1
|
Dutta S, Sengupta P, Mottola F, Das S, Hussain A, Ashour A, Rocco L, Govindasamy K, Rosas IM, Roychoudhury S. Crosstalk Between Oxidative Stress and Epigenetics: Unveiling New Biomarkers in Human Infertility. Cells 2024; 13:1846. [PMID: 39594595 PMCID: PMC11593296 DOI: 10.3390/cells13221846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/28/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
The correlation between epigenetic alterations and the pathophysiology of human infertility is progressively being elucidated with the discovery of an increasing number of target genes that exhibit altered expression patterns linked to reproductive abnormalities. Several genes and molecules are emerging as important for the future management of human infertility. In men, microRNAs (miRNAs) like miR-34c, miR-34b, and miR-122 regulate apoptosis, sperm production, and germ cell survival, while other factors, such as miR-449 and sirtuin 1 (SIRT1), influence testicular health, oxidative stress, and mitochondrial function. In women, miR-100-5p, miR-483-5p, and miR-486-5p are linked to ovarian reserve, PCOS, and conditions like endometriosis. Mechanisms such as DNA methylation, histone modification, chromatin restructuring, and the influence of these non-coding RNA (ncRNA) molecules have been identified as potential perturbators of normal spermatogenesis and oogenesis processes. In fact, alteration of these key regulators of epigenetic processes can lead to reproductive disorders such as defective spermatogenesis, failure of oocyte maturation and embryonic development alteration. One of the primary factors contributing to changes in the key epigenetic regulators appear to be oxidative stress, which arises from environmental exposure to toxic substances or unhealthy lifestyle choices. This evidence-based study, retracing the major epigenetic processes, aims to identify and discuss the main epigenetic biomarkers of male and female fertility associated with an oxidative imbalance, providing future perspectives in the diagnosis and management of infertile couples.
Collapse
Affiliation(s)
- Sulagna Dutta
- Basic Medical Sciences Department, College of Medicine, Ajman University, Ajman 346, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Pallav Sengupta
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Sandipan Das
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education (MAHE), Dubai 345050, United Arab Emirates
| | - Ahmed Ashour
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy
| | - Kadirvel Govindasamy
- ICAR-Agricultural Technology Application Research Institute, Guwahati 781017, India
| | | | | |
Collapse
|
2
|
Hsu CY, Jasim SA, Pallathadka H, Kumar A, Konnova K, Qasim MT, Alubiady MHS, Pramanik A, Al-Ani AM, Abosaoda MK. A comprehensive insight into the contribution of epigenetics in male infertility; focusing on immunological modifications. J Reprod Immunol 2024; 164:104274. [PMID: 38865894 DOI: 10.1016/j.jri.2024.104274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Numerous recent studies have examined the impact epigenetics-including DNA methylation-has on spermatogenesis and male infertility. Differential methylation of several genes has been linked to compromised spermatogenesis and/or reproductive failure. Specifically, male infertility has been frequently associated with DNA methylation abnormalities of MEST and H19 inside imprinted genes and MTHFR within non-imprinted genes. Microbial infections mainly result in male infertility because of the immune response triggered by the bacteria' accumulation of immune cells, proinflammatory cytokines, and chemokines. Thus, bacterially produced epigenetic dysregulations may impact host cell function, supporting host defense or enabling pathogen persistence. So, it is possible to think of pathogenic bacteria as potential epimutagens that can alter the epigenome. It has been demonstrated that dysregulated levels of LncRNA correlate with motility and sperm count in ejaculated spermatozoa from infertile males. Therefore, a thorough understanding of the relationship between decreased reproductive capacity and sperm DNA methylation status should aid in creating new diagnostic instruments for this condition. To fully understand the mechanisms influencing sperm methylation and how they relate to male infertility, more research is required.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | | | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Karina Konnova
- Assistant of the Department of Propaedeutics of Dental Diseases. Sechenov First Moscow State Medical University, Russia
| | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq
| | | | - Atreyi Pramanik
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | | | - Munther Kadhim Abosaoda
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
3
|
Hekim N, Gunes S, Ergun S, Barhan EN, Asci R. Investigation of sperm hsa-mir-145-5p and MLH1 expressions, seminal oxidative stress and sperm DNA fragmentation in varicocele. Mol Biol Rep 2024; 51:588. [PMID: 38683237 DOI: 10.1007/s11033-024-09534-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Mechanisms by which varicocele causes infertility are not clear and few studies have reported that some miRNAs show expression alterations in men with varicocele. Recently, sperm promoter methylation of MLH1 has been shown to be higher in men diagnosed with varicocele. This study aimed to assess the potential effects of miR-145, which was determined to target MLH1 mRNA in silico on sperm quality and function in varicocele. METHODS Sperm miR-145 and MLH1 expressions of six infertile men with varicocele (Group 1), nine idiopathic infertile men (Group 2), and nine fertile men (control group) were analyzed by quantitative PCR. Sperm DNA fragmentation was evaluated by TUNEL and the levels of seminal oxidative damage and total antioxidant capacity were analyzed by ELISA. RESULTS Our results have shown that sperm expression of miR-145 was decreased in Group 1 compared to Group 2 (P = 0.029). MLH1 expression was significantly higher in Group 2 than the controls (P = 0.048). Total antioxidant level and sperm DNA fragmentations of Group 1 and Group 2 were decreased (P = 0.001 and P = 0.011, respectively). Total antioxidant capacity was positively correlated with sperm concentration (ρ = 0.475, P = 0.019), total sperm count (ρ = 0.427, P = 0.037), motility (ρ = 0.716, P < 0.0001) and normal morphological forms (ρ = 0.613, P = 0.001) and negatively correlated with the seminal oxidative damage (ρ=-0.829, P = 0.042) in varicocele patients. CONCLUSION This is the first study investigating the expressions of sperm miR-145 and MLH1 in varicocele patients. Further studies are needed to clarify the potential effect of miR-145 on male fertility.
Collapse
Affiliation(s)
- Neslihan Hekim
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, Samsun, 55139, Turkey.
