1
|
Ashley RL, Trigo EM, Ervin JM. Placental insufficiency and heavier placentas in sheep after suppressing CXCL12/CXCR4 signaling during implantation†. Biol Reprod 2023; 109:982-993. [PMID: 37724932 PMCID: PMC10724462 DOI: 10.1093/biolre/ioad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/28/2023] [Accepted: 09/15/2023] [Indexed: 09/21/2023] Open
Abstract
During implantation, trophoblast cell invasion and differentiation is predominantly important to achieving proper placental formation and embryonic development. The chemokine, C-X-C motif chemokine ligand 12 (CXCL12) working through its receptor C-X-C motif chemokine receptor 4 (CXCR4) is implicated in implantation and placentation but precise roles of this axis are unclear. Suppressing CXCL12/CXCR4 signaling at the fetal-maternal interface in sheep reduces trophoblast invasion, disrupts uterine remodeling, and diminishes placental vascularization. We hypothesize these negative impacts during implantation will manifest as compromised fetal and placental growth at midgestation. To test, on day 12 postbreeding, osmotic pumps were surgically installed in 30 ewes and delivered intrauterine CXCR4 inhibitor or saline for 7 or 14 days. On day 90, fetal/maternal tissues were collected, measured, weighed, and maternal (caruncle) and fetal (cotyledon) placenta components separated and analyzed. The objectives were to determine if (i) suppressing CXCL12/CXCR4 during implantation results in reduced fetal and placental growth and development and (ii) if varying the amount of time CXCL12/CXCR4 is suppressed impacts fetal/placental development. Fetal weights were similar; however greater placental weight and placentome numbers occurred when CXCL12/CXCR4 was suppressed for 14 days. In caruncles, greater abundance of fibroblast growth factor 2, vascular endothelial growth factor A, vascular endothelial growth factor A receptor 1 (FLT-1), and placental growth factor were observed after suppressing CXCL12/CXCR4. Similar results occurred in cotyledons except less vascular endothelial growth factor in 7 day group and less fibroblast growth factor in 14 day group. Our data underscore the importance of CXCL12/CXCR4 signaling during placentation and provide strong evidence that altering CXCL12-mediated signaling induces enduring placental effects manifesting later in gestation.
Collapse
Affiliation(s)
- Ryan L Ashley
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, USA
| | - Elisa M Trigo
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, USA
| | - Jacqueline M Ervin
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, USA
| |
Collapse
|
2
|
Lyu F, Burzynski C, Fang YY, Tal A, Chen AY, Kisa J, Agrawal K, Kluger Y, Taylor HS, Tal R. Maternal CXCR4 deletion results in placental defects and pregnancy loss mediated by immune dysregulation. JCI Insight 2023; 8:e172216. [PMID: 37815869 PMCID: PMC10721256 DOI: 10.1172/jci.insight.172216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/21/2023] [Indexed: 10/12/2023] Open
Abstract
CXCR4 is a key regulator of the development of NK cells and DCs, both of which play an important role in early placental development and immune tolerance at the maternal-fetal interface. However, the role of CXCR4 in pregnancy is not well understood. Our study demonstrates that adult-induced global genetic CXCR4 deletion, but not uterine-specific CXCR4 deletion, was associated with increased pregnancy resorptions and decreased litter size. CXCR4-deficient mice had decreased NK cells and increased granulocytes in the decidua, along with increased leukocyte numbers in peripheral blood. We found that CXCR4-deficient mice had abnormal decidual NK cell aggregates and NK cell infiltration into trophoblast areas beyond the giant cell layer. This was associated with low NK cell expression of granzyme B, a NK cell granule effector, indicative of NK cell dysfunction. Pregnancy failure in these mice was associated with abnormalities in placental vascular development and increased placental expression of inflammatory genes. Importantly, adoptive BM transfer of WT CXCR4+ BM cells into CXCR4-deficient mice rescued the reproductive deficits by normalizing NK cell function and mediating normal placental vascular development. Collectively, our study found an important role for maternal CXCR4 expression in immune cell function, placental development, and pregnancy maintenance.
