1
|
Lin Y, Huang H, Chen L, Chen R, Liu J, Zheng S, Ling Q. Assessing Donor Liver Quality and Restoring Graft Function in the Era of Extended Criteria Donors. J Clin Transl Hepatol 2023; 11:219-230. [PMID: 36406331 PMCID: PMC9647107 DOI: 10.14218/jcth.2022.00194] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/23/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022] Open
Abstract
Liver transplantation (LT) is the final treatment option for patients with end-stage liver disease. The increasing donor shortage results in the wide usage of grafts from extended criteria donors across the world. Using such grafts is associated with the elevated incidences of post-transplant complications including initial nonfunction and ischemic biliary tract diseases, which significantly reduce recipient survival. Although several clinical factors have been demonstrated to impact donor liver quality, accurate, comprehensive, and effective assessment systems to guide decision-making for organ usage, restoration or discard are lacking. In addition, the development of biochemical technologies and bioinformatic analysis in recent years helps us better understand graft injury during the perioperative period and find potential ways to restore graft function. Moreover, such advances reveal the molecular profiles of grafts or perfusate that are susceptible to poor graft function and provide insight into finding novel biomarkers for graft quality assessment. Focusing on donors and grafts, we updated potential biomarkers in donor blood, liver tissue, or perfusates that predict graft quality following LT, and summarized strategies for restoring graft function in the era of extended criteria donors. In this review, we also discuss the advantages and drawbacks of these potential biomarkers and offer suggestions for future research.
Collapse
Affiliation(s)
- Yimou Lin
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Haitao Huang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lifeng Chen
- Department of Clinical Engineering and Information Technology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ruihan Chen
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jimin Liu
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Combined Multiorgan Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China
| | - Qi Ling
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Combined Multiorgan Transplantation, Ministry of Public Health, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Huang H, Zheng J, Deng M, Fang Y, Zhan D, Wang G. Identification of pathways and genes associated with meniscus degeneration using bioinformatics analyses. Am J Transl Res 2021; 13:12410-12420. [PMID: 34956462 PMCID: PMC8661235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/26/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To explore the molecular mechanisms underlying meniscus degeneration. METHODS We performed anterior cruciate ligament resection in the Hainan Wuzhishan pig to establish a meniscus degeneration model. We applied gene chip technology to detect differentially expressed genes (DEG) in the degenerative meniscus tissues. We applied Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, core gene network, and relevant MicroRNA analyses to identify regulatory networks relevant to meniscus degeneration. We detected 893 differentially expressed genes, mainly involved in hormone production, apoptosis, and inflammation. RESULTS We found that MUC13, inflammatory mediator regulation of TRP channels, MDFI, and miR-335-5p may play a key role in the degenerative meniscus tissue. CONCLUSION We found that meniscus degeneration involves several molecular mechanisms and provide molecular targets for future research into the disease.
Collapse
Affiliation(s)
- Hui Huang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University)Haikou 570311, Hainan Province, China
| | - Jiaxuan Zheng
- Department of Pathology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University)Haikou 570311, Hainan Province, China
| | - Ming Deng
- Department of Orthopaedic Surgery, Wuhan University People’s HospitalWuhan 430000, Hubei Province, China
| | - Yehan Fang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University)Haikou 570311, Hainan Province, China
| | - Daolu Zhan
- Department of Spine Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University)Haikou 570311, Hainan Province, China
| | - Guangji Wang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University)Haikou 570311, Hainan Province, China
| |
Collapse
|
3
|
Cardiac MicroRNA Expression Profile After Experimental Brain Death Is Associated With Myocardial Dysfunction and Can Be Modulated by Hypertonic Saline. Transplantation 2021; 106:289-298. [PMID: 33859149 DOI: 10.1097/tp.0000000000003779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Brain death (BD) is associated with systemic inflammatory compromise, which might affect the quality of the transplanted organs. This study investigated the expression profile of cardiac microRNAs (miRNAs) after BD, and their relationship with the observed decline in myocardial function and with the changes induced by hypertonic saline solution (HSS) treatment. METHODS Wistar rats were assigned to sham-operation (SHAM) or submitted to BD with and without the administration of HSS. Cardiac function was assessed for 6h with left ventricular (LV) pressure-volume analysis. We screened 641 rodent miRNAs to identify differentially expressed miRNAs (DEMs) in the heart and computational and functional analysis were performed to compare the DEMs and find their putative targets and their related enriched canonical pathways. RESULTS An enhanced expression in canonical pathways related to inflammation and myocardial apoptosis was observed in BD induced group, with two miRNAs, miR-30a-3p and miR-467f, correlating with the level of LV dysfunction observed after BD. Conversely, HSS treated after BD and SHAM groups showed similar enriched pathways related to the maintenance of heart homeostasis regulation, in agreement with the observation that both groups did not have significant changes in LV function. CONCLUSIONS These findings highlight the potential of miRNAs as biomarkers for assessing damage in BD donor hearts and to monitor the changes induced by therapeutic measures like HSS, opening a perspective to improve graft quality and to better understand the pathophysiology of BD. The possible relation of BD induced miRNA's on early and late cardiac allograft function must be investigated.Supplemental Visual Abstract; http://links.lww.com/TP/C210.
