1
|
White SJ, Couetil L, Richard EA, Marti E, Wilson PB. Microarray molecular mapping of horses with severe asthma. J Vet Intern Med 2024; 38:477-484. [PMID: 38071496 PMCID: PMC10800233 DOI: 10.1111/jvim.16951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/08/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Severe asthma (SA) in horses, resembling human asthma, is a prevalent, debilitating allergic respiratory condition marked by elevated allergen-specific immunoglobulin E (IgE) against environmental proteins; however, research exploring the exposome's influence on IgE profiles is currently limited but holds paramount significance for diagnostic and therapeutic developments. ANIMALS Thirty-five sports horses were analyzed, consisting of environmentally matched samples from France (5 SA; 6 control), the United States (6 SA; 6 control), and Canada (6 SEA; 6 control). METHODS This intentional cross-sectional study investigated the sensitization profiles of SA-affected and healthy horses via serological antigen microarray profiling. Partial least square-discriminant analysis (PLS-DA) was used to identify and rank the importance of allergens for class separation (ie, affected/non-affected) as variable influence of projection (VIP), and allergen with commonality internationally established via frequency analysis. RESULTS PLS-DA models showed high discriminatory power in predicting SA in horses from Canada (area under the curve [AUC] 0.995) and France (AUC 0.867) but poor discriminatory power in horses from the United States (AUC 0.38). Hev b 5.0101, Cyn D, Der p 2, and Rum cr were the only shared allergens across all geographical groups. CONCLUSIONS AND CLINICAL IMPORTANCE Microarray profiling can identify specific allergenic components associated with SA in horses, while mathematical modeling of this data can be used for disease classification, highlighting the variability of sensitization profiles between geographical locations and emphasizing the importance of local exposure to the prevalence of different allergens. Frequency scoring analysis can identify important variables that contribute to the classification of SA across different geographical regions.
Collapse
Affiliation(s)
| | - Laurent Couetil
- Veterinary Clinical Sciences, College of Veterinary MedicinePurdue UniversityWest LafayetteIndianaUSA
| | - Eric A. Richard
- LABÉO Frank DuncombeCaen CedexFrance
- Normandie Univ, UniCaen, BIOTARGENSaint‐ContestFrance
| | - Eliane Marti
- Department of Clinical Research and Veterinary Public HealthUniversity of BernBernSwitzerland
| | | |
Collapse
|
2
|
Schnabel CL, Jentsch MC, Lübke S, Kaiser-Thom S, Gerber V, Vrtala S, Huang HJ, Rhyner C, Wagner B, Hoffmann R, Volke D. Immunoproteomics reveal increased serum IgG3/5 binding to Dermatophagoides and yeast protein antigens in severe equine asthma in a preliminary study. Front Immunol 2023; 14:1293684. [PMID: 38162673 PMCID: PMC10754955 DOI: 10.3389/fimmu.2023.1293684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Severe equine asthma (SEA) is a common, chronic respiratory disease of horses characterized by hyperreactivity to hay dust which has many similarities to severe neutrophilic asthma in humans. SEA-provoking antigens have not been comprehensively characterized, but molds and mites have been suggested as relevant sources. Here, we identified relevant antigen candidates using immunoproteomics with IgG isotype-binding analyses. Methods Proteins from Dermatophagoides pteronyssinus (Der p) were separated by two-dimensional gel electrophoresis followed by immunoblotting (2D immunoblots) resulting in a characteristic pattern of 440 spots. After serum incubation, antibody (Ig)-binding of all Ig (Pan-Ig) and IgG isotypes (type-2-associated IgG3/5, type-1-associated IgG4/7) was quantified per each spot and compared between asthmatic and healthy horses' sera (n=5 per group). Results Ig binding differences were detected in 30 spots. Pan-Ig binding was higher with asthmatics compared to healthy horses' sera on four spots, and IgG3/5 binding was higher on 18 spots. Small IgG4/7 binding differences were detected on 10 spots with higher binding with asthmatics' sera on four but higher binding with healthy horses' sera on six spots. Proteins from the spots with group differences including mite and yeast proteins were identified by liquid chromatography mass spectrometry. The latter likely originated from the feeding substrate of the Der p culture. Prioritized antigen candidates amongst the proteins identified were Der p 1, Der p 11, group 15 allergens, myosin heavy chain, and uncharacterized Der p proteins. Additionally, yeast enolases, alcohol dehydrogenase (ADH), phosphoglycerate kinase (PGK), glyceraldehyde-3-phosphate dehydrogenase, and heat shock proteins were prioritized. Eleven antigen candidates were tested for confirmation by ELISAs using the respective proteins separately. Differences in asthmatics vs. healthy horses' serum Ig binding to Der p 1, Der p 18, and three yeast enzymes (enolase, ADH, and PGK) confirmed these as promising antigens of immune responses in SEA. Discussion Antigens with relevance in SEA were newly identified by immunoproteomics, and yeast antigens were considered for SEA for the first time. Serum IgG3/5 binding to relevant antigens was increased in SEA and is a novel feature that points to increased type-2 responses in SEA but requires confirmation of the corresponding cellular responses.
