1
|
Tempest N, Soul J, Hill CJ, Caamaño Gutierrez E, Hapangama DK. Cell type and region-specific transcriptional changes in the endometrium of women with RIF identify potential treatment targets. Proc Natl Acad Sci U S A 2025; 122:e2421254122. [PMID: 40063812 PMCID: PMC11929460 DOI: 10.1073/pnas.2421254122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/28/2025] [Indexed: 03/25/2025] Open
Abstract
Recurrent implantation failure (RIF) is a devastating condition that leaves many undergoing fertility treatment childless. The human endometrium is receptive to a blastocyst for a brief period, the window of implantation. Critical knowledge underpinning biological processes leading to RIF, essential for effective treatment, is lacking. We employed spatial transcriptomics to define region- and cell-type-specific differences in endometrial gene expression in luteinizing hormone timed biopsies between women with RIF (n = 8) and fertile controls (FC) (n = 8). Differentially expressed genes (DEGs) were identified when comparing endometrial regions between FC and RIF (685 luminal epithelium, 293 glandular epithelium, 419 subluminal stroma, 264 functionalis stroma, 1,125 subluminal stromal CD45+ leukocytes, and 1,049 functionalis stromal CD56+ leukocytes). Only 57 DEGs were common to all subregions and cell types, which highlights that multiple DEGs are lost when the endometrium is examined as a single entity. When RIF-specific DEGs were leveraged against knowledge from mouse genetic models, genes associated with aberrant embryo implantation phenotypes were observed, mostly in immune cell populations. Dysregulated pathways in specific endometrial regions included the "WNT signaling pathway," altered in the functionalis and subluminal stroma. "Response to estradiol" and "ovulation cycle" pathways were dysregulated in the subluminal stroma. In silico drug screening identified potential compounds that can reverse the RIF gene expression profile (e.g., raloxifene, bisoprolol). Our findings, in a well-characterized cohort, highly endorse consideration of each endometrial region and cell type as separate entities. Ignoring individual regions and composite cell populations will overlook important aberrations, forego potential treatment targets, and lead to research waste pursuing clinically irrelevant treatment options.
Collapse
Affiliation(s)
- Nicola Tempest
- Department of Women’s and Children’s Health, Centre for Women’s Health Research, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, LiverpoolL8 7SS, United Kingdom
- Liverpool Women’s National Health Service Foundation Trust, Member of Liverpool Health Partners, LiverpoolL8 7SS, United Kingdom
- Hewitt Centre for Reproductive Medicine, Liverpool Women’s National Health Service Foundation Trust, LiverpoolL8 7SS, United Kingdom
| | - Jamie Soul
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
- Computational Biology Facility, Liverpool Shared Research Facilities, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Christopher J. Hill
- Department of Women’s and Children’s Health, Centre for Women’s Health Research, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, LiverpoolL8 7SS, United Kingdom
| | - Eva Caamaño Gutierrez
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
- Computational Biology Facility, Liverpool Shared Research Facilities, University of Liverpool, LiverpoolL69 7ZB, United Kingdom
| | - Dharani K. Hapangama
- Department of Women’s and Children’s Health, Centre for Women’s Health Research, Institute of Life Course and Medical Sciences, University of Liverpool, Member of Liverpool Health Partners, LiverpoolL8 7SS, United Kingdom
- Liverpool Women’s National Health Service Foundation Trust, Member of Liverpool Health Partners, LiverpoolL8 7SS, United Kingdom
| |
Collapse
|
2
|
Simoni MK, Negatu SG, Park JY, Mani S, Arreguin MC, Amses K, Huh DD, Mainigi M, Jurado KA. Type I interferon alters invasive extravillous trophoblast function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584521. [PMID: 38559122 PMCID: PMC10979977 DOI: 10.1101/2024.03.11.584521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Inappropriate type I interferon (IFN) signaling during embryo implantation and placentation is linked to poor pregnancy outcomes. Here, we evaluated the consequence of elevated type I IFN exposure on implantation using a biomimetic model of human implantation in an organ-on-a-chip device. We found that type I IFN reduced extravillous trophoblast (EVT) invasion capacity. Analyzing single-cell transcriptomes, we uncovered that IFN truncated endovascular EVT emergence in the implantation-on-a-chip device by stunting EVT epithelial-to-mesenchymal transition. Disruptions to the epithelial-to-mesenchymal transition is associated with the pathogenesis of preeclampsia, a life-threatening hypertensive disorder of pregnancy. Strikingly, unwarranted IFN stimulation induced genes associated with increased preeclampsia risk and a preeclamptic gene-like signature in EVTs. These dysregulated EVT phenotypes ultimately reduced EVT-mediated endothelial cell vascular remodeling in the implantation-on-a-chip device. Overall, our work indicates IFN signaling can alter EVT epithelial-to-mesenchymal transition progression which results in diminished EVT-mediated spiral artery remodeling and a preeclampsia gene signature upon sustained stimulation. Our work implicates unwarranted type I IFN as a maternal disturbance that can result in abnormal EVT function that could trigger preeclampsia.
Collapse
|