- Graduate Institute, Department of Molecular Medicine, Ondokuz Mayis University, Samsun, Turkey.
| | - Sezgin Gunes
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, Samsun, 55139, Turkey
- Graduate Institute, Department of Molecular Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Sercan Ergun
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, Samsun, 55139, Turkey
- Graduate Institute, Department of Molecular Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Elzem Nisa Barhan
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, Samsun, 55139, Turkey
| | - Ramazan Asci
- Graduate Institute, Department of Molecular Medicine, Ondokuz Mayis University, Samsun, Turkey
- Faculty of Medicine, Department of Urology, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
4
|
Naeimi N, Mohseni Kouchesfehani H, Heidari Z, Mahmoudzadeh-Sagheb H. Effect of smoking on methylation and semen parameters. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65:76-83. [PMID: 38299759 DOI: 10.1002/em.22583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
One type of epigenetic modification is genomic DNA methylation, which is induced by smoking, and both are associated with male infertility. In this study, the relationship between smoking and CHD5 gene methylation and semen parameters in infertile men was determined. After the MS-PCR of blood in 224 samples, 103 infertile patients (62 smokers and 41 non-smokers) and 121 fertile men, methylation level changes between groups and the effect of methylation and smoking on infertility and semen parameters in infertile men were determined. The results showed that there is a significant difference in the methylation status (MM, MU, UU) of the CHD5 gene between the patient and the control group, and this correlation also exists for the semen parameters (p < .001). The average semen parameters in smokers decreased significantly compared to non-smokers and sperm concentration was (32.21 ± 5.27 vs. 55.27 ± 3.38), respectively. MM methylation status was higher in smokers (22.5%) compared to non-smokers (14.6%). Smoking components affect the methylation pattern of CHD5 gene, and smokers had higher methylation levels and lower semen parameters than non-smokers, which can be biomarkers for evaluating semen quality and infertility risk factors. Understanding the epigenetic effects of smoking on male infertility can be very useful for predicting negative consequences of smoking and providing therapeutic solutions.
Collapse
Affiliation(s)
- Nasim Naeimi
- Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | | | - Zahra Heidari
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | | |
Collapse
|
5
|
A correlative interaction between thyroid dysfunction and semen parameters in male infertility: A prospective case control study. ACTA MEDICA MARTINIANA 2022. [DOI: 10.2478/acm-2022-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Abstract
The role of thyroid function on sperm quality has not been well studied from a pathological aspect. This study aimed to report the degree of association between the status of thyroid hormones, sperm quality and aetiology in infertile men compared to healthy subjects. A prospective case control investigative study was conducted on 100 infertile males and age matched healthy controls. Semen samples were collected for sperm quality examination, and the serum levels of tetraiodothyronine (T4), triiodothyronine (T3), and thyroid stimulation hormone (TSH) were measured. Out of 100 infertile men, oligozoospermia (32%), asthenozoospermia (48%), and oligo-asthenozoospermia (20%) were found. There was a statistical difference between the group I and group II groups related to sperm count (28.32 ± 14.60 vs 66.50 ± 10.50 x 106/ml), sperm motility (40.1 ± 13.8 vs 64.8 ± 7.85%), and sperm morphology (55.92 ± 5.27 vs 83.50 ± 5.25%, p<0.05). There was a statistical difference among the oligozoospermia, asthenozoospermia, and oligo-asthenozoospermia groups related to T3 (115 + 0.40 vs 1.29 ± 0.59 vs 1.25 ± 0.32 ng/ml), T4 (7.35 ± 1.42 vs 9.15 ± 1.85 vs 7.85 ± 1.65 μg/dl), and TSH (1.69 ± 0.55 vs 2.12 ± 1.45 vs 1.98 ± 0.4 μIU/ml) (P<0.05). There was a significant inverse correlation of TSH levels with sperm volume (r = -0.12, p= 0.02), sperm motility (r = -0.26, p= 0.02), and sperm morphology (r = -0.304, p = 0.02) observed. T4 levels were significantly correlated with sperm count (r = -0.278, p = 0.02), and sperm motility (r = -0.249, p = 0.032). T4 levels were very highly associated with asthenozoospermia. Relative operating curve analysis shows that Sperm motility of >40.1%, T3 levels of <1.29 ng/ml, total T4 levels of <8.42 μg/dl, TSH levels of <1.98 μIU/ml inferred the male infertility.
Although thyroid function screening is not currently recommended as a part of the diagnostic workup of the infertile male, it may be reconsidered in light of the physiopathological background. Studies will be necessary to initiate the trial of a small dose of anti-thyroid drug in asthenozoospermic patients.
Collapse
|
6
|
Botezatu A, Vladoiu S, Fudulu A, Albulescu A, Plesa A, Muresan A, Stancu C, Iancu IV, Diaconu CC, Velicu A, Popa OM, Badiu C, Dinu-Draganescu D. Advanced molecular approaches in male infertility diagnosis†. Biol Reprod 2022; 107:684-704. [PMID: 35594455 DOI: 10.1093/biolre/ioac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
In the recent years a special attention has been given to a major health concern namely to male infertility, defined as the inability to conceive after 12 months of regular unprotected sexual intercourse, taken into account the statistics that highlight that sperm counts have dropped by 50-60% in recent decades. According to the WHO, infertility affects approximately 9% of couples globally, and the male factor is believed to be present in roughly 50% of cases, with exclusive responsibility in 30%. The aim of this article is to present an evidence-based approach for diagnosing male infertility that includes finding new solutions for diagnosis and critical outcomes, retrieving up-to-date studies and existing guidelines. The diverse factors that induce male infertility generated in a vast amount of data that needed to be analyzed by a clinician before a decision could be made for each individual. Modern medicine faces numerous obstacles as a result of the massive amount of data generated by the molecular biology discipline. To address complex clinical problems, vast data must be collected, analyzed, and used, which can be very challenging. The use of artificial intelligence (AI) methods to create a decision support system can help predict the diagnosis and guide treatment for infertile men, based on analysis of different data as environmental and lifestyle, clinical (sperm count, morphology, hormone testing, karyotype, etc.), and "omics" bigdata. Ultimately, the development of AI algorithms will assist clinicians in formulating diagnosis, making treatment decisions, and predicting outcomes for assisted reproduction techniques.