Collapse
Affiliation(s)
- Christiane L. Schnabel
- Institute of Immunology, Faculty of Veterinary Medicine, and Center for Biotechnology and Biomedicine, Leipzig University, Leipzig, Germany
| | - Maria-Christin Jentsch
- Institute of Immunology, Faculty of Veterinary Medicine, and Center for Biotechnology and Biomedicine, Leipzig University, Leipzig, Germany
| | - Sabrina Lübke
- Institute of Immunology, Faculty of Veterinary Medicine, and Center for Biotechnology and Biomedicine, Leipzig University, Leipzig, Germany
| | - Sarah Kaiser-Thom
- Swiss Institute of Equine Medicine (ISME), Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Vinzenz Gerber
- Swiss Institute of Equine Medicine (ISME), Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Susanne Vrtala
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Huey-Jy Huang
- Division of Immunopathology, Department of Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Claudio Rhyner
- Christine Kühne Center for Allergy, Research, and Education (CK-CARE), Davos, Switzerland
- Swiss Institute of Allergy and Asthma Research (SIAF), Davos, Switzerland
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and Center for Biotechnology and Biomedicine, Leipzig University, Leipzig, Germany
| | - Daniela Volke
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and Center for Biotechnology and Biomedicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
3
|
Pessoa VC, Branco-Ferreira M, Jónsdóttir S, Marti E, Tilley P. Comparison of Skin Prick Tests (SPT), Intradermal Tests (IDT) and In Vitro Tests in the Characterization of Insect Bite Hypersensitivity (IBH) in a Population of Lusitano Horses: Contribution for Future Implementation of SPT in IBH Diagnosis. Animals (Basel) 2023; 13:2733. [PMID: 37684997 PMCID: PMC10486572 DOI: 10.3390/ani13172733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Thirty controls (C) and 30 IBH-affected (T) Lusitano horses were evaluated. T horses were included based on anamnesis and physical examination, supported by questionnaires. All horses were submitted to skin tests, Intrademal (IDT) and Skin Prick Tests (SPT), on the neck with 14 specific allergens, 13 recombinant proteins (r-proteins) from Culicoides nubeculosus (Cul n) and Culicoides obsoletus (Cul o) salivary glands and Culicoides nubeculosus Whole Body Extract (Cul n WBE). Addicionally, a cluster of six T and six C horses were also tested with Cul n 3 and Cul n 4 produced in insect cells and barley, as well as E. coli produced Cul o 3 and Cul o WBE. Allergen concentrations were 10 µg/mL for IDT and 100 µg/mL for SPT, and wheal diameters assessed at 20 min, 6 and 48 h. IDTs were considered positive when wheal diameter was ≥50% of the histamine wheal and SPT's ≥ 0.9 cm. In vitro tests, allergen-specific serum IgE and sulfidoleukotriene (sLT) release assay were also carried out. Results showed that Cul n WBE, Cul n 7, 8, 9, Cul o1P and Cul o 2P were the best performing allergens for SPTs (p ≤ 0.0001) for the 1st allergen panel and Cul o WBE, Cul n 3 Bar and Cul n 4 Bac (p ≤ 0.05) for the 2nd, presenting a higher discriminatory diagnostic potential than IDTs, at a concentration of 100 µg/mL, with readings assessed at 20 min. Regarding in vitro tests overall, the sLT release assay performed best.
