1
|
Parvin A, Erabi G, Alemi A, Rezanezhad A, Maleksabet A, Sadeghpour S, Taheri-Anganeh M, Ghasemnejad-Berenji H. Seminal plasma proteomics as putative biomarkers for male infertility diagnosis. Clin Chim Acta 2024; 561:119757. [PMID: 38857670 DOI: 10.1016/j.cca.2024.119757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Male infertility represents a significant global public health issue that is currently emerging as a prominent research focus. Presently, laboratories adhere to the guidelines outlined by the World Health Organization (WHO) manuals for conducting routine semen analysis to diagnose male infertility. However, the accuracy of results in predicting sperm quality and fertility is limited because some individuals with a normal semen analysis report, an unremarkable medical history, and a physical examination may still experience infertility. As a result, the importance of employing more advanced techniques to investigate sperm function and male fertility in the treatment of male infertility and/or subfertility becomes apparent. The standard test for evaluating human semen has been improved by more complex tests that look at things like reactive oxygen species (ROS) levels, total antioxidant capacity (TAC), sperm DNA fragmentation levels, DNA compaction, apoptosis, genetic testing, and the presence and location of anti-sperm antibodies. Recent discoveries of novel biomarkers have significantly enriched our understanding of male fertility. Moreover, the notable biological diversity among samples obtained from the same individual complicates the efficacy of routine semen analysis. Therefore, unraveling the molecular mechanisms involved in fertilization is pivotal in expanding our understanding of factors contributing to male infertility. By understanding how these proteins work and what role they play in sperm activity, we can look at the expression profile in men who can't have children to find diagnostic biomarkers. This review examines the various sperm and seminal plasma proteins associated with infertility, as well as proteins that are either deficient or exhibit aberrant expression, potentially contributing to male infertility causes.
Collapse
Affiliation(s)
- Ali Parvin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Alireza Alemi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Arman Rezanezhad
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Amir Maleksabet
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sonia Sadeghpour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Obstetrics and Gynecology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Liu Y, Du M, Li X, Zhang L, Zhao B, Wang N, Dugarjaviin M. Single-Cell Transcriptome Sequencing Reveals Molecular Expression Differences and Marker Genes in Testes during the Sexual Maturation of Mongolian Horses. Animals (Basel) 2024; 14:1258. [PMID: 38731262 PMCID: PMC11082968 DOI: 10.3390/ani14091258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
This study aimed to investigate differences in testicular tissue morphology, gene expression, and marker genes between sexually immature (1-year-old) and sexually mature (10-year-old) Mongolian horses. The purposes of our research were to provide insights into the reproductive physiology of male Mongolian horses and to identify potential markers for sexual maturity. The methods we applied included the transcriptomic profiling of testicular cells using single-cell sequencing techniques. Our results revealed significant differences in tissue morphology and gene expression patterns between the two age groups. Specifically, 25 cell clusters and 10 cell types were identified, including spermatogonial and somatic cells. Differential gene expression analysis highlighted distinct patterns related to cellular infrastructure in sexually immature horses and spermatogenesis in sexually mature horses. Marker genes specific to each stage were also identified, including APOA1, AMH, TAC3, INHA, SPARC, and SOX9 for the sexually immature stage, and PRM1, PRM2, LOC100051500, PRSS37, HMGB4, and H1-9 for the sexually mature stage. These findings contribute to a deeper understanding of testicular development and spermatogenesis in Mongolian horses and have potential applications in equine reproductive biology and breeding programs. In conclusion, this study provides valuable insights into the molecular mechanisms underlying sexual maturity in Mongolian horses.
Collapse
Affiliation(s)
- Yuanyi Liu
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Ming Du
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xinyu Li
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lei Zhang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Bilig Zhao
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Na Wang
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Manglai Dugarjaviin
- Key Laboratory of Equus Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Hohhot 010018, China; (Y.L.); (M.D.); (X.L.); (L.Z.); (B.Z.); (N.W.)
- Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China
- Equus Research Center, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
3
|
Parkes R, Garcia TX. Bringing proteomics to bear on male fertility: key lessons. Expert Rev Proteomics 2024; 21:181-203. [PMID: 38536015 PMCID: PMC11426281 DOI: 10.1080/14789450.2024.2327553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/07/2024] [Indexed: 04/11/2024]
Abstract
INTRODUCTION Male infertility is a major public health concern globally. Proteomics has revolutionized our comprehension of male fertility by identifying potential infertility biomarkers and reproductive defects. Studies comparing sperm proteome with other male reproductive tissues have the potential to refine fertility diagnostics and guide infertility treatment development. AREAS COVERED This review encapsulates literature using proteomic approaches to progress male reproductive biology. Our search methodology included systematic searches of databases such as PubMed, Scopus, and Web of Science for articles up to 2023. Keywords used included 'male fertility proteomics,' 'spermatozoa proteome,' 'testis proteomics,' 'epididymal proteomics,' and 'non-hormonal male contraception.' Inclusion criteria were robust experimental design, significant contributions to male fertility, and novel use of proteomic technologies. EXPERT OPINION Expert analysis shows a shift from traditional research to an integrative approach that clarifies male reproductive health's molecular intricacies. A gap exists between proteomic discoveries and clinical application. The expert opinions consolidated here not only navigate the current findings but also chart the future proteomic applications for scientific and clinical breakthroughs. We underscore the need for continued investment in proteomic research - both in the technological and collaborative arenas - to further unravel the secrets of male fertility, which will be central to resolving fertility issues in the coming era.
Collapse
Affiliation(s)
- Rachel Parkes
- Center for Drug Discovery, Baylor College of Medicine
- Department of Pathology & Immunology, Baylor College of Medicine
| | - Thomas X. Garcia
- Center for Drug Discovery, Baylor College of Medicine
- Department of Pathology & Immunology, Baylor College of Medicine
- Scott Department of Urology, Baylor College of Medicine
| |
Collapse
|
4
|
Corda PO, Moreira J, Howl J, Oliveira PF, Fardilha M, Silva JV. Differential Proteomic Analysis of Human Sperm: A Systematic Review to Identify Candidate Targets to Monitor Sperm Quality. World J Mens Health 2024; 42:71-91. [PMID: 37118964 PMCID: PMC10782124 DOI: 10.5534/wjmh.220262] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/24/2023] [Accepted: 02/05/2023] [Indexed: 04/30/2023] Open
Abstract
PURPOSE The advent of proteomics provides new opportunities to investigate the molecular mechanisms underlying male infertility. The selection of relevant targets based on a single analysis is not always feasible, due to the growing number of proteomic studies with conflicting results. Thus, this study aimed to systematically review investigations comparing the sperm proteome of normozoospermic and infertile men to define a panel of proteins with the potential to be used to evaluate sperm quality. MATERIALS AND METHODS A literature search was conducted on PubMed, Web of Science, and Scopus databases following the PRISMA guidelines. To identify proteins systematically reported, first the studies were divided by condition into four groups (asthenozoospermia, low motility, unexplained infertility, and infertility related to risk factors) and then, all studies were analysed simultaneously (poor sperm quality). To gain molecular insights regarding identified proteins, additional searches were performed within the Human Protein Atlas, Mouse Genome Informatics, UniProt, and PubMed databases. RESULTS Thirty-two studies were included and divided into 4 sub-analysis groups. A total of 2752 proteins were collected, of which 38, 1, 3 and 2 were indicated as potential markers for asthenozoospermia, low motility, unexplained infertility and infertility related to risk factors, respectively, and 58 for poor sperm quality. Among the identified proteins, ACR, ACRBP, ACRV1, ACTL9, AKAP4, ATG3, CCT2, CFAP276, CFAP52, FAM209A, GGH, HPRT1, LYZL4, PRDX6, PRSS37, REEP6, ROPN1B, SPACA3, SOD1, SPEM1, SPESP1, SPINK2, TEKT5, and ZPBP were highlighted due to their roles in male reproductive tissues, association with infertility phenotypes or participation in specific biological functions in spermatozoa. CONCLUSIONS Sperm proteomics allows the identification of protein markers with the potential to overcome limitations in male infertility diagnosis and to understand changes in sperm function at the molecular level. This study provides a reliable list of systematically reported proteins that could be potential targets for further basic and clinical studies.