Collapse
Affiliation(s)
- A Botezatu
- Molecular Virology Department, "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - S Vladoiu
- Research Laboratory in Molecular, Cellular and Structural Endocrinology, "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - A Fudulu
- Molecular Virology Department, "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - A Albulescu
- Molecular Virology Department, "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
- Pharmacology Department, National Institute for Chemical Pharmaceutical Research & Development, Bucharest, Romania
| | - A Plesa
- Molecular Virology Department, "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - A Muresan
- Research Laboratory in Molecular, Cellular and Structural Endocrinology, "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - C Stancu
- Research Laboratory in Molecular, Cellular and Structural Endocrinology, "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - I V Iancu
- Molecular Virology Department, "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - C C Diaconu
- Molecular Virology Department, "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania
| | - A Velicu
- Research Laboratory in Molecular, Cellular and Structural Endocrinology, "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - O M Popa
- Research Laboratory in Molecular, Cellular and Structural Endocrinology, "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - C Badiu
- Research Laboratory in Molecular, Cellular and Structural Endocrinology, "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
- Endocrinology Department, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - D Dinu-Draganescu
- Research Laboratory in Molecular, Cellular and Structural Endocrinology, "CI Parhon" National Institute of Endocrinology, Bucharest, Romania
| |
Collapse
|
7
|
Llavanera M, Delgado-Bermúdez A, Ribas-Maynou J, Salas-Huetos A, Yeste M. A systematic review identifying fertility biomarkers in semen: a clinical approach through Omics to diagnose male infertility. Fertil Steril 2022; 118:291-313. [PMID: 35718545 DOI: 10.1016/j.fertnstert.2022.04.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To identify the most robust molecular biomarkers in sperm and seminal plasma for the diagnosis of male infertility, and to evaluate their clinical use. DESIGN Systematic review. SETTING Not applicable. PATIENT(S) Accessible studies reporting well-defined (in)fertile populations and semen molecular biomarkers were included in this review. INTERVENTION(S) A systematic search of the literature published in MEDLINE-PubMed and EMBASE databases was performed, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. MAIN OUTCOME MEASURE(S) The primary outcome was the content, expression, or activity of molecular biomarkers in human semen samples. Only studies reporting a receiver-operating characteristic (ROC) analysis values were included. RESULT(S) Eighty-nine studies were included. Direct evaluation of sperm DNA damage has high potential as a diagnostic biomarker of fertility and assisted reproductive technology outcomes (area under the curve [AUCs] median = 0.67). Regarding strand break-associated chromatin modifications, γH2AX levels show good predictive value for the diagnosis of male infertility (AUCs median = 0.93). Some noncoding ribonucleic acid (RNA) exhibit excellent predictive values; miR-34c-5p in semen is the most well-characterized and robust transcriptomic biomarker (AUCs median = 0.78). While many proteins in semen show fair diagnostic value for sperm quality and fertilizing capacity, the levels of some, such as TEX101, in seminal plasma have an excellent diagnostic potential (AUCs median = 0.69). Although individual metabolites and metabolomic profiles in seminal plasma present good predictive value, the latter seem to be better than the former when inferring sperm quality and fertilizing capacity. CONCLUSION(S) The current review supports that some Omics (e.g., DNA structure and integrity, genomics and epigenomics, transcriptomics, metabolomics, and proteomics) could be considered relevant molecular biomarkers that may help identify infertility etiologies and fertilization prognosis with cost-effective, simple, and accurate diagnosis.
Collapse
Affiliation(s)
- Marc Llavanera
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Ariadna Delgado-Bermúdez
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Jordi Ribas-Maynou
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Albert Salas-Huetos
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain; Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts; Consorcio CIBER, M.P., Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Marc Yeste
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| |
Collapse
|
8
|
Assidi M. Infertility in Men: Advances towards a Comprehensive and Integrative Strategy for Precision Theranostics. Cells 2022; 11:cells11101711. [PMID: 35626747 PMCID: PMC9139678 DOI: 10.3390/cells11101711] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
Male infertility is an increasing and serious medical concern, though the mechanism remains poorly understood. Impaired male reproductive function affects approximately half of infertile couples worldwide. Multiple factors related to the environment, genetics, age, and comorbidities have been associated with impaired sperm function. Present-day clinicians rely primarily on standard semen analysis to diagnose male reproductive potential and develop treatment strategies. To address sperm quality assessment bias and enhance analysis accuracy, the World Health Organization (WHO) has recommended standardized sperm testing; however, conventional diagnostic and therapeutic options for male infertility, including physical examination and semen standard analysis, remain ineffective in relieving the associated social burden. Instead, assisted reproductive techniques are becoming the primary therapeutic approach. In the post-genomic era, multiomics technologies that deeply interrogate the genome, transcriptome, proteome, and/or the epigenome, even at single-cell level, besides the breakthroughs in robotic surgery, stem cell therapy, and big data, offer promises towards solving semen quality deterioration and male factor infertility. This review highlights the complex etiology of male infertility, especially the roles of lifestyle and environmental factors, and discusses advanced technologies/methodologies used in characterizing its pathophysiology. A comprehensive combination of these innovative approaches in a global and multi-centric setting and fulfilling the suitable ethical consent could ensure optimal reproductive and developmental outcomes. These combinatorial approaches should allow for the development of diagnostic markers, molecular stratification classes, and personalized treatment strategies. Since lifestyle choices and environmental factors influence male fertility, their integration in any comprehensive approach is required for safe, proactive, cost-effective, and noninvasive precision male infertility theranostics that are affordable, accessible, and facilitate couples realizing their procreation dream.
Collapse
Affiliation(s)
- Mourad Assidi
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; ; Tel.: +966-(012)-6402000 (ext. 69267)
- Medical Laboratory Department, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| |
Collapse
|
9
|
Olszewska M, Kordyl O, Kamieniczna M, Fraczek M, Jędrzejczak P, Kurpisz M. Global 5mC and 5hmC DNA Levels in Human Sperm Subpopulations with Differentially Protaminated Chromatin in Normo- and Oligoasthenozoospermic Males. Int J Mol Sci 2022; 23:ijms23094516. [PMID: 35562907 PMCID: PMC9099774 DOI: 10.3390/ijms23094516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 12/17/2022] Open
Abstract
Epigenetic modifications play a special role in the male infertility aetiology. Published data indicate the link between sperm quality and sperm chromatin protamination. This study aimed to determine the relationship between methylation (5mC) and hydroxymethylation (5hmC) in sperm DNA, with respect to sperm chromatin protamination in three subpopulations of fertile normozoospermic controls and infertile patients with oligo-/oligoasthenozoospermia. For the first time, a sequential staining protocol was applied, which allowed researchers to analyse 5mC/5hmC levels by immunofluorescence staining, with a previously determined chromatin protamination status (aniline blue staining), using the same spermatozoa. TUNEL assay determined the sperm DNA fragmentation level. The 5mC/5hmC levels were diversified with respect to chromatin protamination status in both studied groups of males, with the highest values observed in protaminated spermatozoa. The linkage between chromatin protamination and 5mC/5hmC levels in control males disappeared in patients with deteriorated semen parameters. A relationship between 5mC/5hmC and sperm motility/morphology was identified in the patient group. Measuring the 5mC/5hmC status of sperm DNA according to sperm chromatin integrity provides evidence of correct spermatogenesis, and its disruption may represent a prognostic marker for reproductive failure.