Collapse
Affiliation(s)
- Fang Lyu
- Department of Obstetrics, Gynecology and Reproductive Sciences, and
| | - Chase Burzynski
- Department of Obstetrics, Gynecology and Reproductive Sciences, and
| | - Yuan yuan Fang
- Department of Obstetrics, Gynecology and Reproductive Sciences, and
| | - Aya Tal
- Department of Obstetrics, Gynecology and Reproductive Sciences, and
| | - Alice Y. Chen
- Department of Obstetrics, Gynecology and Reproductive Sciences, and
| | - Jacqueline Kisa
- Department of Obstetrics, Gynecology and Reproductive Sciences, and
| | - Kriti Agrawal
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
- Program of Applied Mathematics, Yale University, New Haven, Connecticut, USA
| | - Yuval Kluger
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
- Program of Applied Mathematics, Yale University, New Haven, Connecticut, USA
| | - Hugh S. Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, and
| | - Reshef Tal
- Department of Obstetrics, Gynecology and Reproductive Sciences, and
| |
Collapse
|
3
|
Gokce S, Herki̇loglu D, Cevi̇k O, Turan V. Role of chemokines in early pregnancy loss. Exp Ther Med 2022; 23:397. [PMID: 35495608 PMCID: PMC9047033 DOI: 10.3892/etm.2022.11324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/11/2022] [Indexed: 12/04/2022] Open
Abstract
The present study aimed to compare decidual protein levels and gene expression levels of chemokines between patients with early pregnancy loss and those with voluntary abortion. A total of 15 patients between 6 and 10 gestational weeks, who presented with negative fetal heartbeat to the obstetrics and gynecology outpatient clinics of Gaziosmanpasa Hospital (Yeni Yuzyil University, Istanbul, Turkey) and who had no additional systemic disease and 13 patients between 6 and 10 gestational weeks, who presented with positive fetal heartbeat for voluntary abortion were included in the present study. CX3CL1, CCL17, CXCR4, chemokine ligand 12 (CXCL12) and intercellular adhesion molecule (ICAM)5 protein expression levels were determined by ELISA and gene expression levels by reverse transcription-quantitative PCR in fresh materials recovered after therapeutic curettage. CX3CL1, CCL17, CXCR4, CXCL12 protein levels were significantly higher and ICAM protein level was significantly lower in pregrant women with missed abortion compared with those with voluntary abortion. While the amount of increase in mean CX3CL1, CCL17, CXCR4 and CXCL12 gene expression levels in the tissues of pregnant women with missed abortion was statistically higher than the pregnant women who underwent voluntary abortion, the amount of increase in ICAM5 gene expression was found to be lower (P<0.001) in those with missed abortion. In conclusion, the findings of the present study suggested that CCL17, CX3CL1, CXCL12, CXCR4 and ICAM5 may be associated with missed abortion and may play an important role in placental invasion and the continuation of pregnancy.