Collapse
|
4
|
Gu XQ, Tang D, Wan P, Qin T, Yang TH, Wu J, Ji H, Liu JC, Xue F, Tang YJ, Xia Q. Multiple microRNAs regulate tacrolimus metabolism through CYP3A5. Pharmacol Res 2020; 164:105382. [PMID: 33348024 DOI: 10.1016/j.phrs.2020.105382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 01/19/2023]
Abstract
The CYP3A5 gene polymorphism accounts for the majority of inter-individual variability in tacrolimus pharmacokinetics. We found that the basal expression of CYP3A5 in donor grafts also played a significant role in tacrolimus metabolism under the same genetic conditions after pediatric liver transplantation. Thus, we hypothesized that some potential epigenetic factors could affect CYP3A5 expression and contributed to the variability. We used a high-throughput functional screening for miRNAs to identify miRNAs that had the most abundant expression in normal human liver and could regulate tacrolimus metabolism in HepaRG cells and HepLPCs. Four of these miRNAs (miR-29a-3p, miR-99a-5p, miR-532-5p, and miR-26-5p) were selected for testing. We found that these miRNAs inhibited tacrolimus metabolism that was dependent on CYP3A5. Putative miRNAs targeting key drug-metabolizing enzymes and transporters (DMETs) were selected using an in silico prediction algorithm. Luciferase reporter assays and functional studies showed that miR-26b-5p inhibited tacrolimus metabolism by directly regulating CYP3A5, while miR-29a-5p, miR-99a-5p, and miR-532-5p targeted HNF4α, NR1I3, and NR1I2, respectively, in turn regulating the downstream expression of CYP3A5; the corresponding target gene siRNAs markedly abolished the effects caused by miRNA inhibitors. Also, the expression of miR-29a-3p, miR-99a-5p, miR-532-5p, and miR-26b-5p in donor grafts were negatively correlated with tacrolimus C/D following pediatric liver transplantation. Taken together, our findings identify these miRNAs as novel regulators of tacrolimus metabolism.
