1
|
Immune and spermatogenesis-related loci are involved in the development of extreme patterns of male infertility. Commun Biol 2022; 5:1220. [PMID: 36357561 PMCID: PMC9649734 DOI: 10.1038/s42003-022-04192-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2022] Open
Abstract
We conducted a genome-wide association study in a large population of infertile men due to unexplained spermatogenic failure (SPGF). More than seven million genetic variants were analysed in 1,274 SPGF cases and 1,951 unaffected controls from two independent European cohorts. Two genomic regions were associated with the most severe histological pattern of SPGF, defined by Sertoli cell-only (SCO) phenotype, namely the MHC class II gene HLA-DRB1 (rs1136759, P = 1.32E-08, OR = 1.80) and an upstream locus of VRK1 (rs115054029, P = 4.24E-08, OR = 3.14), which encodes a protein kinase involved in the regulation of spermatogenesis. The SCO-associated rs1136759 allele (G) determines a serine in the position 13 of the HLA-DRβ1 molecule located in the antigen-binding pocket. Overall, our data support the notion of unexplained SPGF as a complex trait influenced by common variation in the genome, with the SCO phenotype likely representing an immune-mediated condition. A GWAS in a large case-control cohort of European ancestry identifies two genomic regions, the MHC class II gene HLA-DRB1 and an upstream locus of VRK1, that are associated with the most severe phenotype of spermatogenic failure.
Collapse
|
2
|
Cerván-Martín M, Castilla JA, Palomino-Morales RJ, Carmona FD. Genetic Landscape of Nonobstructive Azoospermia and New Perspectives for the Clinic. J Clin Med 2020; 9:jcm9020300. [PMID: 31973052 PMCID: PMC7074441 DOI: 10.3390/jcm9020300] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
Nonobstructive azoospermia (NOA) represents the most severe expression of male infertility, involving around 1% of the male population and 10% of infertile men. This condition is characterised by the inability of the testis to produce sperm cells, and it is considered to have an important genetic component. During the last two decades, different genetic anomalies, including microdeletions of the Y chromosome, karyotype defects, and missense mutations in genes involved in the reproductive function, have been described as the primary cause of NOA in many infertile men. However, these alterations only explain around 25% of azoospermic cases, with the remaining patients showing an idiopathic origin. Recent studies clearly suggest that the so-called idiopathic NOA has a complex aetiology with a polygenic inheritance, which may alter the spermatogenic process. Although we are far from a complete understanding of the molecular mechanisms underlying NOA, the use of the new technologies for genetic analysis has enabled a considerable increase in knowledge during the last years. In this review, we will provide a comprehensive and updated overview of the genetic basis of NOA, with a special focus on the possible application of the recent insights in clinical practice.
Collapse
Affiliation(s)
- Miriam Cerván-Martín
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Centro de Investigación Biomédica (CIBM), Parque Tecnológico Ciencias de la Salud, Av. del Conocimiento, s/n, 18016 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Av. de Madrid, 15, Pabellón de Consultas Externas 2, 2ª Planta, 18012 Granada, Spain; (J.A.C.); (R.J.P.-M.)
| | - José A. Castilla
- Instituto de Investigación Biosanitaria ibs.GRANADA, Av. de Madrid, 15, Pabellón de Consultas Externas 2, 2ª Planta, 18012 Granada, Spain; (J.A.C.); (R.J.P.-M.)
- Unidad de Reproducción, UGC Obstetricia y Ginecología, HU Virgen de las Nieves, Av. de las Fuerzas Armadas 2, 18014 Granada, Spain
- CEIFER Biobanco—NextClinics, Calle Maestro Bretón 1, 18004 Granada, Spain
| | - Rogelio J. Palomino-Morales
- Instituto de Investigación Biosanitaria ibs.GRANADA, Av. de Madrid, 15, Pabellón de Consultas Externas 2, 2ª Planta, 18012 Granada, Spain; (J.A.C.); (R.J.P.-M.)
- Departamento de Bioquímica y Biología Molecular I, Universidad de Granada, Facultad de Ciencias, Av. de Fuente Nueva s/n, 18071 Granada, Spain
| | - F. David Carmona
- Departamento de Genética e Instituto de Biotecnología, Universidad de Granada, Centro de Investigación Biomédica (CIBM), Parque Tecnológico Ciencias de la Salud, Av. del Conocimiento, s/n, 18016 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, Av. de Madrid, 15, Pabellón de Consultas Externas 2, 2ª Planta, 18012 Granada, Spain; (J.A.C.); (R.J.P.-M.)
- Correspondence: ; Tel.: +34-958-241-000 (ext 20170)
| |
Collapse
|
3
|
Huang M, Zhu M, Jiang T, Wang Y, Wang C, Jin G, Guo X, Sha J, Dai J, Wang X, Hu Z. Fine mapping the MHC region identified rs4997052 as a new variant associated with nonobstructive azoospermia in Han Chinese males. Fertil Steril 2018; 111:61-68. [PMID: 30502936 DOI: 10.1016/j.fertnstert.2018.08.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/14/2018] [Accepted: 08/27/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To investigate the association between genetic variants in the major histocompatibility complex (MHC) region and nonobstructive azoospermia (NOA) susceptibility. DESIGN MHC region fine-mapping analysis based on previous NOA genome-wide association study (GWAS) data. SETTING Medical university. PATIENT(S) Nine hundred and eighty-one men with NOA and 1,657 normal fertile male controls. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) The MHC region imputation assessed with SNP2HLA software, taking the specific Han-MHC database as a reference panel; statistical significance of the MHC variants calculated using logistic regression models; functional annotation based on online public databases; and phenotypic variances explained by specific groups of genetic variants estimated using the fixed effects model from individual associations. RESULT(S) Two independent risk loci, rs7194 (odds ratio [OR] 1.37) at MHC class II molecules and rs4997052 (OR 1.30) at MHC class I molecules, were identified. Functional annotation showed rs7194 may tag the effect of multiple amino acid residues and the expression of HLA-DQB1 and HLA-DRB1; while rs4997052 showed the effect of amino acid changes of HLA-B at position 116 as well as the expression of HLA-B and CCHCR1, which coexpressed with genes enriched in pathways of spermatogenesis and male gamete generation. The novel variant rs4997052 identified in our study can explain another approximately 0.66% of the phenotypic variances of NOA. CONCLUSION(S) We fine-mapped the MHC region and identified two loci that independently drove NOA susceptibility. These results provide a deeper understanding of the association mechanisms of MHC and NOA risk.
Collapse
Affiliation(s)
- Mingtao Huang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Meng Zhu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Tingting Jiang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yifeng Wang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Cheng Wang
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Guangfu Jin
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Juncheng Dai
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiaoming Wang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhibin Hu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|