Collapse
Affiliation(s)
- Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland; (M.K.); (M.F.)
- Correspondence: (M.O.); (M.K.)
| | - Oliwia Kordyl
- Faculty of Biology, Adam Mickiewicz University in Poznan, 61-614 Poznan, Poland;
| | - Marzena Kamieniczna
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland; (M.K.); (M.F.)
| | - Monika Fraczek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland; (M.K.); (M.F.)
| | - Piotr Jędrzejczak
- Division of Infertility and Reproductive Endocrinology, Department of Gynecology, Obstetrics and Gynecological Oncology, Poznan University of Medical Sciences, 60-535 Poznan, Poland;
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland; (M.K.); (M.F.)
- Correspondence: (M.O.); (M.K.)
| |
Collapse
|
10
|
Kakoulidis I, Ilias I, Stergiotis S, Togias S, Michou A, Lekkou A, Mastrodimou V, Pappa A, Milionis C, Venaki E, Koukkou E. Study on the Interaction between Serum Thyrotropin and Semen Parameters in Men. Med Sci (Basel) 2022; 10:medsci10020022. [PMID: 35466230 PMCID: PMC9036276 DOI: 10.3390/medsci10020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022] Open
Abstract
The effect of thyroid function on semen parameters has been studied in pathological conditions in small studies. With this research work, we aimed to study thyroid hormone effects on semen parameters in 130 men who were evaluated for couple subfertility. Our study was cross-sectional. We noted semen volume, sperm concentration, total sperm count, testosterone levels and thyrotropin (TSH) levels. The analysis included ordinary least squares regression (OLS-R), quantile regression (QR) and segmented line regression (SR). Using OLS-R, a weak negative correlation was found between the logTSH levels and semen volume (r = −0.16, r2 = 0.03, p = 0.05). In Q-R, each incremental unit increase in logTSH decreased the mean semen volume between −0.78 ± 0.44 and −1.33 ± 0.34 mL (40–60th response quantile) and between −1.19 ± 0.71 and −0.61 ± 0.31 mL (70–90th response quantile) (p = 0.049). With SR, a biphasic relationship of sperm concentration with TSH was noted (positive turning to negative, peaking at TSH = 1.22 μIU/mL). Thus, a weak negative association between the TSH levels and semen volume was noted, showing a trough within the usual normal range for TSH. Moreover, a biphasic relationship between the sperm concentration and TSH was also noted, peaking at approximately mid-normal TSH levels. Based on our results, TSH explained slightly less than 3% of the variation in semen volume and 7% of the sperm concentration (thus, other factors, which were not studied here, have a more important effect on it).
Collapse
|
11
|
Rotondo JC, Lanzillotti C, Mazziotta C, Tognon M, Martini F. Epigenetics of Male Infertility: The Role of DNA Methylation. Front Cell Dev Biol 2021; 9:689624. [PMID: 34368137 PMCID: PMC8339558 DOI: 10.3389/fcell.2021.689624] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, a number of studies focused on the role of epigenetics, including DNA methylation, in spermatogenesis and male infertility. We aimed to provide an overview of the knowledge concerning the gene and genome methylation and its regulation during spermatogenesis, specifically in the context of male infertility etiopathogenesis. Overall, the findings support the hypothesis that sperm DNA methylation is associated with sperm alterations and infertility. Several genes have been found to be differentially methylated in relation to impaired spermatogenesis and/or reproductive dysfunction. Particularly, DNA methylation defects of MEST and H19 within imprinted genes and MTHFR within non-imprinted genes have been repeatedly linked with male infertility. A deep knowledge of sperm DNA methylation status in association with reduced reproductive potential could improve the development of novel diagnostic tools for this disease. Further studies are needed to better elucidate the mechanisms affecting methylation in sperm and their impact on male infertility.
Collapse
|
12
|
Idiopathic Infertility as a Feature of Genome Instability. Life (Basel) 2021; 11:life11070628. [PMID: 34209597 PMCID: PMC8307193 DOI: 10.3390/life11070628] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/18/2022] Open
Abstract
Genome instability may play a role in severe cases of male infertility, with disrupted spermatogenesis being just one manifestation of decreased general health and increased morbidity. Here, we review the data on the association of male infertility with genetic, epigenetic, and environmental alterations, the causes and consequences, and the methods for assessment of genome instability. Male infertility research has provided evidence that spermatogenic defects are often not limited to testicular dysfunction. An increased incidence of urogenital disorders and several types of cancer, as well as overall reduced health (manifested by decreased life expectancy and increased morbidity) have been reported in infertile men. The pathophysiological link between decreased life expectancy and male infertility supports the notion of male infertility being a systemic rather than an isolated condition. It is driven by the accumulation of DNA strand breaks and premature cellular senescence. We have presented extensive data supporting the notion that genome instability can lead to severe male infertility termed “idiopathic oligo-astheno-teratozoospermia.” We have detailed that genome instability in men with oligo-astheno-teratozoospermia (OAT) might depend on several genetic and epigenetic factors such as chromosomal heterogeneity, aneuploidy, micronucleation, dynamic mutations, RT, PIWI/piRNA regulatory pathway, pathogenic allelic variants in repair system genes, DNA methylation, environmental aspects, and lifestyle factors.