Collapse
Affiliation(s)
- Vera Carvalho Pessoa
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- AL4Animals—Associate Laboratory for Animal and Veterinary Sciences, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
| | - Manuel Branco-Ferreira
- Immunoallergology University Clinic, Faculty of Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
| | - Sigridur Jónsdóttir
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, 102 Reykjavik, Iceland;
| | - Eliane Marti
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland;
| | - Paula Tilley
- CIISA—Centre for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal;
- AL4Animals—Associate Laboratory for Animal and Veterinary Sciences, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
| |
Collapse
|
4
|
Cox A, Stewart AJ. Insect Bite Hypersensitivity in Horses: Causes, Diagnosis, Scoring and New Therapies. Animals (Basel) 2023; 13:2514. [PMID: 37570323 PMCID: PMC10416928 DOI: 10.3390/ani13152514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/15/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Insect Bite Hypersensitivity (IBH, Queensland itch, sweet itch, equine summer eczema) is the most common pruritic disease of horses. It is most often caused by sensitivity to the saliva of Culicoides spp. of biting midges; however, it can also be caused by hypersensitivity to other insect species. The prevalence of IBH in horses is reported to be as high as 60% in some parts of the world. Due to the severe pruritus and effects of secondary self-trauma, IBH has animal welfare concerns, and there is currently no cure. Management of this condition is life-long, time consuming and costly. New grading systems to document disease severity are being validated, which will allow the comparison of clinical trial results of new and existing therapies. Management involves the minimisation of insect bites by use of stabling, fans, rugs and repellents. Symptomatic therapy involves the administration of systemic or topical corticosteroids, systemic antihistamines, and creams and sprays to promote skin healing and decrease inflammation. New immune-mediated therapeutics including vaccines, in addition to desensitisation procedures, show promise at controlling hypersensitivity reactions. This article will review aetiologic agents, pathophysiology, scoring systems and current and new therapies.
Collapse
Affiliation(s)
| | - Allison J. Stewart
- School of Veterinary Science, University of Queensland Gatton, 5391 Warrego Highway, Gatton, QLD 4343, Australia;
| |
Collapse
|
5
|
Marsella R, White S, Fadok VA, Wilson D, Mueller R, Outerbridge C, Rosenkrantz W. Equine allergic skin diseases: Clinical consensus guidelines of the World Association for Veterinary Dermatology. Vet Dermatol 2023; 34:175-208. [PMID: 37154488 DOI: 10.1111/vde.13168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/03/2023] [Accepted: 02/26/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Allergic skin diseases are common in horses worldwide. The most common causes are insect bites and environmental allergens. OBJECTIVES To review the current literature and provide consensus on pathogenesis, diagnosis, treatment and prevention. MATERIALS AND METHODS The authors reviewed the literature up to November 2022. Results were presented at North America Veterinary Dermatology Forum (2021) and European Veterinary Dermatology Congress (2021). The report was available to member organisations of the World Association for Veterinary Dermatology for feedback. CONCLUSIONS AND CLINICAL RELEVANCE Insect bite hypersensitivity (IBH) is the best characterised allergic skin disease. An immunoglobulin (Ig)E response against Culicoides salivary antigens is widely documented. Genetics and environmental factors play important roles. Tests with high sensitivity and specificity are lacking, and diagnosis of IBH is based on clinical signs, seasonality and response to insect control. Eosinophils, interleukin (IL)-5 and IL-31 are explored as therapeutic targets. Presently, the most effective treatment is insect avoidance. Existing evidence does not support allergen-specific immunotherapy (ASIT) using commercially available extracts of Culicoides. Hypersensitivity to environmental allergens (atopic dermatitis) is the next most common allergy. A role for IgE is supported by serological investigation, skin test studies and positive response to ASIT. Prospective, controlled, randomised studies are limited, and treatment relies largely on glucocorticoids, antihistamines and ASIT based on retrospective studies. Foods are known triggers for urticaria, yet their role in pruritic dermatitis is unknown. Recurrent urticaria is common in horses, yet our understanding is limited and focussed on IgE and T-helper 2 cell response. Prospective, controlled studies on treatments for urticaria are lacking. Glucocorticoids and antihistamines are primary reported treatments.
Collapse
Affiliation(s)
- R Marsella
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - S White
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - V A Fadok
- Zoetis, US PET CARE, Bellaire, Texas, USA
| | - D Wilson
- School of Clinical Veterinary Sciences, University of Bristol, Bristol, UK
| | - R Mueller
- Medizinische Keleintierklinik, Zentrum für klinische Tiermedizin, LMU, Munich, Germany
| | - C Outerbridge
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | | |
Collapse
|
6
|
Söderroos D, Ignell R, Haubro Andersen P, Bergvall K, Riihimäki M. The Effect of Insect Bite Hypersensitivity on Movement Activity and Behaviour of the Horse. Animals (Basel) 2023; 13:ani13081283. [PMID: 37106846 PMCID: PMC10135092 DOI: 10.3390/ani13081283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/28/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Insect bite hypersensitivity (IBH) associated with Culicoides biting midges is a common allergic skin disease in horses, reducing the welfare of affected horses. This study investigated the effect of IBH on animal welfare and behaviour and assessed a new prophylactic insect repellent. In total, 30 horses were recruited for a prospective cross-over and case-control study. Clinical signs of IBH, inflammatory markers in skin biopsies and behavioural data (direct observations, motion index) were scored longitudinally during two consecutive summers. No differences were observed in the total number of itching behaviours or motion index between IBH-affected horses and controls, but higher numbers of itching behaviours were observed in the evening. IBH-affected horses showed both clinical and histopathological signs of inflammatory skin lesions, with even short periods of scratching being associated with moderate/severe inflammatory skin lesions. In order to improve the welfare of the IBH-affected horses, they should be stabled/given extra protection in the evening and even short-term exposure to Culicoides should be avoided. Preliminary results showed that the repellent tested can be used as a safe and non-toxic prophylactic to potentially reduce allergen exposure in horses with IBH, but further studies are needed to determine its efficacy.