Collapse
Affiliation(s)
- Xiang-Qian Gu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Dan Tang
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ping Wan
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Tian Qin
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, The Netherlands
| | - Tai-Hua Yang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Ji Wu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Hao Ji
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Jin-Chuan Liu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Feng Xue
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| | - Yuan-Jia Tang
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| |
Collapse
|
5
|
Wei Q, Zhou J, Shen T, Zheng S, Xu X. Coronavirus disease 2019: implications for liver transplantation. Hepatobiliary Surg Nutr 2020; 9:325-329. [PMID: 32509819 DOI: 10.21037/hbsn-20-447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Qiang Wei
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
| | - Junbin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
| | - Tian Shen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
| | - Shusen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou 310003, China
| |
Collapse
|
6
|
Huang HT, Zhang XY, Zhang C, Ling Q, Zheng SS. Predicting dyslipidemia after liver transplantation: A significant role of recipient metabolic inflammation profile. World J Gastroenterol 2020; 26:2374-2387. [PMID: 32476799 PMCID: PMC7243645 DOI: 10.3748/wjg.v26.i19.2374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/08/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Post-transplant dyslipidemia (PTDL) is a common complication in liver recipients and can cause morbidity and threaten graft function. The crosstalk between metabolic inflammation and dyslipidemia has been recently revealed. However, the role of grafts' and recipients' metabolic status in the development of PTDL has not been evaluated. AIM To investigate the association of recipients' metabolic inflammation status with PTDL and construct a predictive model. METHODS A total of 396 adult patients who received primary liver transplantation between 2015 and 2017 were enrolled. Metabolomics and cytokines were analyzed using recipients' pre-transplant peripheral blood in a training set (n = 72). An integrated prediction model was established according to the clinical risk factors and metabolic inflammation compounds and further verified in a validation set (n = 144). RESULTS The serum lipid profile took 3 mo to reach homeostasis after liver transplantation. A total of 278 (70.2%) liver recipients developed PTDL during a follow-up period of 1.78 (1.00, 2.97) years. The PTDL group showed a significantly lower tumor-free survival and overall survival than the non-PTDL group in patients with hepatocellular carcinoma (n = 169). The metabolomic analysis showed that metabolic features discriminating between the PTDL and non-PTDL groups were associated with lipid and glucose metabolism-associated pathways. Among metabolites and cytokines differentially expressed between the two groups, interleukin-12 (p70) showed the best diagnostic accuracy and significantly increased the predictive value when it was incorporated into the clinical model in both training and validation sets. CONCLUSION Recipients' pre-transplant serum interleukin-12 (p70) level is associated with the risk of PTDL and has potential clinical value for predicting PTDL.
Collapse
Affiliation(s)
- Hai-Tao Huang
- Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Xue-You Zhang
- Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Cheng Zhang
- Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Qi Ling
- Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, Zhejiang Province, China
| | - Shu-Sen Zheng
- Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
7
|
Huang H, Zhang X, Zhang C, Chen H, Ling Q, Zheng S. The time-dependent shift in the hepatic graft and recipient macrophage pool following liver transplantation. Cell Mol Immunol 2020; 17:412-414. [PMID: 31243358 PMCID: PMC7109085 DOI: 10.1038/s41423-019-0253-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/25/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Haitao Huang
- Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueyou Zhang
- Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Cheng Zhang
- Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hui Chen
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Qi Ling
- Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China.
| | - Shusen Zheng
- Department of Surgery, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China.
| |
Collapse
|
8
|
Zhang C, Chen K, Wei R, Fan G, Cai X, Xu L, Cen B, Wang J, Xie H, Zheng S, Xu X. The circFASN/miR-33a pathway participates in tacrolimus-induced dysregulation of hepatic triglyceride homeostasis. Signal Transduct Target Ther 2020; 5:23. [PMID: 32296037 PMCID: PMC7099020 DOI: 10.1038/s41392-020-0105-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 12/12/2019] [Indexed: 12/14/2022] Open
Abstract
Dyslipidemia exhibits a high incidence after liver transplantation, in which tacrolimus, a widely used immunosuppressant, plays a fundamental role. MicroRNAs and related circRNAs represent a class of noncoding RNAs that have been recognized as important regulators of genes associated with lipid metabolism. However, their transcriptional activities and functional mechanisms in tacrolimus-related dyslipidemia remain unclear. In this study, we observed that tacrolimus could induce triglyceride accumulation in hepatocytes by stimulating sterol response element-binding proteins (SREBPs) and miR-33a. Our in silico and experimental analyses identified miR-33a as a direct target of circFASN. Tacrolimus could downregulate circFASN and result in elevated miR-33a in vivo and in vitro. Overexpression of circFASN or silencing of miR-33a decreased the promoting effects of tacrolimus on triglyceride accumulation. Clinically, the incidence of dyslipidemia in liver transplant recipients with elevated serum miR-33a after liver transplantation was higher than that in patients without elevated serum miR-33a (46.3% vs. 18.8% p = 0.012, n = 73). Our results showed that the circFASN/miR-33a regulatory system plays a distinct role in tacrolimus-induced disruption of lipid homeostasis. MiR-33a is likely a risk factor for tacrolimus-related dyslipidemia, providing a potential therapeutic target to combat tacrolimus-induced dyslipidemia after liver transplantation.