Collapse
|
13
|
Åsenius F, Danson AF, Marzi SJ. DNA methylation in human sperm: a systematic review. Hum Reprod Update 2021; 26:841-873. [PMID: 32790874 DOI: 10.1093/humupd/dmaa025] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Studies in non-human mammals suggest that environmental factors can influence spermatozoal DNA methylation, and some research suggests that spermatozoal DNA methylation is also implicated in conditions such as subfertility and imprinting disorders in the offspring. Together with an increased availability of cost-effective methods of interrogating DNA methylation, this premise has led to an increasing number of studies investigating the DNA methylation landscape of human spermatozoa. However, how the human spermatozoal DNA methylome is influenced by environmental factors is still unclear, as is the role of human spermatozoal DNA methylation in subfertility and in influencing offspring health. OBJECTIVE AND RATIONALE The aim of this systematic review was to critically appraise the quality of the current body of literature on DNA methylation in human spermatozoa, summarize current knowledge and generate recommendations for future research. SEARCH METHODS A comprehensive literature search of the PubMed, Web of Science and Cochrane Library databases was conducted using the search terms 'semen' OR 'sperm' AND 'DNA methylation'. Publications from 1 January 2003 to 2 March 2020 that studied human sperm and were written in English were included. Studies that used sperm DNA methylation to develop methodologies or forensically identify semen were excluded, as were reviews, commentaries, meta-analyses or editorial texts. The Grading of Recommendations, Assessment, Development and Evaluations (GRADE) criteria were used to objectively evaluate quality of evidence in each included publication. OUTCOMES The search identified 446 records, of which 135 were included in the systematic review. These 135 studies were divided into three groups according to area of research; 56 studies investigated the influence of spermatozoal DNA methylation on male fertility and abnormal semen parameters, 20 studies investigated spermatozoal DNA methylation in pregnancy outcomes including offspring health and 59 studies assessed the influence of environmental factors on spermatozoal DNA methylation. Findings from studies that scored as 'high' and 'moderate' quality of evidence according to GRADE criteria were summarized. We found that male subfertility and abnormal semen parameters, in particular oligozoospermia, appear to be associated with abnormal spermatozoal DNA methylation of imprinted regions. However, no specific DNA methylation signature of either subfertility or abnormal semen parameters has been convincingly replicated in genome-scale, unbiased analyses. Furthermore, although findings require independent replication, current evidence suggests that the spermatozoal DNA methylome is influenced by cigarette smoking, advanced age and environmental pollutants. Importantly however, from a clinical point of view, there is no convincing evidence that changes in spermatozoal DNA methylation influence pregnancy outcomes or offspring health. WIDER IMPLICATIONS Although it appears that the human sperm DNA methylome can be influenced by certain environmental and physiological traits, no findings have been robustly replicated between studies. We have generated a set of recommendations that would enhance the reliability and robustness of findings of future analyses of the human sperm methylome. Such studies will likely require multicentre collaborations to reach appropriate sample sizes, and should incorporate phenotype data in more complex statistical models.
Collapse
Affiliation(s)
| | - Amy F Danson
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sarah J Marzi
- UK Dementia Research Institute, Imperial College London, London W12 0NN, UK.,Department of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
14
|
Chen J, Xu J, Yu Y, Sun L. Case Report: A Novel Deletion in the 11p15 Region Causing a Familial Beckwith-Wiedemann Syndrome. Front Genet 2021; 12:621096. [PMID: 33679886 PMCID: PMC7933649 DOI: 10.3389/fgene.2021.621096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/18/2021] [Indexed: 11/28/2022] Open
Abstract
Beckwith–Wiedemann syndrome (BWS; OMIM 130650) is a human overgrowth and cancer susceptibility disorder with a wide clinical spectrum, which cannot be predicted based on genomic variants alone. Most reports on BWS cases focus on childhood patients. Studies on adult BWS patients are scarce. Our study reports a BWS family in which the disorder appears to be caused by deletion of H19 and its upstream regulatory elements. Genetic analysis showed a heterozygous microdeletion (~chr11:2009895-2070570 (GRCh37)) in the patients. Maternal deletion in H19 can result in loss of function of the IGF2-H19 imprinting control element, which leads to BWS. The male proband in this family was affected by the testicular anomaly and cryptorchidism. Early orchidopexy did not rescue his azoospermia, which might be not the consequence of cryptorchidism, but due to genetic defects associated with H19 deletion. In summary, our study gives some insights on the presentation of BWS in adulthood.
Collapse
Affiliation(s)
- Juan Chen
- Department of Assisted Reproductive Technology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jian Xu
- Department of Assisted Reproductive Technology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yang Yu
- Department of Assisted Reproductive Technology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ling Sun
- Department of Assisted Reproductive Technology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Liu P, Ma D, Wang P, Pan C, Fang Q, Wang J. Nrf2 overexpression increases risk of high tumor mutation burden in acute myeloid leukemia by inhibiting MSH2. Cell Death Dis 2021; 12:20. [PMID: 33414469 PMCID: PMC7790830 DOI: 10.1038/s41419-020-03331-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2, also called NFE2L2) plays an important role in cancer chemoresistance. However, little is known about the role of Nrf2 in tumor mutation burden and the effect of Nrf2 in modulating DNA mismatch repair (MMR) gene in acute myeloid leukemia (AML). Here we show that Nrf2 expression is associated with tumor mutation burden in AML. Patients with Nrf2 overexpression had a higher frequency of gene mutation and drug resistance. Nrf2 overexpression protected the AML cells from apoptosis induced by cytarabine in vitro and increased the risk of drug resistance associated with a gene mutation in vivo. Furthermore, Nrf2 overexpression inhibited MutS Homolog 2 (MSH2) protein expression, which caused DNA MMR deficiency. Mechanistically, the inhibition of MSH2 by Nrf2 was in a ROS-independent manner. Further studies showed that an increased activation of JNK/c-Jun signaling in Nrf2 overexpression cells inhibited the expression of the MSH2 protein. Our findings provide evidence that high Nrf2 expression can induce gene instability-dependent drug resistance in AML. This study demonstrates the reason why the high Nrf2 expression leads to the increase of gene mutation frequency in AML, and provides a new strategy for clinical practice.