Collapse
Affiliation(s)
- Denise Söderroos
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Rickard Ignell
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 234 22 Lomma, Sweden
| | - Pia Haubro Andersen
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Kerstin Bergvall
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| | - Miia Riihimäki
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
| |
Collapse
|
7
|
White SD. Approach to the pruritic horse. J Am Vet Med Assoc 2023; 261:S66-S74. [PMID: 36638000 DOI: 10.2460/javma.22.10.0444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/05/2022] [Indexed: 01/14/2023]
Abstract
Pruritus in the horse may be due to several causes, the most common being a hypersensitivity response to salivary proteins in the Culicoides genera, which may coexist with atopic dermatitis, also known as an environmental allergy to pollens, molds, dust, storage mites, etc. Less common etiologies are food allergy and contact allergy, the latter often caused by owners applying various products to the skin. Other ectoparasites, such as Chorioptes mites, may also initiate pruritus. Secondary bacterial infections (usually Staphylococcus spp) may be pruritic in and of themselves. This article reviews the questions that need to be asked of owners to obtain a relevant history, always important for any organ system, but perhaps none more so than the skin. The various clinical findings such as alopecia and crusts and their location on the horse, diagnostic methods such as intradermal or serum testing for allergies, and subsequent hyposensitization are also discussed. Therapeutic options currently available for the potential underlying diseases, in particular for the hypersensitivity reactions to Culicoides spp or environmental allergens, are reviewed with the studies of hyposensitization over the last 40 years, as well as medications that may be effective. While the most common causes of pruritus in the horse are known, the current understanding of the pathophysiology still needs to be investigated, and consequently, the most effective treatments for those causes need to be improved. Newer research is discussed that may eventually add to the diagnostic and therapeutic options currently available for the pruritic horse.
Collapse
Affiliation(s)
- Stephen D. White
- School of Veterinary Medicine, University of California-Davis, Davis, CA
| |
Collapse
|
8
|
Wyler M, Sage SE, Marti E, White S, Gerber V. Protein microarray allergen profiling in bronchoalveolar lavage fluid and serum of horses with asthma. J Vet Intern Med 2022; 37:328-337. [PMID: 36479920 PMCID: PMC9889601 DOI: 10.1111/jvim.16600] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 11/16/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The diagnostic value of allergen-specific immunoglobulin E (IgE) in horses with asthma is uncertain. A recently developed protein microarray detected abnormally high latex-specific IgE concentrations in the serum of horses with severe asthma. OBJECTIVES The main objective was to characterize the IgE profiles of asthmatic horses in Switzerland using a protein microarray platform in serum and bronchoalveolar lavage fluid (BALF). The secondary objective was to determine whether serological and BALF allergen-specific IgE concentrations correlated. ANIMALS Forty-four asthmatic and 39 control horses ≥5 years of age. METHODS This prospective cross-sectional study investigated the sensitization profiles of horses with asthma compared with environmentally matched healthy controls. Both serum and BALF were analyzed using the protein microarray. Partial least square-discriminant analysis (PLS-DA) was used to identify and rank the importance of the allergens for class detection (ie, asthma vs control), with a variable influence on the projection (VIP) >1 considered significant. RESULTS The allergens that best discriminated (VIP >1) asthmatic horses from controls were proteins derived from fungi (Aspergillus fumigatus), insects (Culicoides spp.), and latex (Hevea brasiliensis). The serological model predictive ability was markedly inferior (area under the curve [AUC] 0.585, 95% confidence interval [CI]: 0.454-0.747) to that of the BALF (AUC 0.751, 95% CI: 0.582-0.866). The two models shared nine allergens, of which eight showed significant weak to moderate correlations. CONCLUSION AND CLINICAL IMPORTANCE The concentrations of several allergen-specific IgE were higher in asthmatic horses. The protein microarray performed better on BALF than serum for detection of asthma. Serological IgE concentrations do not closely correlate with BALF concentrations and should be interpreted with caution.