Collapse
Affiliation(s)
- Chenzhi Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
| | - Kangchen Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
| | - Rongli Wei
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
| | - Guanghan Fan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
| | - Xuechun Cai
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
| | - Li Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
| | - Beini Cen
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
| | - Jianguo Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
| | - Haiyang Xie
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China. .,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China. .,Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, 310000, China.
| | - Xiao Xu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China. .,Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, 310000, China.
| |
Collapse
|
9
|
Ling Q, Huang H, Han Y, Zhang C, Zhang X, Chen K, Wu L, Tang R, Zheng Z, Zheng S, Li L, Wang B. The tacrolimus-induced glucose homeostasis imbalance in terms of the liver: From bench to bedside. Am J Transplant 2020; 20:701-713. [PMID: 31654553 DOI: 10.1111/ajt.15665] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/04/2019] [Accepted: 10/10/2019] [Indexed: 01/25/2023]
Abstract
Tacrolimus (TAC), the mainstay of maintenance immunosuppressive agents, plays a crucial role in new-onset diabetes after transplant (NODAT). Previous studies investigating the diabetogenic effects of TAC have focused on the β cells of islets. In this study, we found that TAC contributed to NODAT through directly affecting hepatic metabolic homeostasis. In mice, TAC-induced hypoglycemia rather than hyperglycemia during starvation via suppressing gluconeogenetic genes, suggesting the limitation of fasting blood glucose in the diagnosis of NODAT. In addition, TAC caused hepatic insulin resistance and triglyceride accumulation through insulin receptor substrate (IRS)2/AKT and sterol regulatory element binding protein (SREBP1) signaling, respectively. Furthermore, we found a pivotal role of CREB-regulated transcription coactivator 2 (CRTC2) in TAC-induced metabolic disorders. The restoration of hepatic CRTC2 alleviated the metabolic disorders through its downstream molecules (eg, PCK1, IRS2, and SREBP1). Consistent with the findings from bench, low CRTC2 expression in graft hepatocytes was an independent risk factor for NODAT (odds ratio = 2.692, P = .023, n = 135). Integrating grafts' CRTC2 score into the clinical model could significantly increase the predictive capacity (areas under the receiver operating characteristic curve: 0.71 vs 0.79, P = .048). Taken together, in addition to its impact on pancreatic cells, TAC induces "hematogenous diabetes" via CRTC2 signaling. Liver-targeted management may be of help to prevent or heal TAC-associated diabetes.
Collapse
Affiliation(s)
- Qi Ling
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Haitao Huang
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Yuqiu Han
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- State Key Lab for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenzhi Zhang
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Xueyou Zhang
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Kangchen Chen
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Li Wu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- State Key Lab for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruiqi Tang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- State Key Lab for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhipeng Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- State Key Lab for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shusen Zheng
- Department of Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- Key Lab of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou, China
| | - Lanjuan Li
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- State Key Lab for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Baohong Wang
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
- State Key Lab for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Liu Y, Zhang C, Li L, Ou B, Yuan L, Zhang T, Fan J, Peng Z. Genome-Wide Association Study of Tacrolimus Pharmacokinetics Identifies Novel Single Nucleotide Polymorphisms in the Convalescence and Stabilization Periods of Post-transplant Liver Function. Front Genet 2019; 10:528. [PMID: 31214251 PMCID: PMC6554639 DOI: 10.3389/fgene.2019.00528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/14/2019] [Indexed: 12/15/2022] Open
Abstract
After liver transplantation, the liver function of a patient is gradually restored over a period of time that can be divided into a convalescence period (CP) and a stabilizing period (SP). The plasma concentration of tacrolimus, an immunosuppressant commonly used to prevent organ rejection, varies as a result of variations in its metabolism. The effects of genetic and clinical factors on the plasma concentration of tacrolimus appear to differ in the CP and SP. To establish a model explaining the variation in tacrolimus trough concentration between individuals in the CP and SP, we conducted a retrospective, single-center, discovery study of 115 pairs of patients (115 donors and 115 matched recipients) who had undergone liver transplantation. Donors and recipients were genotyped by a genome-wide association study (GWAS) using an exome chip. Novel exons were identified that influenced tacrolimus trough concentrations and were verified with bootstrap analysis. In donors, two single-nucleotide polymorphisms showed an effect on the CP (rs1927321, rs1057192) and four showed an effect on the SP (rs776746, rs2667662, rs7980521, rs4903096); in recipients, two single-nucleotide polymorphisms showed an effect in the SP (rs7828796, rs776746). Genetic factors played a crucial role in tacrolimus metabolism, accounting for 44.8% in the SP, which was higher than previously reported. In addition, we found that CYP3A5, which is known to affect the metabolism of tacrolimus, only influenced tacrolimus pharmacokinetics in the SP.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Hepatobiliary Pancreatic Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chengdong Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Lei Li