Collapse
Affiliation(s)
- Ping Liu
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, 550004, Guiyang, China.,Basic Medical College, Guizhou Medical University, 550004, Guiyang, China
| | - Dan Ma
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, 550004, Guiyang, China
| | - Ping Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, 550004, Guiyang, China
| | - Chengyun Pan
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, 550004, Guiyang, China.,Basic Medical College, Guizhou Medical University, 550004, Guiyang, China
| | - Qin Fang
- Department of Pharmacy, Affiliated Hospital of Guizhou Medical University, 550004, Guiyang, China
| | - Jishi Wang
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guizhou Province Institute of Hematology, Guizhou Province Laboratory of Hematopoietic Stem Cell Transplantation Centre, 550004, Guiyang, China. .,National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, 215006, Suzhou, China.
| |
Collapse
|
16
|
Metin Mahmutoglu A, Gunes S, Asci R, Henkel R, Aydin O. Association of XRCC1 and ERCC2 promoters' methylation with chromatin condensation and sperm DNA fragmentation in idiopathic oligoasthenoteratozoospermic men. Andrologia 2020; 53:e13925. [PMID: 33355950 DOI: 10.1111/and.13925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/23/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of the study was to investigate whether the promoter methylation of XRCC1 and ERCC2 genes is associated with sperm DNA fragmentation and chromatin condensation in idiopathic oligoasthenoteratozoospermic men. This study involved 77 infertile men with idiopathic oligoasthenoteratozoospermia and 51 normozoospermic controls. The methylight method, TUNEL assay and aniline blue staining were used for the evaluation of XRCC1 and ERCC2 genes' methylation, SDF and sperm chromatin condensation, respectively. SDF (p = .004) and XRCC1 methylation (p = .0056) were found to be significantly higher in men with idiopathic OAT than in the controls, while mature spermatozoa frequency was higher in controls as compared to infertile men (p < .0001). No significant association was found between SDF and methylation of XRCC1 and ERCC2 genes (p = .9277 and p = .8257, respectively). However, compared to the cut-off point obtained by receiver operating characteristic analysis, a significant association was found between SDF and XRCC1 methylation, positive and negative methylation groups, generated according to the cut-off value for XRCC1. XRCC1 methylation was found to have a significant effect on chromatin condensation (p = .0017). No significant difference was detected among ERCC2 methylation, male infertility and SDF. In conclusion, XRCC1 methylation may have a role in sperm chromatin condensation and idiopathic OAT.
Collapse
Affiliation(s)
- Asli Metin Mahmutoglu
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, Samsun, Turkey
| | - Sezgin Gunes
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, Samsun, Turkey.,Department of Multidisciplinary Molecular Medicine, Graduate School of Health Sciences, Ondokuz Mayis University, Samsun, Turkey
| | - Ramazan Asci
- Department of Multidisciplinary Molecular Medicine, Graduate School of Health Sciences, Ondokuz Mayis University, Samsun, Turkey.,Faculty of Medicine, Department of Urology, Ondokuz Mayis University, Samsun, Turkey
| | - Ralf Henkel
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Oguz Aydin
- Faculty of Medicine, Department of Pathology, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
17
|
Hekim N, Gunes S, Asci R, Henkel R, Abur U. Semiquantitative promoter methylation of MLH1 and MSH2 genes and their impact on sperm DNA fragmentation and chromatin condensation in infertile men. Andrologia 2020; 53:e13827. [PMID: 33112435 DOI: 10.1111/and.13827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/28/2020] [Accepted: 08/09/2020] [Indexed: 12/19/2022] Open
Abstract
To investigate the semiquantitative methylation alterations of MLH1 and MSH2 and the possible association among methylation of MLH1 and MSH2, sperm DNA fragmentation and sperm chromatin condensation in idiopathic oligoasthenoteratozoospermic men. Seventy-five idiopathic infertile men and 52 fertile and/or normozoospermic men were included in the study. SDF was analysed using the TUNEL assay in semen samples of 100 men. Promoter methylation of MLH1 and MSH2 genes was assessed by semiquantitative methylight analysis in semen samples of 39 and 40 men respectively. Sperm chromatin condensation was evaluated using aniline blue staining in 114 men. MLH1 promoter methylation was positively correlated with the percentage of aniline blue positive spermatozoa (r = 0.401, p = 0.0188). On the other hand, MSH2 promoter methylation was negatively correlated with sperm concentration and total sperm count (r = -0.421, p = 0.0068 and r = 0.4408, p = 0.009 respectively). The percentage of aniline blue positive spermatozoa in the control group was significantly lower than in the OAT group (p < 0.0001) and negatively correlated with total sperm count (r = -0.683, p < 0.0001), progressive sperm motility (r = -0.628, p < 0.0001), total motility (r = -0.639, p < 0.0001) and normal morphology (r = -0.668, p < 0.0001). Promoter methylation profile of MLH1 and MSH2 genes may play role on sperm DNA packaging and conventional semen parameters respectively.
Collapse
Affiliation(s)
- Neslihan Hekim
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Sezgin Gunes
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey.,Department of Multidisciplinary Molecular Medicine, Health Sciences Institute, Ondokuz Mayis University, Samsun, Turkey
| | - Ramazan Asci
- Department of Multidisciplinary Molecular Medicine, Health Sciences Institute, Ondokuz Mayis University, Samsun, Turkey.,Department of Urology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ralf Henkel
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ummet Abur
- Department of Multidisciplinary Molecular Medicine, Health Sciences Institute, Ondokuz Mayis University, Samsun, Turkey.,Department of Medical Genetics, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
18
|
Al-Qazzaz HK, Al-Awadi SJ. Epigenetic Alteration in DNA methylation pattern and gene expression level using H19 on oligospermia patients in Iraqi Men. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Gunes S, Esteves SC. Role of genetics and epigenetics in male infertility. Andrologia 2020; 53:e13586. [PMID: 32314821 DOI: 10.1111/and.13586] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/12/2020] [Indexed: 12/23/2022] Open
Abstract
Male infertility is a complex condition with a strong genetic and epigenetic background. This review discusses the importance of genetic and epigenetic factors in the pathophysiology of male infertility. The interplay between thousands of genes, the epigenetic control of gene expression, and environmental and lifestyle factors, which influence genetic and epigenetic variants, determines the resulting male infertility phenotype. Currently, karyotyping, Y-chromosome microdeletion screening and CFTR gene mutation tests are routinely performed to investigate a possible genetic aetiology in patients with azoospermia and severe oligozoospermia. However, current testing is limited in its ability to identify a variety of genetic and epigenetic conditions that might be implicated in both idiopathic and unexplained infertility. Several epimutations of imprinting genes and developmental genes have been postulated to be candidate markers for male infertility. As such, development of novel diagnostic panels is essential to change the current landscape with regard to prevention, diagnosis and management. Understanding the underlying genetic mechanisms related to the pathophysiology of male infertility, and the impact of environmental exposures and lifestyle factors on gene expression might aid clinicians in developing individualised treatment strategies.