Collapse
Affiliation(s)
- Pedro O Corda
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Jéssica Moreira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - John Howl
- Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton, UK
| | - Pedro F Oliveira
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Margarida Fardilha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| | - Joana Vieira Silva
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
5
|
Shkrigunov T, Zgoda V, Klimenko P, Kozlova A, Klimenko M, Lisitsa A, Kurtser M, Petushkova N. The Application of Ejaculate-Based Shotgun Proteomics for Male Infertility Screening. Biomedicines 2023; 12:49. [PMID: 38255156 PMCID: PMC10813512 DOI: 10.3390/biomedicines12010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/24/2024] Open
Abstract
Problems with the male reproductive system are of both medical and social significance. As a rule, spermatozoa and seminal plasma proteomes are investigated separately to assess sperm quality. The current study aimed to compare ejaculate proteomes with spermatozoa and seminal plasma protein profiles regarding the identification of proteins related to fertility scores. A total of 1779, 715, and 2163 proteins were identified in the ejaculate, seminal plasma, and spermatozoa, respectively. Among these datasets, 472 proteins were shared. GO enrichment analysis of the common proteins enabled us to distinguish biological processes such as single fertilization (GO:0007338), spermatid development (GO:0007286), and cell motility (GO:0048870). Among the abundant terms for GO cellular components, zona pellucida receptor complex, sperm fibrous sheath, and outer dense fiber were revealed. Overall, we identified 139 testis-specific proteins. For these proteins, PPI networks that are common in ejaculate, spermatozoa, and seminal plasma were related to the following GO biological processes: cilium movement (GO:0003341), microtubule-based movement (GO:0007018), and sperm motility (GO:0097722). For ejaculate and spermatozoa, they shared 15 common testis-specific proteins with spermatogenesis (GO:0007283) and male gamete generation (GO:0048232). Therefore, we speculated that ejaculate-based proteomics could yield new insights into the peculiar reproductive physiology and spermatozoa function of men and potentially serve as an explanation for male infertility screening.
Collapse
Affiliation(s)
- Timur Shkrigunov
- Laboratory of Protein Biochemistry and Pathology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.L.); (N.P.)
| | - Victor Zgoda
- Laboratory of Systems Biology, Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| | - Peter Klimenko
- Department of Obstetrics and Gynecology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (P.K.); (M.K.)
| | - Anna Kozlova
- Center of Scientific and Practical Education, Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| | - Maria Klimenko
- Center for Family Planning and Reproduction, Moscow Department of Health, 117209 Moscow, Russia;
| | - Andrey Lisitsa
- Laboratory of Protein Biochemistry and Pathology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.L.); (N.P.)
- Center of Scientific and Practical Education, Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| | - Mark Kurtser
- Department of Obstetrics and Gynecology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia; (P.K.); (M.K.)
| | - Natalia Petushkova
- Laboratory of Protein Biochemistry and Pathology, Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.L.); (N.P.)
| |
Collapse
|
6
|
Gacem S, Castello-Ruiz M, Hidalgo CO, Tamargo C, Santolaria P, Soler C, Yániz JL, Silvestre MA. Bull Sperm SWATH-MS-Based Proteomics Reveals Link between High Fertility and Energy Production, Motility Structures, and Sperm-Oocyte Interaction. J Proteome Res 2023; 22:3607-3624. [PMID: 37782577 PMCID: PMC10629479 DOI: 10.1021/acs.jproteome.3c00461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Indexed: 10/04/2023]
Abstract
The prediction of male or semen fertility potential remains a persistent challenge that has yet to be fully resolved. This work analyzed several in vitro parameters and proteome of spermatozoa in bulls cataloged as high- (HF; n = 5) and low-field (LF; n = 5) fertility after more than a thousand artificial inseminations. Sperm motility was evaluated by computer-assisted sperm analysis. Sperm viability, mitochondrial membrane potential (MMP) and reactive oxygen species (mROS) of spermatozoa were assessed by flow cytometry. Proteome was evaluated by the SWATH-MS procedure. Spermatozoa of HF bulls showed significantly higher total motility than the LF group (41.4% vs 29.7%). Rates of healthy sperm (live, high MMP, and low mROS) for HF and LF bull groups were 49% and 43%, respectively (p > 0.05). Spermatozoa of HF bulls showed a higher presence of differentially abundant proteins (DAPs) related to both energy production (COX7C), mainly the OXPHOS pathway, and the development of structures linked with the motility process (TPPP2, SSMEM1, and SPAG16). Furthermore, we observed that equatorin (EQTN), together with other DAPs related to the interaction with the oocyte, was overrepresented in HF bull spermatozoa. The biological processes related to protein processing, catabolism, and protein folding were found to be overrepresented in LF bull sperm in which the HSP90AA1 chaperone was identified as the most DAP. Data are available via ProteomeXchange with identifier PXD042286.