- Department of Hepatobiliary Pancreatic Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Baochi Ou
- Department of Hepatobiliary Pancreatic Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Liyun Yuan
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tao Zhang
- Department of Organ Transplant, The Second Affiliated Hospital to Guangzhou Medical University, Guangzhou, China
| | - Junwei Fan
- Department of Hepatobiliary Pancreatic Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhihai Peng
- Department of Hepatobiliary Pancreatic Surgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
Rogers W, Robertson MP, Ballantyne A, Blakely B, Catsanos R, Clay-Williams R, Fiatarone Singh M. Compliance with ethical standards in the reporting of donor sources and ethics review in peer-reviewed publications involving organ transplantation in China: a scoping review. BMJ Open 2019; 9:e024473. [PMID: 30723071 PMCID: PMC6377532 DOI: 10.1136/bmjopen-2018-024473] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/28/2018] [Accepted: 11/13/2018] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES The objective of this study is to investigate whether papers reporting research on Chinese transplant recipients comply with international professional standards aimed at excluding publication of research that: (1) involves any biological material from executed prisoners; (2) lacks Institutional Review Board (IRB) approval and (3) lacks consent of donors. DESIGN Scoping review based on Arksey and O'Mallee's methodological framework. DATA SOURCES Medline, Scopus and Embase were searched from January 2000 to April 2017. ELIGIBILITY CRITERIA We included research papers published in peer-reviewed English-language journals reporting on outcomes of research involving recipients of transplanted hearts, livers or lungs in mainland China. DATA EXTRACTION AND SYNTHESIS Data were extracted by individual authors working independently following training and benchmarking. Descriptive statistics were compiled using Excel. RESULTS 445 included studies reported on outcomes of 85 477 transplants. 412 (92.5%) failed to report whether or not organs were sourced from executed prisoners; and 439 (99%) failed to report that organ sources gave consent for transplantation. In contrast, 324 (73%) reported approval from an IRB. Of the papers claiming that no prisoners' organs were involved in the transplants, 19 of them involved 2688 transplants that took place prior to 2010, when there was no volunteer donor programme in China. DISCUSSION The transplant research community has failed to implement ethical standards banning publication of research using material from executed prisoners. As a result, a large body of unethical research now exists, raising issues of complicity and moral hazard to the extent that the transplant community uses and benefits from the results of this research. We call for retraction of this literature pending investigation of individual papers.
Collapse
Affiliation(s)
- Wendy Rogers
- Department of Clinical Medicine and Department of Philosophy, Macquarie University, Sydney, New South Wales, Australia
- Department of Philosophy, Macquarie University, Sydney, New South Wales, Australia
| | | | - Angela Ballantyne
- Department of Primary Health Care and General Practice, University of Otago, Wellington, New Zealand
| | - Brette Blakely
- Australian Institute of Health Innovation, Macquarie University, Sydney, New South Wales, Australia
| | | | - Robyn Clay-Williams
- Australian Institute of Health Innovation, Macquarie University, Sydney, New South Wales, Australia
| | - Maria Fiatarone Singh
- Faculty of Health Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Yuan L, Qian G, Chen L, Wu CL, Dan HC, Xiao Y, Wang X. Co-expression Network Analysis of Biomarkers for Adrenocortical Carcinoma. Front Genet 2018; 9:328. [PMID: 30158955 PMCID: PMC6104177 DOI: 10.3389/fgene.2018.00328] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/31/2018] [Indexed: 01/08/2023] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare malignancy with a poor prognosis. And currently, there are no specific diagnostic biomarkers for ACC. In our study, we aimed to screen biomarkers for disease diagnosis, progression and prognosis. We firstly used the microarray data from public database Gene Expression Omnibus database to construct a weighted gene co-expression network, and then to identify gene modules associated with clinical features of ACC. Though this algorithm, a significant module with R2 = 0.64 (P = 9 × 10-5) was identified. Co-expression network and protein–protein interaction network were performed for screen the candidate hub genes. Checked by The Cancer Genome Atlas (TCGA) database, another independent dataset GSE19750, and GEPIA database, using one-way ANOVA, Pearson’s correlation, survival analysis, diagnostic capacity (ROC curve) and expression level revalidation, a total 12 real hub genes were identified. Gene ontology and KEGG pathway analysis of genes in the significant module revealed that the hub genes are significantly enriched in cell cycle regulation. Moreover, gene set enrichment analysis suggests that the samples with highly expressed hub genes are correlated with cell cycle. Taken together, our integrated analysis has identified 12 hub genes that are associated with the progression and prognosis of ACC; these hub genes might lead to poor outcomes by regulating the cell cycle.