Collapse
Affiliation(s)
- Sezgin Gunes
- Medical Biology, Medical Faculty, Ondokuz Mayis University, Samsun, Turkey.,Molecular Medicine, Medical Faculty, Ondokuz Mayis University, Samsun, Turkey
| | - Sandro C Esteves
- ANDROFERT, Andrology and Human Reproduction Clinic, Referral Center for Male Reproduction, Campinas, São Paulo, SP, Brazil.,Department of Surgery (Division of Urology), University of Campinas (UNICAMP), Campinas, São Paulo, SP, Brazil.,Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
20
|
Abur U, Gunes S, Ascı R, Altundag E, Akar OS, Ayas B, Karadag Alpaslan M, Ogur G. Chromosomal and Y-chromosome microdeletion analysis in 1,300 infertile males and the fertility outcome of patients with AZFc microdeletions. Andrologia 2019; 51:e13402. [PMID: 31650616 DOI: 10.1111/and.13402] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 07/05/2019] [Accepted: 07/24/2019] [Indexed: 01/22/2023] Open
Abstract
The present study investigated the frequency of chromosome aberrations and AZF microdeletions in infertile patients with nonobstructive azoospermia (NOA) or severe oligozoospermia. Additionally, the effect of the AZFc microdeletions on the success of microdissection testicular sperm extraction (microTESE) and intracytoplasmic sperm injection (ICSI) methods were evaluated. Peripheral blood samples were received from 1,300 infertile men with NOA and severe oligozoospermia. Karyotyping and FISH analysis were performed according to standard methods. AZF microdeletions were analysed using multiplex polymerase chain reaction or GML Y-chromosome Microdeletion Detection System consisting of 14 markers. The chromosomal aberrations and the AZF microdeletions frequency among 1,300 infertile men were 10.6% and 4.0% respectively. Either ejaculated spermatozoa or microTESE was performed on only in 19 out of 26 patients with AZFc deletions. Of the 19 patients, four had severe oligozoospermia and 15 had NOA. In eight out of 15 NOA patients, testicular mature spermatozoa were obtained (53.3%) and then ICSI was applied to mature oocytes. After undergoing ICSI treatment, clinical pregnancy and live birth outcome rates were found to be 37.5% and 25% respectively. These results suggest that infertile patients with AZFc microdeletion could achieve successful fertilisation pregnancies with the help of assisted reproductive technology.
Collapse
Affiliation(s)
- Ummet Abur
- Department of Medical Genetics, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Sezgin Gunes
- Department of Medical Biology and Genetics, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ramazan Ascı
- Department of Urology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Engin Altundag
- Department of Medical Genetics, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Omer S Akar
- Department of Medical Genetics, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Bulent Ayas
- Department of Histology-Embryology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | | | - Gonul Ogur
- Department of Medical Genetics, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
21
|
Kabartan E, Gunes S, Arslan MA, Asci R. Investigating the relationship between
BRCA1
and
BRCA2
genes methylation profile and sperm DNA fragmentation in infertile men. Andrologia 2019; 51:e13308. [DOI: 10.1111/and.13308] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/30/2019] [Accepted: 04/13/2019] [Indexed: 12/24/2022] Open
Affiliation(s)
- Emel Kabartan
- Department of Medical Biology, Faculty of Medicine Ondokuz Mayis University Samsun Turkey
- Scientific Research Projects Office Ordu University Ordu Turkey
| | - Sezgin Gunes
- Department of Medical Biology, Faculty of Medicine Ondokuz Mayis University Samsun Turkey
- Department of Multidisciplinary Molecular Medicine Health Sciences Institute, Ondokuz Mayis University Samsun Turkey
| | - Mehmet Alper Arslan
- Department of Medical Biology, Faculty of Medicine Ondokuz Mayis University Samsun Turkey
- Department of Multidisciplinary Molecular Medicine Health Sciences Institute, Ondokuz Mayis University Samsun Turkey
| | - Ramazan Asci
- Department of Multidisciplinary Molecular Medicine Health Sciences Institute, Ondokuz Mayis University Samsun Turkey
- Department of Urology, Faculty of Medicine Ondokuz Mayis University Samsun Turkey
| |
Collapse
|
22
|
Kui F, Ye H, Chen XL, Zhang J. Microarray meta-analysis identifies candidate genes for human spermatogenic arrest. Andrologia 2019; 51:e13301. [PMID: 31037746 DOI: 10.1111/and.13301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
Male infertility affects approximately half of couples who have difficulty becoming pregnant, and its prevalence is continuously rising. Many studies have been performed using animal testes to reveal the mechanisms of male infertility, but few studies have investigated human testes due to various limitations. The aim of this study was to investigate the gene expression profile of impaired human testes through a meta-analysis of microarray data sets, which was accomplished by using 178 human testis samples and 7 microarray data sets. Impaired testes were categorised into four pathological phenotypes or the normal phenotype based on their Johnsen score. Then, a meta-analysis was performed to screen out the differentially expressed genes (DEGs) in each phenotype. The DEGs were used in a subsequent bioinformatics analysis. Our results identified several novel hub genes and pathways and suggested that G1 mitotic cell cycle arrest was a remarkable feature in pre-meiotic arrest. Furthermore, fifteen p53-interacting proteins, such as ABL1 and HDAC2, whose roles in spermatogenesis have not been well characterised, were selected from the DEGs through a strict screening procedure.
