma Joosten
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Fred C G J Sweep
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Johannes W Smit
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands; Division of Endocrinology, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Romana T Netea-Maier
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands; Division of Endocrinology, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Mieke M J F Koenders
- Elkerliek Hospital, Clinical Chemistry, Helmond, Noord-Brabant 5700AB, the Netherlands
| | - Ramnik J Xavier
- Broad Institute of Massachusetts Institute of Technology (MIT), Cambridge, MA 02142, USA; Harvard University, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Jos W M van der Meer
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Charles A Dinarello
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands; Division of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Norman Pavelka
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands; Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A(∗)STAR), Singapore 138648, Singapore
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Groningen 9700RB, the Netherlands; Centre for Immune Regulation and Department of Immunology, University of Oslo, Oslo University Hospital, Oslo, Oslo 0027, Norway
| | - Richard A Notebaart
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands.
| | - Mihai G Netea
- Department of Internal Medicine and Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Gelderland 6500HB, the Netherlands.
| |
Collapse
|