1
|
Okpaise OO, Ahn H, Tonni G, Ruano R. Prenatal diagnosis and in utero treatment of congenital adrenal hyperplasia: An up-to-date comprehensive review. Prenat Diagn 2024; 44:635-643. [PMID: 38448010 DOI: 10.1002/pd.6542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 03/08/2024]
Abstract
Congenital adrenal hyperplasia (CAH) is a term that encompasses a wide range of conditions that affect the adrenals. Diagnosis and treatment before birth are important as irreparable birth defects can be avoided, decreasing the need for surgical intervention later in life, especially regarding genitalia anomalies. Although early implementation of dexamethasone in the prenatal treatment of CAH has been controversial, there is recent evidence that this treatment can reduce long-term complications.
Collapse
Affiliation(s)
| | - Hyunyoung Ahn
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Gabriele Tonni
- Department of Obstetrics and Neonatology, Prenatal Diagnostic Centre, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), AUSL Reggio Emilia, Reggio Emilia, Italy
| | - Rodrigo Ruano
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
- Women-Children Health Center of Excellence, Americas Group, United Health Care Brazil, São Paulo, Brazil
| |
Collapse
|
2
|
Claahsen - van der Grinten HL, Speiser PW, Ahmed SF, Arlt W, Auchus RJ, Falhammar H, Flück CE, Guasti L, Huebner A, Kortmann BBM, Krone N, Merke DP, Miller WL, Nordenström A, Reisch N, Sandberg DE, Stikkelbroeck NMML, Touraine P, Utari A, Wudy SA, White PC. Congenital Adrenal Hyperplasia-Current Insights in Pathophysiology, Diagnostics, and Management. Endocr Rev 2022; 43:91-159. [PMID: 33961029 PMCID: PMC8755999 DOI: 10.1210/endrev/bnab016] [Citation(s) in RCA: 239] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Indexed: 11/19/2022]
Abstract
Congenital adrenal hyperplasia (CAH) is a group of autosomal recessive disorders affecting cortisol biosynthesis. Reduced activity of an enzyme required for cortisol production leads to chronic overstimulation of the adrenal cortex and accumulation of precursors proximal to the blocked enzymatic step. The most common form of CAH is caused by steroid 21-hydroxylase deficiency due to mutations in CYP21A2. Since the last publication summarizing CAH in Endocrine Reviews in 2000, there have been numerous new developments. These include more detailed understanding of steroidogenic pathways, refinements in neonatal screening, improved diagnostic measurements utilizing chromatography and mass spectrometry coupled with steroid profiling, and improved genotyping methods. Clinical trials of alternative medications and modes of delivery have been recently completed or are under way. Genetic and cell-based treatments are being explored. A large body of data concerning long-term outcomes in patients affected by CAH, including psychosexual well-being, has been enhanced by the establishment of disease registries. This review provides the reader with current insights in CAH with special attention to these new developments.
Collapse
Affiliation(s)
| | - Phyllis W Speiser
- Cohen Children’s Medical Center of NY, Feinstein Institute, Northwell Health, Zucker School of Medicine, New Hyde Park, NY 11040, USA
| | - S Faisal Ahmed
- Developmental Endocrinology Research Group, School of Medicine Dentistry & Nursing, University of Glasgow, Glasgow, UK
| | - Wiebke Arlt
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, Departments of Internal Medicine and Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Henrik Falhammar
- Department of Molecular Medicine and Surgery, Karolinska Intitutet, Stockholm, Sweden
- Department of Endocrinology, Karolinska University Hospital, Stockholm, Sweden
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology and Metabolism, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Bart’s and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Angela Huebner
- Division of Paediatric Endocrinology and Diabetology, Department of Paediatrics, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| | - Barbara B M Kortmann
- Radboud University Medical Centre, Amalia Childrens Hospital, Department of Pediatric Urology, Nijmegen, The Netherlands
| | - Nils Krone
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Deborah P Merke
- National Institutes of Health Clinical Center and the Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Walter L Miller
- Department of Pediatrics, Center for Reproductive Sciences, and Institute for Human Genetics, University of California, San Francisco, CA 94143, USA
| | - Anna Nordenström
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Endocrinology, Karolinska University Hospital, Stockholm, Sweden
| | - Nicole Reisch
- Medizinische Klinik IV, Klinikum der Universität München, Munich, Germany
| | - David E Sandberg
- Department of Pediatrics, Susan B. Meister Child Health Evaluation and Research Center, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, Center for Rare Endocrine Diseases of Growth and Development, Center for Rare Gynecological Diseases, Hôpital Pitié Salpêtrière, Sorbonne University Medicine, Paris, France
| | - Agustini Utari
- Division of Pediatric Endocrinology, Department of Pediatrics, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Stefan A Wudy
- Steroid Research & Mass Spectrometry Unit, Laboratory of Translational Hormone Analytics, Division of Paediatric Endocrinology & Diabetology, Justus Liebig University, Giessen, Germany
| | - Perrin C White
- Division of Pediatric Endocrinology, UT Southwestern Medical Center, Dallas TX 75390, USA
| |
Collapse
|
3
|