Collapse
Affiliation(s)
- Fang Kui
- Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Clinical Laboratory, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Hui Ye
- Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xi-Ling Chen
- Clinical Laboratory, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun Zhang
- Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
23
|
Darbandi M, Darbandi S, Agarwal A, Baskaran S, Dutta S, Sengupta P, Khorram Khorshid HR, Esteves S, Gilany K, Hedayati M, Nobakht F, Akhondi MM, Lakpour N, Sadeghi MR. Reactive oxygen species-induced alterations in H19-Igf2 methylation patterns, seminal plasma metabolites, and semen quality. J Assist Reprod Genet 2019; 36:241-253. [PMID: 30382470 PMCID: PMC6420547 DOI: 10.1007/s10815-018-1350-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/17/2018] [Indexed: 12/28/2022] Open
Abstract
PURPOSE This study was conducted in order to investigate the effects of reactive oxygen species (ROS) levels on the seminal plasma (SP) metabolite milieu and sperm dysfunction. METHODS Semen specimens of 151 normozoospermic men were analyzed for ROS by chemiluminescence and classified according to seminal ROS levels [in relative light units (RLU)/s/106 sperm]: group 1 (n = 39): low (ROS < 20), group 2 (n = 38): mild (20 ≤ ROS < 40), group 3 (n = 31): moderate (40 ≤ ROS < 60), and group 4 (n = 43): high (ROS ≥ 60). A comprehensive analysis of SP and semen parameters, including conventional semen characteristics, measurement of total antioxidant capacity (TAC), sperm DNA fragmentation index (DFI), chromatin maturation index (CMI), H19-Igf2 methylation status, and untargeted seminal metabolic profiling using nuclear magnetic resonance spectroscopy (1H-NMR), was carried out. RESULT(S) The methylation status of H19 and Igf2 was significantly different in specimens with high ROS (P < 0.005). Metabolic fingerprinting of these SP samples showed upregulation of trimethylamine N-oxide (P < 0.001) and downregulations of tryptophan (P < 0.05) and tyrosine/tyrosol (P < 0.01). High ROS significantly reduced total sperm motility (P < 0.05), sperm concentration (P < 0.001), and seminal TAC (P < 0.001) but increased CMI and DFI (P < 0.005). ROS levels have a positive correlation with Igf2 methylation (r = 0.19, P < 0.05), DFI (r = 0.40, P < 0.001), CMI (r = 0.39, P < 0.001), and trimethylamine N-oxide (r = 0.45, P < 0.05) and a negative correlation with H19 methylation (r = - 0.20, P < 0.05), tryptophan (r = - 0.45, P < 0.05), sperm motility (r = - 0.20, P < 0.05), sperm viability (r = - 0.23, P < 0.01), and sperm concentration (r = - 0.30, P < 0.001). CONCLUSION(S) Results showed significant correlation between ROS levels and H19-Igf2 gene methylation as well as semen parameters. These findings are critical to identify idiopathic male infertility and its management through assisted reproduction technology (ART).
Collapse
Affiliation(s)
- Mahsa Darbandi
- Department of Embryology and Andrology, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1936773493, Iran
| | - Sara Darbandi
- Department of Embryology and Andrology, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1936773493, Iran
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Sulagna Dutta
- Faculty of Dentistry, MAHSA University, 42610, Selangor, Malaysia
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, MAHSA University, 42610, Selangor, Malaysia
| | - Hamid Reza Khorram Khorshid
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, 1985713834, Iran
| | - Sandro Esteves
- ANDROFERT, Andrology and Human Reproduction Clinic, Campinas, 13075-460, Brazil
| | - Kambiz Gilany
- Department of Embryology and Andrology, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1936773493, Iran
| | - Mehdi Hedayati
- Molecular Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University for Medical Sciences, Tehran, 1985717413, Iran
| | - Fatemeh Nobakht
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Nishabur, 9314634814, Iran
| | - Mohammad Mehdi Akhondi
- Monoclonal Antibody Research Center, Avicenna Research Institute (ARI), ACECR, Shahid Beheshti University, Evin, Tehran, 1936773493, Iran
| | - Niknam Lakpour
- Department of Embryology and Andrology, Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, 1936773493, Iran
| | - Mohammad Reza Sadeghi
- Monoclonal Antibody Research Center, Avicenna Research Institute (ARI), ACECR, Shahid Beheshti University, Evin, Tehran, 1936773493, Iran.
| |
Collapse
|
24
|
Giacone F, Cannarella R, Mongioì LM, Alamo A, Condorelli RA, Calogero AE, La Vignera S. Epigenetics of Male Fertility: Effects on Assisted Reproductive Techniques. World J Mens Health 2018; 37:148-156. [PMID: 30588778 PMCID: PMC6479088 DOI: 10.5534/wjmh.180071] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/16/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
During the last decades the study of male infertility and the introduction of the assisted reproductive techniques (ARTs) has allowed to understand that normal sperm parameters do not always predict fertilization. Sperm genetic components could play an important role in the early stages of embryonic development. Based on these acquisitions, several epigenetic investigations have been developed on spermatozoa, with the aim of understanding the multifactorial etiology of male infertility and of showing whether embryonic development may be influenced by sperm epigenetic abnormalities. This article reviews the possible epigenetic modifications of spermatozoa and their effects on male fertility, embryonic development and ART outcome. It focuses mainly on sperm DNA methylation, chromatin remodeling, histone modifications and RNAs.
Collapse
Affiliation(s)
- Filippo Giacone
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Laura M Mongioì
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Angela Alamo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rosita A Condorelli
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo E Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy.
| |
Collapse
|
25
|
Bertoncelli Tanaka M, Agarwal A, Esteves SC. Paternal age and assisted reproductive technology: problem solver or trouble maker? Panminerva Med 2018; 61:138-151. [PMID: 30021419 DOI: 10.23736/s0031-0808.18.03512-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In our society, the number of couples with advanced reproductive age seeking fertility treatment is increasing steadily. While the negative effect of female age on assisted reproductive technology (ART) outcomes is well established, the impact of paternal age needs to be clarified. We reviewed the current literature to determine whether advanced paternal age affects the results of ART and the health of resulting offspring. We found that the published literature is overall supportive of a positive association between advanced paternal age (>40 years) and semen quality deterioration. However, the existing evidence does not corroborate nor discard the influence of advanced paternal age on ART outcomes. Similarly, the effect of paternal age on the health of ART offspring remains equivocal, although data from naturally-conceived children clearly indicates that advanced paternal age increases the frequency of genetic, neurodevelopmental, and psychiatric diseases in the progeny. Noteworthy, the current literature is limited and subjected to bias due to the impact of maternal age as a critical confounder. Health care providers should discuss with concerned couples the available options to counteract the possible negative influence of advanced paternal age on ART outcomes and health of resulting offspring. These include identification and treatment of underlying conditions with potential negative long-term effects on fertility, sperm freezing at a young age, and use of antioxidant supplements for men at risk of excessive oxidative stress. Aged male partner from couples undergoing ART, in particular men of 50 years and older, should consider use of preimplantation genetic testing as a means to detect embryo abnormalities and select euploid embryos for transfer to the uterine cavity.
Collapse
Affiliation(s)
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Department of Urology, Cleveland Clinic, Cleveland, OH, USA
| | - Sandro C Esteves
- Division of Urology, Department of Surgery, University of Campinas (UNICAMP), Campinas, Brazil - .,Andrology and Human Reproduction Clinic ANDROFERT, Campinas, Brazil.,Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|