1
|
Huang CH, Chen WY, Chen RF, Ramachandran S, Liu KF, Kuo YR. Cell therapies and its derivatives as immunomodulators in vascularized composite allotransplantation. Asian J Surg 2024; 47:4251-4259. [PMID: 38704267 DOI: 10.1016/j.asjsur.2024.04.094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/18/2024] [Indexed: 05/06/2024] Open
Abstract
The adverse effects of traditional pharmaceutical immunosuppressive regimens have been a major obstacle to successful allograft survival in vascularized composite tissue allotransplantation (VCA) cases. Consequently, there is a pressing need to explore alternative approaches to reduce reliance on conventional immunotherapy. Cell therapy, encompassing immune-cell-based and stem-cell-based regimens, has emerged as a promising avenue of research. Immune cells can be categorized into two main systems: innate immunity and adaptive immunity. Innate immunity comprises tolerogenic dendritic cells, regulatory macrophages, and invariant natural killer T cells, while adaptive immunity includes T regulatory cells and B regulatory cells. Investigations are currently underway to assess the potential of these immune cell populations in inducing immune tolerance. Furthermore, mixed chimerism therapy, involving the transplantation of hematopoietic stem and progenitor cells and mesenchymal stem cells (MSC), shows promise in promoting allograft tolerance. Additionally, extracellular vesicles (EVs) derived from MSCs offer a novel avenue for extending allograft survival. This review provides a comprehensive summary of cutting-edge research on immune cell therapies, mixed chimerism therapies, and MSCs-derived EVs in the context of VCAs. Findings from preclinical and clinical studies demonstrate the tremendous potential of these alternative therapies in optimizing allograft survival in VCAs.
Collapse
Affiliation(s)
- Chao-Hsin Huang
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Wei Yu Chen
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Rong-Fu Chen
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Savitha Ramachandran
- Department of Plastic and Reconstructive Surgery, Singapore General Hospital, Singapore.
| | - Keng-Fan Liu
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Yur-Ren Kuo
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Faculty of Medicine, College of Medicine, Orthopaedic Research Center, Regenerative Medicine, Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Academic Clinical Programme for Musculoskeletal Sciences, Duke-NUS Graduate Medical School, Singapore; Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
2
|
Ahmadi AR, Wesson RN, Huang J, Harmon J, Burdick JF, Cameron AM, Sun Z. Induction of Skin Allograft Chimerism by Pharmacological Mobilization of Endogenous Bone Marrow-Derived Stem Cells. J Burn Care Res 2024; 45:234-241. [PMID: 37801462 PMCID: PMC10768753 DOI: 10.1093/jbcr/irad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Indexed: 10/08/2023]
Abstract
Skin substitutes including allografts remain a standard therapeutic approach to promote healing of both acute and chronic large wounds. However, none have resulted in the regrowth of lost and damaged tissues and scarless wound healing. Here, we demonstrate skin allograft chimerism and repair through the mobilization of endogenous bone marrow-derived stem and immune cells in rats and swine. We show that pharmacological mobilization of bone marrow stem cells and immune cells into the circulation promotes host repopulation of skin allografts and restoration of the skin's normal architecture without scarring and minimal contracture. When skin allografts from DA rats are transplanted into GFP transgenic Lewis recipients with a combination of AMD3100 and low-dose FK506 (AF) therapy, host-derived GFP-positive cells repopulate and/or regenerate cellular components of skin grafts including epidermis and hair follicles and the grafts become donor-host chimeric skin. Using AF combination therapy, burn wounds with skin allografts were healed by newly regenerated chimeric skin with epidermal appendages and pigmentation and without contracture in swine.
Collapse
Affiliation(s)
- Ali R Ahmadi
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Russell N Wesson
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jinny Huang
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John Harmon
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James F Burdick
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew M Cameron
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhaoli Sun
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Simper G, Schleumann P, Seidel S, Ho GGT, Placzko S, Bade-Döding C. Der selektive Nachweis von HLA-spezifischen B-Gedächtniszellen. TRANSFUSIONSMEDIZIN 2021. [DOI: 10.1055/a-1521-8034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
ZusammenfassungIn der Transplantationsdiagnostik werden die Seren der Patienten auf der Warteliste jedes Quartal auf präexistierende Anti-HLA-Antikörper untersucht. Jedoch kann die Existenz von zirkulierenden peripheren Antikörpern, die von knochenmarkresidierenden Plasmazellen sezerniert wurden, keine zuverlässige Information über das Zellkompartment von B-Gedächtniszellen geben. Die Exposition mit einem inkompatiblen HLA-Antigen kann immer die Aktivierung vorhandener B-Gedächtniszellen auslösen. Die Analyse von B-Gedächtniszellen ermöglicht die Erhebung von belastbaren Daten über den individuellen Immunstatus eines Patienten.