Collapse
Affiliation(s)
- Michelle Wyler
- Swiss Institute of Equine Medicine (ISME), Department of Clinical Veterinary Medicine, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | - Sophie Elena Sage
- Swiss Institute of Equine Medicine (ISME), Department of Clinical Veterinary Medicine, Vetsuisse FacultyUniversity of BernBernSwitzerland
| | - Eliane Marti
- Department of Clinical Research and Veterinary Public HealthUniversity of BernBernSwitzerland
| | - Samuel White
- Department of Animal, Equine and Veterinary SciencesNottingham Trent UniversityNottinghamshireUK
| | - Vinzenz Gerber
- Swiss Institute of Equine Medicine (ISME), Department of Clinical Veterinary Medicine, Vetsuisse FacultyUniversity of BernBernSwitzerland
| |
Collapse
|
9
|
Stefansdottir SB, Jonsdottir S, Kristjansdottir H, Svansson V, Marti E, Torsteinsdottir S. Establishment of a protocol for preventive vaccination against equine insect bite hypersensitivity. Vet Immunol Immunopathol 2022; 253:110502. [DOI: 10.1016/j.vetimm.2022.110502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 10/31/2022]
|
10
|
Simonin EM, Babasyan S, Wagner B. Peripheral CD23hi/IgE+ Plasmablasts Secrete IgE and Correlate with Allergic Disease Severity. THE JOURNAL OF IMMUNOLOGY 2022; 209:665-674. [DOI: 10.4049/jimmunol.2101081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/16/2022] [Indexed: 01/04/2023]
Abstract
Abstract
Production and secretion of IgE by B cells, plasmablasts, and plasma cells is a central step in the development and maintenance of allergic diseases. IgE can bind to one of its receptors, the low-affinity IgE receptor CD23, which is expressed on activated B cells. As a result, most B cells bind IgE through CD23 on their surface. This makes the identification of IgE producing cells challenging. In this study, we report an approach to clearly identify live IgE+ plasmablasts in peripheral blood for application by both flow cytometry analysis and in vitro assay. These IgE+ plasmablasts readily secrete IgE, upregulate specific mRNA transcripts (BLIMP-1 IRF4, XBP1, CD138, and TACI), and exhibit highly differentiated morphology all consistent with plasmablast differentiation. Most notably, we compared the presence of IgE+ plasmablasts in peripheral blood of allergic and healthy individuals using a horse model of naturally occurring seasonal allergy, Culicoides hypersensitivity. The model allows the comparison of immune cells both during periods of clinical allergy and when in remission and clinically healthy. Allergic horses had significantly higher percentages of IgE+ plasmablasts and IgE secretion while experiencing clinical allergy compared with healthy horses. Allergy severity and IgE secretion were both positively correlated to the frequency of IgE+ plasmablasts in peripheral blood. These results provide strong evidence for the identification and quantification of peripheral IgE-secreting plasmablasts and provide a missing cellular link in the mechanism of IgE secretion and upregulation during allergy.
Collapse
Affiliation(s)
- Elisabeth M. Simonin
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Susanna Babasyan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY
| |
Collapse
|
11
|
Marti E, Novotny EN, Cvitas I, Ziegler A, Wilson AD, Torsteinsdottir S, Fettelschoss‐Gabriel A, Jonsdottir S. Immunopathogenesis and immunotherapy of
Culicoides
hypersensitivity in horses: an update. Vet Dermatol 2021. [DOI: 10.1111/vde.13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eliane Marti
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty‐University of Bern Länggass‐strasse 124 Bern 3012Switzerland
- Dermfocus, Vetsuisse Faculty University of Bern Langgassstrasse 120 Bern 3001 Switzerland
| | - Ella N. Novotny
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty‐University of Bern Länggass‐strasse 124 Bern 3012Switzerland
| | - Iva Cvitas
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty‐University of Bern Länggass‐strasse 124 Bern 3012Switzerland
| | - Anja Ziegler
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty‐University of Bern Länggass‐strasse 124 Bern 3012Switzerland
| | - A. Douglas Wilson
- School of Clinical Veterinary Sciences University of Bristol Langford House Bristol BS40 5DU UK
| | | | - Antonia Fettelschoss‐Gabriel
- Department of Dermatology University Hospital Zurich Wagistrasse 12 Schlieren 8952 Switzerland
- Faculty of Medicine University of Zurich Switzerland
- Evax AG Hörnlistrasse 3 Münchwilen 9542 Switzerland
| | - Sigridur Jonsdottir
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty‐University of Bern Länggass‐strasse 124 Bern 3012Switzerland
- Institute for Experimental Pathology, Keldur Biomedical Center University of Iceland Reykjavik Iceland
| |
Collapse
|
12
|