Collapse
Affiliation(s)
- Sefi̇k Gokce
- Department of Obstetrics and Gynecology, Gaziosmanpasa Hospital of Yeni Yuzyil University, Istanbul 34245, Turkey
| | - Di̇lsad Herki̇loglu
- Department of Obstetrics and Gynecology, Gaziosmanpasa Hospital of Yeni Yuzyil University, Istanbul 34245, Turkey
| | - Ozge Cevi̇k
- Department of Biochemistry, School of Medicine, Aydin Adnan Menderes University, Aydin 09010, Turkey
| | - Volkan Turan
- Department of Obstetrics and Gynecology, School of Medicine, Health and Technology University, Istanbul 34015, Turkey
| |
Collapse
|
4
|
McIntosh SZ, Quinn KE, Ashley RL. CXCL12 May Drive Inflammatory Potential in the Ovine Corpus Luteum During Implantation. Reprod Sci 2021; 29:122-132. [PMID: 34755321 PMCID: PMC8677687 DOI: 10.1007/s43032-021-00791-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/31/2021] [Indexed: 11/01/2022]
Abstract
Adequate corpus luteum (CL) function is paramount to successful pregnancy. Structural and functional CL integrity is controlled by diverse cell types that contribute and respond to the local cytokine milieu. The chemokine ligand 12 (CXCL12) and receptor, CXCR4, are modulators of inflammation and cell survival, but little is understood about CXCL12-CXCR4 axis and CL functional regulation. Corpora lutea from control nonpregnant ewes (n = 5; day 10 estrous cycle (D10C)) and pregnant ewes (n = 5/day) on days 20 (D20P) and 30 (D30P) post-breeding were analyzed for gene and protein expression of CXCL12, CXCR4, and select inflammatory cytokines. In separate cell culture studies, cytokine production was evaluated following CXCL12 treatment. Abundance of CXCL12 and CXCR4 increased (P < 0.05) in pregnant ewes compared to nonpregnant ewes, as determined by a combination of quantitative PCR, immunoblot, and immunofluorescence microscopy. CXCR4 was detected in steroidogenic and nonsteroidogenic cells in ovine CL, and select pro-inflammatory mediators were greater in CL from pregnant ewes. In vitro studies revealed greater abundance of tumor necrosis factor (TNF) following CXCL12 administration (P = 0.05), while P4 levels in cell media were unchanged. Fully functional CL of pregnant ewes is characterized by increased abundance of inflammatory cytokines which may function in a luteotropic manner. We report concurrent increases in CXCL12, CXCR4, and select inflammatory mediators in ovine CL as early pregnancy progresses. We propose CXCL12 stimulates production of select cytokines, rather than P4 in the CL to assist in CL establishment and survival.
Collapse
Affiliation(s)
- Stacia Z McIntosh
- Department of Animal and Range Sciences, New Mexico State University, MSC 3-I, PO Box 30003, Las Cruces, NM, 88003, USA
| | - Kelsey E Quinn
- Department of Animal and Range Sciences, New Mexico State University, MSC 3-I, PO Box 30003, Las Cruces, NM, 88003, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Ryan L Ashley
- Department of Animal and Range Sciences, New Mexico State University, MSC 3-I, PO Box 30003, Las Cruces, NM, 88003, USA.
| |
Collapse
|
5
|
Ashley RL, Runyan CL, Maestas MM, Trigo E, Silver G. Inhibition of the C-X-C Motif Chemokine 12 (CXCL12) and Its Receptor CXCR4 Reduces Utero-Placental Expression of the VEGF System and Increases Utero-Placental Autophagy. Front Vet Sci 2021; 8:650687. [PMID: 34485423 PMCID: PMC8415452 DOI: 10.3389/fvets.2021.650687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/15/2021] [Indexed: 01/07/2023] Open
Abstract
The placenta, a unique organ that only develops during pregnancy, is essential for nutrient, oxygen, and waste exchange between offspring and mother. Yet, despite its importance, the placenta remains one of the least understood organs and knowledge of early placental formation is particularly limited. Abnormalities in placental development result in placental dysfunction or insufficiency whereby normal placental physiology is impaired. Placental dysfunction is a frequent source of pregnancy loss in livestock, inflicting serious economic impact to producers. Though the underlying causes of placental dysfunction are not well-characterized, initiation of disease is thought to occur during establishment of functional fetal and placental circulation. A comprehensive understanding of the mechanisms controlling placental growth and vascularization is necessary to improve reproductive success in livestock. We propose chemokine C-X-C motif ligand 12 (CXCL12) signaling through its receptor CXCR4 functions as a chief coordinator of vascularization through direct actions on fetal trophoblast and maternal endometrial and immune cells. To investigate CXCL12–CXCR4 signaling on uteroplacental vascular remodeling at the fetal–maternal interface, we utilized