Collapse
Affiliation(s)
- Gwendolin Simper
- Institut für Transfusionsmedizin und Transplantat Engineering, Medizinische Hochschule Hannover, Hannover, Deutschland
| | - Philipp Schleumann
- Institut für Transfusionsmedizin und Transplantat Engineering, Medizinische Hochschule Hannover, Hannover, Deutschland
| | - Sarah Seidel
- Institut für Transfusionsmedizin und Transplantat Engineering, Medizinische Hochschule Hannover, Hannover, Deutschland
| | - Gia-Gia Toni Ho
- Institut für Transfusionsmedizin und Transplantat Engineering, Medizinische Hochschule Hannover, Hannover, Deutschland
| | - Susann Placzko
- Institut für Transfusionsmedizin und Transplantat Engineering, Medizinische Hochschule Hannover, Hannover, Deutschland
| | - Christina Bade-Döding
- Institut für Transfusionsmedizin und Transplantat Engineering, Medizinische Hochschule Hannover, Hannover, Deutschland
| |
Collapse
|
4
|
Auditory brainstem responses in aging dark agouti rats. Biosci Rep 2021; 41:227695. [PMID: 33506259 PMCID: PMC7897922 DOI: 10.1042/bsr20202724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 02/06/2023] Open
Abstract
The present study examined auditory function across age in the dark agouti (DA) rat strain. Auditory brainstem responses (ABRs) were measured for frequencies 8, 16, and 32 kHz in male and female DA rats from 3 to 18 months of age. Hearing thresholds and absolute and interpeak latencies (IPLs) were analyzed. Male hearing thresholds remained stable for the first year of life and then significantly increased at 18 months across all frequencies; female hearing remained stable at all tested ages out to 18 months. At 12 months, male DA rats showed significantly longer absolute latencies by age (i.e., compared with 3-month-old males) and sex (compared with 12-month-old females), with no differences in IPLs. At 18 months, female DA rats showed significantly longer absolute latencies with age (compared with 3-month-old females) and sex (compared with 18-month-old males), particularly for the later waves. Female IPLs were also significantly longer with age and by sex for the later waves. This report supports the feasibility of using male DA rats in studies to investigate age-related hearing loss (ARHL; presbycusis).
Collapse
|
5
|
Qi L, Ahmadi AR, Huang J, Chen M, Pan B, Kuwabara H, Iwasaki K, Wang W, Wesson R, Cameron AM, Cui S, Burdick J, Sun Z. Major Improvement in Wound Healing Through Pharmacologic Mobilization of Stem Cells in Severely Diabetic Rats. Diabetes 2020; 69:699-712. [PMID: 31974141 DOI: 10.2337/db19-0907] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/11/2020] [Indexed: 11/13/2022]
Abstract
Current therapeutic strategies for diabetic foot ulcer (DFU) have focused on developing topical healing agents, but few agents have controlled prospective data to support their effectiveness in promoting wound healing. We tested a stem cell mobilizing therapy for DFU using a combination of AMD3100 and low-dose FK506 (tacrolimus) (AF) in streptozocin-induced type 1 diabetic (T1DM) rats and type 2 diabetic Goto-Kakizaki (GK) rats that had developed peripheral artery disease and neuropathy. Here, we show that the time for healing back wounds in T1DM rats was reduced from 27 to 19 days, and the foot wound healing time was reduced from 25 to 20 days by treatment with AF (subcutaneously, every other day). Similarly, in GK rats treated with AF, the healing time on back wounds was reduced from 26 to 21 days. Further, this shortened healing time was accompanied by reduced scar and by regeneration of hair follicles. We found that AF therapy mobilized and recruited bone marrow-derived CD133+ and CD34+ endothelial progenitor cells and Ym1/2+ M2 macrophages into the wound sites, associated with enhanced capillary and hair follicle neogenesis. Moreover, AF therapy improved microcirculation in diabetic and neuropathic feet in GK rats. This study provides a novel systemic therapy for healing DFU.
Collapse
Affiliation(s)
- Le Qi
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ali Reza Ahmadi
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jinny Huang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Melissa Chen
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Baohan Pan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Hiroshi Kuwabara
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kenichi Iwasaki
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Wei Wang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Russell Wesson
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Andrew M Cameron
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Shusen Cui
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - James Burdick
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW For patients with devastating injuries in whom standard reconstruction is not an option, vascularized composite allotransplantation (VCA) has become a viable means of restoring form and function. However, immunological rejection continues to be a problem in VCA and has not yet been fully characterized. As the field is relatively new, much of the data on rejection and immunosuppression have been extrapolated from that of solid organ transplantation. In this review, we cover the basic mechanisms of rejection as they relate specifically to VCA with analysis of recent literature and future directions. RECENT FINDINGS Recent clinical studies have supported previously postulated T-cell-mediated mechanism of acute rejection and have also made strides in differentiating rejection from inflammation from other skin conditions and with different treatment regimens. Antibody-mediated rejection has been described in recent cases as well as treatment of presensitized patients receiving VCAs. With more long-term grafts, chronic changes, including vasculopathy, are being reported. SUMMARY Clinically observed types of rejection in VCA include mainly cell-mediated, antibody-mediated and chronic rejection. Advances in diagnosis and treatment of rejection have been made, but there is still much to be learned about VCA-specific rejection.