First clinical expression of equine insect bite hypersensitivity is associated with co-sensitization to multiple Culicoides allergens. PLoS One 2021; 16:e0257819. [PMID: 34780496 PMCID: PMC8592417 DOI: 10.1371/journal.pone.0257819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/10/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Insect bite hypersensitivity (IBH) is an IgE-mediated allergic dermatitis in horses incited by salivary allergens from Culicoides spp. IBH does not occur in Iceland, as the causative agents are absent, however a high prevalence is seen in horses exported to Culicoides-rich environments. AIMS To study the natural course of sensitization to Culicoides allergens and identify the primary sensitizing allergen(s) in horses exported from Iceland utilizing a comprehensive panel of Culicoides recombinant (r-) allergens. METHOD IgE microarray profiling to 27 Culicoides r-allergens was conducted on 110 serological samples from horses imported to Switzerland from Iceland that subsequently developed IBH or remained healthy. Furthermore, a longitudinal study of 31 IBH horses determined IgE profiles the summer preceding first clinical signs of IBH (TIBH-1), the summer of first clinical signs (TIBH) and the following summer (TIBH+1). In a group of Icelandic horses residing in Sweden, effects of origin (born in Iceland or Sweden) and duration of IBH (<4 years, 4-7 years, >7 years) on Culicoides-specific IgE was evaluated. Sero-positivity rates and IgE levels were compared. RESULTS At TIBH, horses were sensitized to a median of 11 r-allergens (range = 0-21), of which nine were major allergens. This was significantly higher than TIBH-1 (3, 0-16), as well as the healthy (1, 0-14) group. There was no significant increase between TIBH and TIBH+1(12, 0-23). IBH-affected horses exported from Iceland had a significantly higher degree of sensitization than those born in Europe, while duration of IBH did not significantly affect degree of sensitization. CONCLUSION Significant sensitization is only detected in serum the year of first clinical signs of IBH. Horses become sensitized simultaneously to multiple Culicoides r-allergens, indicating that IgE-reactivity is due to co-sensitization rather than cross-reactivity between Culicoides allergens. Nine major first sensitizing r-allergens have been identified, which could be used for preventive allergen immunotherapy.
Collapse
|
13
|
Ziegler A, Olzhausen J, Hamza E, Stojiljkovic A, Stoffel MH, Garbani M, Rhyner C, Marti E. An allergen-fused dendritic cell-binding peptide enhances in vitro proliferation of equine T-cells and cytokine production. Vet Immunol Immunopathol 2021; 243:110351. [PMID: 34800874 DOI: 10.1016/j.vetimm.2021.110351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/26/2021] [Accepted: 11/05/2021] [Indexed: 01/25/2023]
Abstract
Allergen-specific immunotherapy (AIT) constitutes the only curative approach for allergy treatment. There is need for improvement of AIT in veterinary medicine, such as in horses suffering from insect bite hypersensitivity, an IgE-mediated dermatitis to Culicoides. Dendritic cell (DC)-targeting represents an efficient method to increase antigen immunogenicity. It is studied primarily for its use in improvement of cancer therapy and vaccines, but may also be useful for improving AIT efficacy. Immunomodulators, like the Toll-like receptor 4 (TLR-4) agonist monophosphoryl lipid-A (MPLA) has been shown to enhance the IL-10 response in horses, while CpG-rich oligonucleotides (CpG-ODN), acting as TLR-9 agonists, have been shown to induce Th1 or regulatory responses in horses with equine asthma. Our aim was to evaluate in vitro effects of antigen-targeting to equine DC with an antigen-fused peptide known to target human and mouse DC and investigate whether addition of MPLA or CpG-ODN would further improve the induced immune response with regard to finding optimal conditions for equine AIT. For this purpose, DC-binding peptides were fused to the model antigen ovalbumin (OVA) and to the recombinant Culicoides allergen Cul o3. Effects of DC-binding peptides on cellular antigen uptake and induction of T cell proliferation were assessed. Polarity of the immune response was analysed by quantifying IFN-γ, IL-4, IL-10, IL-17 and IFN-α in supernatants of antigen-stimulated peripheral blood mononuclear cells (PBMC) in presence or absence of adjuvants. Fusion of DC-binding peptides to OVA significantly enhanced antigen-uptake by equine DC. DC primed with DC-binding peptides coupled to OVA or Cul o3 induced a significantly higher T-cell proliferation compared to the corresponding control antigens. PBMC stimulation with DC-binding peptides coupled to Cul o3 elicited a significant increase in the pro-inflammatory cytokines IFN-γ, IL-4, IL-17, as well as the anti-inflammatory IL-10, but not of IFN-α. Adjuvant addition further enhanced the effect of the DC-binding peptides by significantly increasing the production of IFN-γ, IL-4, IL-10 and IFN-α (CpG-ODN) and IL-10 (MPLA), while simultaneously suppressing IFN-γ, IL-4 and IL-17 production (MPLA). Targeting equine DC with allergens fused to DC-binding peptides enhances antigen-uptake and T-cell activation and may be useful in increasing the equine immune response against recombinant antigens. Combination of DC-binding peptide protein fusions with adjuvants is necessary to appropriately skew the resulting immune response, depending on intended use. Combination with MPLA is a promising option for improvement of AIT efficacy in horses, while combination with CpG-ODN increases the effector immune response to recombinant antigens.