Tosur M, Collins MT, Ponder SW, Stratakis CA, Karaviti LP, Jeha GS. Persistent Diabetes Mellitus Postadrenalectomy in Neonatal McCune-Albright Syndrome. Glob Pediatr Health 2017; 4:2333794X17742748. [PMID: 29201948 PMCID: PMC5700779 DOI: 10.1177/2333794x17742748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/03/2017] [Indexed: 11/17/2022] Open
Affiliation(s)
| | | | | | - Constantine A Stratakis
- Eunice Kennedy Shriver National Institute of Child Health & Human Development, Bethesda, MD, USA
| | | | | |
Collapse
|
4
|
Bramble MS, Lipson A, Vashist N, Vilain E. Effects of chromosomal sex and hormonal influences on shaping sex differences in brain and behavior: Lessons from cases of disorders of sex development. J Neurosci Res 2017; 95:65-74. [PMID: 27841933 DOI: 10.1002/jnr.23832] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/30/2016] [Accepted: 06/20/2016] [Indexed: 01/15/2023]
Abstract
Sex differences in brain development and postnatal behavior are determined largely by genetic sex and in utero gonadal hormone secretions. In humans however, determining the weight that each of these factors contributes remains a challenge because social influences should also be considered. Cases of disorders of sex development (DSD) provide unique insight into how mutations in genes responsible for gonadal formation can perturb the subsequent developmental hormonal milieu and elicit changes in normal human brain maturation. Specific forms of DSDs such as complete androgen insensitivity syndrome (CAIS), congenital adrenal hyperplasia (CAH), and 5α-reductase deficiency syndrome have variable effects between males and females, and the developmental outcomes of such conditions are largely dependent on sex chromosome composition. Medical and psychological works focused on CAH, CAIS, and 5α-reductase deficiency have helped form the foundation for understanding the roles of genetic and hormonal factors necessary for guiding human brain development. Here we highlight how the three aforementioned DSDs contribute to brain and behavioral phenotypes that can uniquely affect 46,XY and 46,XX individuals in dramatically different fashions. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Matthew S Bramble
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Allen Lipson
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Neerja Vashist
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Eric Vilain
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
5
|
Lang-Muritano M, Gerster K, Sluka S, Konrad D. Two Siblings with the Same Severe Form of 21-Hydroxylase Deficiency But Different Growth and Menstrual Cycle Patterns. Front Pediatr 2017; 5:35. [PMID: 28299309 PMCID: PMC5331061 DOI: 10.3389/fped.2017.00035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 02/06/2017] [Indexed: 12/03/2022] Open
Abstract
Congenital adrenal hyperplasia (CAH) is one of the most frequent autosomal recessive diseases in Europe. Treatment is a challenge for pediatric endocrinologists. Important parameters to judge the outcome are adult height and menstrual cycle. We report the follow-up from birth to adulthood of two Caucasian sisters with salt-wasting CAH due to the same mutation, homozygosity c.290-13A>G (I2 splice), in the 21-hydroxylase gene. Their adherence to treatment was excellent. Our objective was to distinguish the effects of treatment with hydrocortisone (HC) and fludrocortisone (FC) on final height (FH) from constitutional factors. The older girl (patient 1), who showed virilized genitalia Prader scale III-IV at birth, reached FH within familial target height at 18 years of age. Menarche occurred at the age of 15. Her menstrual cycles were always irregular. Total pubertal growth was normal (29 cm). She showed a growth pattern consistent with constitutional delay. The younger sister (patient 2) was born without masculinization of the genitalia after her mother was treated with dexamethasone starting in the fourth week of pregnancy. She reached FH at 16 years of age. Her adult height is slightly below familial target height. Menarche occurred at the age of 12.5, followed by regular menses. Total pubertal growth was normal (21 cm). The average dose of HC from birth to FH was 16.7 mg/m2 in patient 1 and 16.8 mg/m2 in patient 2. They received FC once a day in doses from 0.05 to 0.1 mg. Under such therapy, growth velocity was normal starting from the age of 2.5 years with an overall average of +0.2 SD in patient 1 and -0.1 SD in patient 2, androstenedione levels were always within normal age range. Similarly, BMI and blood pressure were always normal, no acne and no hirsutism ever appeared. In conclusion, two siblings with the same genetic form of 21-hydroxylase deficiency and excellent adherence to medication showed different growth and menstrual cycle patterns, rather related to constitutional factors than to underlying CAH. In addition, the second patient represents an example of successful in utero glucocorticoid treatment to prevent virilization of the external genitalia.
Collapse
Affiliation(s)
- Mariarosaria Lang-Muritano
- Department of Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland; Children's Research Centre, University Children's Hospital, Zurich, Switzerland
| | - Karine Gerster
- Department of Endocrinology and Diabetology, University Children's Hospital , Zurich , Switzerland
| | - Susanna Sluka
- Children's Research Centre, University Children's Hospital, Zurich, Switzerland; Swiss Newborn Screening Laboratory, University Children's Hospital, Zurich, Switzerland
| | - Daniel Konrad
- Department of Endocrinology and Diabetology, University Children's Hospital, Zurich, Switzerland; Children's Research Centre, University Children's Hospital, Zurich, Switzerland
| |
Collapse
|