Collapse
Affiliation(s)
- Lushun Yuan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guofeng Qian
- Department of Endocrinology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Liang Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chin-Lee Wu
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Han C Dan
- Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Laboratory of Precision Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
13
|
Ke QH, Huang HT, Ling Q, Liu JM, Dong SY, He XX, Zhang WJ, Zheng SS. New-onset hyperglycemia immediately after liver transplantation: A national survey from China Liver Transplant Registry. Hepatobiliary Pancreat Dis Int 2018; 17:310-315. [PMID: 30108018 DOI: 10.1016/j.hbpd.2018.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/25/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND New-onset hyperglycemia (NOH) is a common phenomenon after liver transplantation (LT), but its impact on clinical outcomes has not yet been fully assessed. We aimed to evaluate the etiology and prognosis of NOH within 1 month after LT. METHODS The data of 3339 adult patients who underwent primary LT from donation after citizen death between January 2010 and June 2016 were extracted from China Liver Transplant Registry database and analyzed. NOH was defined as fasting blood glucose ≥7.0 mmol/L confirmed on at least two occasions within the first post-transplant month with or without hypoglycemic agent. RESULTS Of 3339 liver recipients, 1416 (42.4%) developed NOH. Recipients with NOH had higher incidence of post-transplant complications such as graft and kidney failure, infection, biliary stricture, cholangitis, and tumor recurrence in a glucose concentration-dependent manner as compared to non-NOH recipients (P < 0.05). The independent risk factors of NOH were donor warm ischemic time >10 min, cold ischemic time >10 h, anhepatic time >60 min, recipient model for end-stage liver disease score >30, moderate ascites and corticosteroid usage (P < 0.05). Liver enzymes (alanine aminotransferase and gamma-glutamyltranspeptidase) on post-transplant day 7 significantly correlated with NOH (P < 0.001). CONCLUSIONS NOH leads to increased morbidity and mortality in liver recipients. Close surveillance and tight control of blood glucose are desiderated immediately following LT particularly in those with delayed graft function and receiving corticosteroid. Strategic targeting graft ischemic injury may help maintain glucose homeostasis.
Collapse
Affiliation(s)
- Qing-Hong Ke
- Department of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Hai-Tao Huang
- Department of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qi Ling
- Department of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Ji-Min Liu
- Department of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Si-Yi Dong
- China Liver Transplant Registry, Hangzhou 310003, China
| | | | - Wen-Jin Zhang
- Department of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China
| | - Shu-Sen Zheng
- Department of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China; Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, Hangzhou 310003, China.
| |
Collapse
|
14
|
Peláez-Jaramillo MJ, Cárdenas-Mojica AA, Gaete PV, Mendivil CO. Post-Liver Transplantation Diabetes Mellitus: A Review of Relevance and Approach to Treatment. Diabetes Ther 2018; 9:521-543. [PMID: 29411291 PMCID: PMC6104273 DOI: 10.1007/s13300-018-0374-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Indexed: 02/08/2023] Open
Abstract
Post-liver transplantation diabetes mellitus (PLTDM) develops in up to 30% of liver transplant recipients and is associated with increased risk of mortality and multiple morbid outcomes. PLTDM is a multicausal disorder, but the main risk factor is the use of immunosuppressive agents of the calcineurin inhibitor (CNI) family (tacrolimus and cyclosporine). Additional factors, such as pre-transplant overweight, nonalcoholic steatohepatitis and hepatitis C virus infection, may further increase risk of developing PLTDM. A diagnosis of PLTDM should be established only after doses of CNI and steroids are stable and the post-operative stress has been overcome. The predominant defect induced by CNI is insulin secretory dysfunction. Plasma glucose control must start immediately after the transplant procedure in order to improve long-term results for both patient and transplant. Among the better known antidiabetics, metformin and DPP-4 inhibitors have a particularly benign profile in the PLTDM context and are the preferred oral agents for long-term management. Insulin therapy is also an effective approach that addresses the prevailing pathophysiological defect of the disorder. There is still insufficient evidence about the impact of newer families of antidiabetics (GLP-1 agonists, SGLT-2 inhibitors) on PLTDM. In this review, we summarize current knowledge on the epidemiology, pathogenesis, course of disease and medical management of PLTDM.