Collapse
Affiliation(s)
- Anja Ziegler
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, CH-3001 Bern, Switzerland.
| | - Judith Olzhausen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Herman-Burchardstrasse 9, CH-7265 Davos Wolfgang, Switzerland
| | - Eman Hamza
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, CH-3001 Bern, Switzerland; Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Ana Stojiljkovic
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Länggassstrasse 120, CH-3001 Bern, Switzerland
| | - Michael H Stoffel
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Länggassstrasse 120, CH-3001 Bern, Switzerland
| | - Mattia Garbani
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Herman-Burchardstrasse 9, CH-7265 Davos Wolfgang, Switzerland
| | - Claudio Rhyner
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Herman-Burchardstrasse 9, CH-7265 Davos Wolfgang, Switzerland
| | - Eliane Marti
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, CH-3001 Bern, Switzerland
| |
Collapse
|
14
|
Molecular mechanisms and treatment modalities in equine Culicoides hypersensitivity. Vet J 2021; 276:105741. [PMID: 34416400 DOI: 10.1016/j.tvjl.2021.105741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 07/07/2021] [Accepted: 08/15/2021] [Indexed: 12/25/2022]
Abstract
Equine Culicoides hypersensitivity (CH) is the most common allergic condition in horses affecting the skin. This review focuses on immunopathology and molecular mechanisms of equine CH. The role of eosinophils is emphasized, as well as disease severity and the influence of long-term chronic allergen exposure on T helper (Th) 2 cells. Using current knowledge from human allergic disorders, similar effects are hypothesized in equine patients. Key aspects of CH diagnosis and treatment are discussed, focusing on allergen specific immunotherapy and allergen-independent approaches, such as targeting hypereosinophilia through interleukin-5 and allergic non-histaminic pruritus though interleukin-31.
Collapse
|
15
|
Jonsdottir S, Torsteinsdottir S, Svansson V, Gudbrandsson J, Stefansdottir SB, Mar Bjornsson J, Runarsdottir A, Marti E. Comparison of recombinant Culicoides allergens produced in different expression systems for IgE serology of insect bite hypersensitivity in horses of different origins. Vet Immunol Immunopathol 2021; 238:110289. [PMID: 34214910 DOI: 10.1016/j.vetimm.2021.110289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 11/29/2022]
Abstract
Insect bite hypersensitivity (IBH) is an allergic dermatitis of horses, an IgE-mediated reaction to Culicoides midges. Causative Culicoides spp. are not indigenous in Iceland resulting in high prevalence of IBH in horses born in Iceland and exported as compared to Icelandic horses born in a Culicoides rich environment. The aims were (i) to compare IgE levels in sera of IBH-affected horses born in Iceland (n = 47) with horses of the Icelandic breed (n = 23) and of other breeds (n = 27) born in Culicoides infested area; (ii) to investigate if barley could be a useful production system of allergens for IBH immunoassays. IgE binding in sera was tested by ELISA on two recombinant Culicoides allergens, rCul n 3 and rCul n 4, each produced in E. coli, insect cells and barley. Significantly more IgE was detected against all allergens in sera from IBH-affected compared to healthy horses. Icelandic-born Icelandic horses stand out with higher IgE levels against the allergens and higher area under the curve (AUC) on rCul n 4 as compared to the European-born horses. The barley and E.coli produced allergens had very similar performance in distinguishing between IBH-affected and healthy horses.
Collapse
Affiliation(s)
- Sigridur Jonsdottir
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, 112, Reykjavik, Iceland; Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Berne, Länggass-Strasse 124, 3012, Berne, Switzerland.