Collapse
|
7
|
Desensitization and Prevention of Antibody-Mediated Rejection in Vascularized Composite Allotransplantation by Syngeneic Hematopoietic Stem Cell Transplantation. Transplantation 2018; 102:593-600. [DOI: 10.1097/tp.0000000000002070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Hisada M, Zhang X, Ota Y, Cameron AM, Burdick J, Gao B, Williams GM, Sun Z. Fibrosis in small syngeneic rat liver grafts because of damaged bone marrow stem cells from chronic alcohol consumption. Liver Transpl 2017; 23:1564-1576. [PMID: 28719075 DOI: 10.1002/lt.24820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 06/22/2017] [Accepted: 07/07/2017] [Indexed: 12/13/2022]
Abstract
A patient with liver failure due to chronic and acute alcohol abuse under consideration for an urgent liver transplant shortly after stopping alcohol may have residual abnormalities that threaten transplant success, particularly for a small graft. To address this, we studied a model in which reduced-size (50%) Lewis rat livers are transplanted into green fluorescence protein transgenic Lewis recipients after they are fed alcohol or a control diet for 5 weeks. Here we show that normal small Lewis grafts transplanted to alcohol-fed Lewis hosts developed fibrosis, whereas no fibrosis was observed in control-fed recipients. Host-derived CD133 + 8-hydroxy-2'-deoxyguanosine (8-OHdG) cells were significantly increased in livers recovered from both alcohol-fed and control recipients, but only alcohol-fed recipients demonstrated co-staining (a marker of oxidative DNA damage). α smooth muscle actin (α-SMA) staining, a marker for myofibroblasts, also co-localized with CD133 + cells only in the livers of alcohol-fed recipients. Immunostaining and polymerase chain reaction analysis confirmed that chronic alcohol consumption decreased the proportion of bone marrow stem cells (BMSCs) expressing CD133, c-Kit, and chemokine (C-X-C motif) receptor 4 markers and caused oxidative mitochondria DNA (mtDNA) damage. Culture of CD133 + cells from normal rats with medium containing 3% ethanol for 48 hours resulted in elevated mitochondrial 8-OHdG and mtDNA deletion, and ethanol exposure diminished CD133 expression but dramatically increased α-SMA expression. In conclusion, oxidative mtDNA damage and deletions occur in BMSCs of chronic alcohol-fed recipients, and these damaged cells mobilize to the small liver grafts and become myofibroblasts where they play a key role in the subsequent development of fibrosis. Liver Transplantation 23 1564-1576 2017 AASLD.
Collapse
Affiliation(s)
- Masayuki Hisada
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Surgery, Tokyo Medical University, Tokyo, Japan
| | - Xiuying Zhang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Pathology, Beijing Capital Medical University, Beijing, China
| | - Yoshihiro Ota
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD.,Department of Surgery, Tokyo Medical University, Tokyo, Japan
| | - Andrew M Cameron
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - James Burdick
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD
| | | | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
9
|
Hu X, Okabayashi T, Cameron AM, Wang Y, Hisada M, Li J, Raccusen LC, Zheng Q, Montgomery RA, Williams GM, Sun Z. Chimeric Allografts Induced by Short-Term Treatment With Stem Cell-Mobilizing Agents Result in Long-Term Kidney Transplant Survival Without Immunosuppression: A Study in Rats. Am J Transplant 2016; 16:2055-65. [PMID: 26749344 PMCID: PMC4925175 DOI: 10.1111/ajt.13706] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/21/2015] [Accepted: 12/27/2015] [Indexed: 01/25/2023]
Abstract
Transplant tolerance allowing the elimination of lifelong immunosuppression has been the goal of research for 60 years. The induction of mixed chimerism has shown promise and has been extended successfully to large animals and to the clinic; however, it remains cumbersome and requires heavy early immunosuppression. In this study, we reported that four injections of AMD3100, a CXCR4 antagonist, plus eight injections of low-dose FK506 (0.05 mg/kg per day) in the first week after kidney transplantation extended survival, but death from renal failure occurred at 30-90 days. Repeating the same course of AMD3100 and FK506 at 1, 2 and 3 mo after transplant resulted in 92% allograft acceptance (n = 12) at 7 mo, normal kidney function and histology with no further treatment. Transplant acceptance was associated with the influx of host stem cells, resulting in a hybrid kidney and a modulated host immune response. Confirmation of these results could initiate a paradigm shift in posttransplant therapy.
Collapse
Affiliation(s)
- Xiaopeng Hu
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Takehiro Okabayashi
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Department of Surgery, Kochi Health Center, Kochi University, Kochi, Japan
| | - Andrew M Cameron
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yongchun Wang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Masayuki Hisada
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Department of Surgery, Tokyo Medical University, Tokyo, Japan
| | - Jack Li
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lorraine C Raccusen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Qizhi Zheng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert A Montgomery
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Induction of tolerance and prolongation of islet allograft survival by syngeneic hematopoietic stem cell transplantation in mice. Transpl Immunol 2015; 33:130-9. [DOI: 10.1016/j.trim.2015.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 08/13/2015] [Accepted: 08/18/2015] [Indexed: 12/29/2022]
|