a CXCR4 antagonist (AMD3100). On day 12 post-breeding in sheep, osmotic pumps were surgically installed and delivered either AMD3100 or saline into the uterine lumen ipsilateral to the corpus luteum for 14 days. On day 35 of ovine pregnancy, fetal/placental and endometrial tissues were collected, snap-frozen in liquid nitrogen, and uterine horn cross sections were preserved for immunofluorescent analysis. Suppressing CXCL12–CXCR4 at the fetal–maternal interface during initial placental vascularization resulted in diminished abundance of select angiogenic factors in fetal and maternal placenta on day 35. Compared to control, less vascular endothelial growth factor (VEGF) and VEFG receptor 2 (KDR) were observed in endometrium when CXCL12–CXCR4 was diminished. Less VEGF was also evident in fetal placenta (cotyledons) in ewes receiving AMD3100 infusion compared to control. Suppressing CXCL12–CXCR4 at the fetal–maternal interface also resulted in greater autophagy induction in fetal and maternal placenta compared to control, suggestive of CXCL12–CXCR4 impacting cell survival. CXCL12–CXCR4 signaling may govern placental homeostasis by serving as a critical upstream mediator of vascularization and cell viability, thereby ensuring appropriate placental development.
Collapse
Affiliation(s)
- Ryan L Ashley
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Cheyenne L Runyan
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Marlie M Maestas
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Elisa Trigo
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, United States
| | - Gail Silver
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
6
|
McIntosh SZ, Maestas MM, Dobson JR, Quinn KE, Runyan CL, Ashley RL. CXCR4 signaling at the fetal-maternal interface may drive inflammation and syncytia formation during ovine pregnancy†. Biol Reprod 2020; 104:468-478. [PMID: 33141178 DOI: 10.1093/biolre/ioaa203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/21/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Early pregnancy features complex signaling between fetal trophoblast cells and maternal endometrium directing major peri-implantation events including localized inflammation and remodeling to establish proper placental development. Proinflammatory mediators are important for conceptus attachment, but a more precise understanding of molecular pathways regulating this process is needed to understand how the endometrium becomes receptive to implantation. Both chemokine ligand 12 (CXCL12) and its receptor CXCR4 are expressed by fetal and maternal tissues. We identified this pair as a critical driver of placental angiogenesis, but their additional importance to inflammation and trophoblast cell survival, proliferation, and invasion imply a role in syncytia formation at the fetal-maternal microenvironment. We hypothesized that CXCL12 encourages both endometrial inflammation and conceptus attachment during implantation. We employed separate ovine studies to (1) characterize endometrial inflammation during early gestation in the ewe, and (2) establish functional implications of CXCL12 at the fetal-maternal interface through targeted intrauterine infusion of the CXCR4 inhibitor AMD3100. Endometrial tissues were evaluated for inflammatory mediators, intracellular signaling events, endometrial modifications, and trophoblast syncytialization using western blotting and immunohistochemistry. Endometrial tissue from ewes receiving CXCR4 inhibitor demonstrated dysregulated inflammation and reduced AKT and NFKB, paired with elevated autophagic activity compared to control. Immunohistochemical observation revealed an impairment in endometrial surface remodeling and diminished trophoblast syncytialization following localized CXCR4 inhibition. These data suggest CXCL12-CXCR4 regulates endometrial inflammation and remodeling for embryonic implantation, and provide insight regarding mechanisms that, when dysregulated, lead to pregnancy pathologies such as intrauterine growth restriction and preeclampsia.
Collapse
Affiliation(s)
- Stacia Z McIntosh
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, USA
| | - Marlie M Maestas
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, USA
| | - Jordyn R Dobson
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, USA
| | - Kelsey E Quinn
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, USA.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | - Cheyenne L Runyan
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, USA.,Department of Animal Science & Veterinary Technology, Tarleton State University, Stephenville, TX, USA
| | - Ryan L Ashley
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, USA
| |
Collapse
|