1
|
Abstract
Treatments for autoimmune diseases including type 1 diabetes (T1D) are aimed at resetting the immune system, especially its adaptive arm. The innate immune system is often ignored in the design of novel immune-based therapies. There is increasing evidence for multiple natural killer (NK) subpopulations, but their role is poorly understood in autoimmunity and likely is contributing to the controversial role reported for NKs. In this review, we will summarize NK subsets and their roles in tolerance, autoimmune diabetes, and immunotherapy.
Collapse
Affiliation(s)
- Chris Fraker
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Allison L Bayer
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
2
|
Jacobson E, Perry JK, Long DS, Vickers MH, O'Sullivan JM. A potential role for genome structure in the translation of mechanical force during immune cell development. Nucleus 2016; 7:462-475. [PMID: 27673560 PMCID: PMC5120600 DOI: 10.1080/19491034.2016.1238998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/11/2016] [Accepted: 09/13/2016] [Indexed: 12/29/2022] Open
Abstract
Immune cells react to a wide range of environments, both chemical and physical. While the former has been extensively studied, there is growing evidence that physical and in particular mechanical forces also affect immune cell behavior and development. In order to elicit a response that affects immune cell behavior or development, environmental signals must often reach the nucleus. Chemical and mechanical signals can initiate signal transduction pathways, but mechanical forces may also have a more direct route to the nucleus, altering nuclear shape via mechanotransduction. The three-dimensional organization of DNA allows for the possibility that altering nuclear shape directly remodels chromatin, redistributing critical regulatory elements and proteins, and resulting in wide-scale gene expression changes. As such, integrating mechanotransduction and genome architecture into the immunology toolkit will improve our understanding of immune development and disease.
Collapse
Affiliation(s)
- Elsie Jacobson
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Jo K. Perry
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - David S. Long
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Mark H. Vickers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
3
|
Yang EY, Kronenfeld JP, Gattás-Asfura KM, Bayer AL, Stabler CL. Engineering an "infectious" T(reg) biomimetic through chemoselective tethering of TGF-β1 to PEG brush surfaces. Biomaterials 2015. [PMID: 26197412 DOI: 10.1016/j.biomaterials.2015.07.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Modulation of immunological responses to allografts following transplantation is of pivotal importance to improving graft outcome and duration. Of the many approaches, harnessing the dominant tolerance induced by regulatory T cells (Treg) holds tremendous promise. Recent studies have highlighted the unique potency of cell surface-bound TGF-β1 on Treg for promoting infectious tolerance, i.e. to confer suppressive capacity from one cell to another. To mimic this characteristic, TGF-β1 was chemoselectively tethered to inert and viable polymer grafting platforms using Staudinger ligation. We report the synthesis and functional characterization of these engineered TGF-β1 surfaces. Inert beads tethered with TGF-β1 were capable of efficiently converting naïve CD4(+) CD62L(hi) T cells to functional Treg. Concordantly, translation of conjugation scheme from inert surfaces to viable cells also led to efficient generation of functional Treg. Further, the capacity of these platforms to generate antigen-specific Treg was demonstrated. These findings illustrate the unique faculty of tethered TGF-β1 biomaterial platforms to function as an "infectious" Treg and provide a compelling approach for generating tolerogenic microenvironments for allograft transplantation.
Collapse
Affiliation(s)
- E Y Yang
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA
| | - J P Kronenfeld
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Medicine, University of Miami, Miami, FL, USA
| | | | - A L Bayer
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - C L Stabler
- Diabetes Research Institute, University of Miami, Miami, FL, USA; Department of Biochemistry and Molecular Biology, University of Miami, Miami, FL, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, USA; Department of Surgery, University of Miami, Miami, FL, USA.
| |
Collapse
|
4
|
Abu-Elmagd K. The concept of gut rehabilitation and the future of visceral transplantation. Nat Rev Gastroenterol Hepatol 2015; 12:108-20. [PMID: 25601664 DOI: 10.1038/nrgastro.2014.216] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the 1990s, the introduction of visceral transplantation fuelled interest in other innovative therapeutic modalities for gut rehabilitation. Ethanol lock and omega-3 lipid formulations were introduced to reduce the risks associated with total parenteral nutrition (TPN). Autologous surgical reconstruction and bowel lengthening have been increasingly utilized for patients with complex abdominal pathology and short-bowel syndrome. Glucagon-like peptide 2 analogue, along with growth hormone, are available to enhance gut adaptation and achieve nutritional autonomy. Intestinal transplantation continues to be limited to a rescue therapy for patients with TPN failure. Nonetheless, survival outcomes have substantially improved with advances in surgical techniques, immunosuppressive strategies and postoperative management. Furthermore, both nutritional autonomy and quality of life can be restored for more than two decades in most survivors, with social support and inclusion of the liver being favourable predictors of long-term outcome. One of the current challenges is the discovery of biomarkers to diagnose early rejection and further improve liver-free allograft survival. Currently, chronic rejection with persistence of preformed and development of de novo donor-specific antibodies is a major barrier to long-term graft function; this issue might be overcome with innovative immunological and tolerogenic strategies. This Review discusses advances in the field of gut rehabilitation, including intestinal transplantation, and highlights future challenges. With the growing interest in individualized medicine and the value of health care, a novel management algorithm is proposed to optimize patient care through an integrated multidisciplinary team approach.
Collapse
Affiliation(s)
- Kareem Abu-Elmagd
- Transplant Center, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| |
Collapse
|