| | - Sigurbjorg Torsteinsdottir
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, 112, Reykjavik, Iceland
| | - Vilhjalmur Svansson
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, 112, Reykjavik, Iceland
| | | | - Sara Bjork Stefansdottir
- Institute for Experimental Pathology, Biomedical Center, University of Iceland, Keldur, Keldnavegur 3, 112, Reykjavik, Iceland
| | | | | | - Eliane Marti
- Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University of Berne, Länggass-Strasse 124, 3012, Berne, Switzerland
| |
Collapse
|
16
|
Novotny EN, White SJ, Wilson AD, Stefánsdóttir SB, Tijhaar E, Jonsdóttir S, Frey R, Reiche D, Rose H, Rhyner C, Schüpbach‐Regula G, Torsteinsdóttir S, Alcocer M, Marti E. Component-resolved microarray analysis of IgE sensitization profiles to Culicoides recombinant allergens in horses with insect bite hypersensitivity. Allergy 2021; 76:1147-1157. [PMID: 32780483 PMCID: PMC8246938 DOI: 10.1111/all.14556] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 01/20/2023]
Abstract
Background Allergy to bites of blood‐sucking insects, including biting midges, can affect both human and veterinary patients. Horses are often suffering from an IgE‐mediated allergic dermatitis caused by bites of midges (Culicoides spp). With the aim to improve allergen immunotherapy (AIT), numerous Culicoides allergens have been produced as recombinant (r‐) proteins. This study aimed to test a comprehensive panel of differently expressed Culicoides r‐allergens on a cohort of IBH‐affected and control horses using an allergen microarray. Methods IgE levels to 27 Culicoides r‐allergens, including 8 previously unpublished allergens, of which 11 were expressed in more than one expression system, were determined in sera from 347 horses. ROC analyses were carried out, cut‐offs selected using a specificity of 95% and seropositivity rates compared between horses affected with insect bite hypersensitivity (IBH) and control horses. The combination of r‐allergens giving the best performing test was determined using logistic regression analysis. Results Seropositivity was significantly higher in IBH horses compared with controls for 25 r‐allergens. Nine Culicoides r‐allergens were major allergens for IBH with seven of them binding IgE in sera from > 70% of the IBH‐affected horses. Combination of these top seven r‐allergens could diagnose > 90% of IBH‐affected horses with a specificity of > 95%. Correlation between differently expressed r‐allergens was usually high (mean = 0.69, range: 0.28‐0.91). Conclusion This microarray will be a powerful tool for the development of component‐resolved, patient‐tailored AIT for IBH and could be useful for the study of allergy to biting midges in humans and other species.
Collapse
Affiliation(s)
- Ella N. Novotny
- Department of Clinical Research and VPH, Vetsuisse Faculty University of Bern Bern Switzerland
| | - Samuel J. White
- School of Animal, Rural and Environmental Sciences Nottingham Trent University, Brackenhurst Campus Southwell UK
- School of Biosciences University of Nottingham Loughborough UK
| | - A. Douglas Wilson
- Division of Veterinary Pathology, Infection and Immunity University of Bristol Langford UK
| | - Sara B. Stefánsdóttir
- Institute for Experimental Pathology Biomedical Center University of Iceland Reykjavik Iceland
| | - Edwin Tijhaar
- Cell Biology and Immunology Group Wageningen University Wageningen The Netherlands
| | - Sigridur Jonsdóttir
- Department of Clinical Research and VPH, Vetsuisse Faculty University of Bern Bern Switzerland
| | | | - Dania Reiche
- Boehringer Ingelheim Vetmedica GmbH Rohrdorf Germany
| | - Horst Rose
- Boehringer Ingelheim Vetmedica GmbH Rohrdorf Germany
| | - Claudio Rhyner
- Swiss Institute of Allergy and Asthma Research (SIAF) University of Zürich Davos Switzerland
| | | | | | - Marcos Alcocer
- School of Biosciences University of Nottingham Loughborough UK
| | - Eliane Marti
- Department of Clinical Research and VPH, Vetsuisse Faculty University of Bern Bern Switzerland
| |
Collapse
|
17
|
Jonsdottir S, Cvitas I, Svansson V, Fettelschloss-Gabriel A, Torsteinsdottir S, Marti E. New Strategies for Prevention and Treatment of Insect Bite Hypersensitivity in Horses. CURRENT DERMATOLOGY REPORTS 2019. [DOI: 10.1007/s13671-019-00279-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Purpose of Review
Treatment of equine insect bite hypersensitivity (IBH) needs to be improved. Allergen-specific immunotherapy (ASIT), the only curative treatment of allergy, currently has only a limited efficacy for treatment of IBH. This review highlights the latest findings in prophylactic and therapeutic strategies.
Recent Findings
Prophylactic vaccination against IBH using recombinant Culicoides allergen has been developed in unexposed Icelandic horses and is ready to be tested. Therapeutic virus-like particle (VLP)–based vaccines targeting equine interleukin- (IL-) 5 or IL-31 improved clinical signs of IBH by induction of anti-cytokine antibodies thus reducing eosinophil counts or allergic pruritus, respectively.
Summary
First studies for development of ASIT using pure r-Culicoides allergens have yielded promising results and need now to be tested in clinical studies for both prevention and treatment of IBH. Therapeutic vaccines inducing neutralizing antibodies against IL-5 or IL-31 will be valuable future treatments for reduction of clinical signs of IBH.
Collapse
|