Collapse
Affiliation(s)
| | | | - Paula V Gaete
- Universidad de los Andes School of Medicine, Bogotá, Colombia
| | - Carlos O Mendivil
- Universidad de los Andes School of Medicine, Bogotá, Colombia.
- Endocrinology Section, Department of Internal Medicine, Fundación Santa Fe de Bogotá, Bogotá, Colombia.
| |
Collapse
|
15
|
Ling Q, Xie H, Li J, Liu J, Cao J, Yang F, Wang C, Hu Q, Xu X, Zheng S. Donor Graft MicroRNAs: A Newly Identified Player in the Development of New-onset Diabetes After Liver Transplantation. Am J Transplant 2017; 17:255-264. [PMID: 27458792 PMCID: PMC5215980 DOI: 10.1111/ajt.13984] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/17/2016] [Accepted: 07/18/2016] [Indexed: 01/25/2023]
Abstract
New-onset diabetes after liver transplantation (NODALT) is a frequent complication with an unfavorable outcome. We previously demonstrated a crucial link between donor graft genetics and the risk of NODALT. We selected 15 matched pairs of NODALT and non-NODALT liver recipients using propensity score matching analysis. The donor liver tissues were tested for the expression of 10 microRNAs (miRNAs) regulating human hepatic glucose homeostasis. The biological functions of potential target genes were predicted using gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Both miR-103 and miR-181a were significantly highly expressed in the NODALT group as compared to the non-NODALT group. The predicted target genes (e.g. Irs2, Pik3r1, Akt2, and Gsk3b) were involved in glucose import and the insulin signaling pathway. We also observed dysregulation of miRNAs (e.g. let-7, miR-26b, miR-145, and miR-183) in cultured human hepatocytes treated with tacrolimus or high glucose, the two independent risk factors of NODALT identified in this cohort. The hepatic miRNA profiles altered by tacrolimus or hyperglycemia were associated with insulin resistance and glucose homeostatic imbalance as revealed by enrichment analysis. The disease susceptibility miRNA expressive pattern could be imported directly from the donor and consolidated by the transplant factors.
Collapse
Affiliation(s)
- Q. Ling
- Department of SurgeryCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesFirst Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
- Key Lab of Combined Multi‐Organ TransplantationMinistry of Public HealthHangzhouChina
| | - H. Xie
- Key Lab of Combined Multi‐Organ TransplantationMinistry of Public HealthHangzhouChina
| | - J. Li
- Department of SurgeryCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesFirst Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - J. Liu
- Department of SurgeryCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesFirst Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
- Department of Pathology and Molecular MedicineFaculty of Health SciencesMcMaster UniversityHamiltonOntarioCanada
| | - J. Cao
- Key Lab of Combined Multi‐Organ TransplantationMinistry of Public HealthHangzhouChina
| | - F. Yang
- Department of SurgeryCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesFirst Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - C. Wang
- Department of SurgeryCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesFirst Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
| | - Q. Hu
- Key Lab of Combined Multi‐Organ TransplantationMinistry of Public HealthHangzhouChina
| | - X. Xu
- Department of SurgeryCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesFirst Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
- Key Lab of Combined Multi‐Organ TransplantationMinistry of Public HealthHangzhouChina
| | - S. Zheng
- Department of SurgeryCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesFirst Affiliated HospitalCollege of MedicineZhejiang UniversityHangzhouChina
- Key Lab of Combined Multi‐Organ TransplantationMinistry of Public HealthHangzhouChina
| |
Collapse
|