Collapse
Affiliation(s)
- Sabrina Gacem
- Departamento
de Biología Celular, Biología Funcional y Antropología
Física, Universitat de València, 46100 Valencia, Spain
- Departamento
de Medicina y Cirugía Animal, Universitat
Autònoma de Barcelona, 08193 Barcelona, Spain
| | - María Castello-Ruiz
- Departamento
de Biología Celular, Biología Funcional y Antropología
Física, Universitat de València, 46100 Valencia, Spain
- Unidad
Mixta de Investigación Cerebrovascular, Instituto de Investigación
Sanitaria La Fe, Hospital Universitario
y Politécnico La Fe, 46026 Valencia, Spain
| | - Carlos O. Hidalgo
- Animal
Selection and Reproduction Area, Regional
Agrifood Research and Development Service (SERIDA), 33394 Deva, Gijón, Spain
| | - Carolina Tamargo
- Animal
Selection and Reproduction Area, Regional
Agrifood Research and Development Service (SERIDA), 33394 Deva, Gijón, Spain
| | - Pilar Santolaria
- BIOFITER
Research Group, Institute of Environmental Sciences (IUCA), University of Zaragoza, 22071 Huesca, Spain
| | - Carles Soler
- Departamento
de Biología Celular, Biología Funcional y Antropología
Física, Universitat de València, 46100 Valencia, Spain
| | - Jesús L. Yániz
- BIOFITER
Research Group, Institute of Environmental Sciences (IUCA), University of Zaragoza, 22071 Huesca, Spain
| | - Miguel A. Silvestre
- Departamento
de Biología Celular, Biología Funcional y Antropología
Física, Universitat de València, 46100 Valencia, Spain
| |
Collapse
|
7
|
Laseca N, Cánovas Á, Valera M, Id-Lahoucine S, Perdomo-González DI, Fonseca PAS, Demyda-Peyrás S, Molina A. Genomic screening of allelic and genotypic transmission ratio distortion in horse. PLoS One 2023; 18:e0289066. [PMID: 37556504 PMCID: PMC10411798 DOI: 10.1371/journal.pone.0289066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
The phenomenon in which the expected Mendelian inheritance is altered is known as transmission ratio distortion (TRD). The TRD analysis relies on the study of the transmission of one of the two alleles from a heterozygous parent to the offspring. These distortions are due to biological mechanisms affecting gametogenesis, embryo development and/or postnatal viability, among others. In this study, TRD phenomenon was characterized in horses using SNP-by-SNP model by TRDscan v.2.0 software. A total of 1,041 Pura Raza Español breed horses were genotyped with 554,634 SNPs. Among them, 277 horses genotyped in trios (stallion-mare-offspring) were used to perform the TRD analysis. Our results revealed 140 and 42 SNPs with allelic and genotypic patterns, respectively. Among them, 63 displayed stallion-TRD and 41 exhibited mare-TRD, while 36 SNPs showed overall TRD. In addition, 42 SNPs exhibited heterosis pattern. Functional analyses revealed that the annotated genes located within the TRD regions identified were associated with biological processes and molecular functions related to spermatogenesis, oocyte division, embryonic development, and hormonal activity. A total of 10 functional candidate genes related to fertility were found. To our knowledge, this is the most extensive study performed to evaluate the presence of alleles and functional candidate genes with transmission ratio distortion affecting reproductive performance in the domestic horse.
Collapse
Affiliation(s)
- Nora Laseca
- Department of Genetics, University of Cordoba, Córdoba, Spain
| | - Ángela Cánovas
- Center of Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, Canada
| | - Mercedes Valera
- Department of Agronomy, School of Agronomy Engineering, University of Seville, Seville, Spain
| | - Samir Id-Lahoucine
- Department of Animal and Veterinary Science, Scotland’s Rural College, Aberdeen, Scotland, United Kingdom
| | | | | | | | - Antonio Molina
- Department of Genetics, University of Cordoba, Córdoba, Spain
| |
Collapse
|
8
|
Miyazaki MA, Guilharducci RL, Intasqui P, Bertolla RP. Mapping the human sperm proteome - novel insights into reproductive research. Expert Rev Proteomics 2023; 20:19-45. [PMID: 37140161 DOI: 10.1080/14789450.2023.2210764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
INTRODUCTION Spermatozoa are highly specialized cells with unique morphology. In addition, spermatozoa lose a considerable amount of cytoplasm during spermiogenesis, when they also compact their DNA, resulting in a transcriptionally quiescent cell. Throughout the male reproductive tract, sperm will acquire proteins that enable them to interact with the female reproductive tract. After ejaculation, proteins undergo post-translational modifications for sperm to capacitate, hyperactivate and fertilize the oocyte. Many proteins have been identified as predictors of male infertility, and also investigated in diseases that compromise reproductive potential. AREAS COVERED In this review we proposed to summarize the recent findings about the sperm proteome and how they affect sperm structure, function, and fertility. A literature search was performed using PubMed and Google Scholar databases within the past 5 years until August 2022. EXPERT OPINION Sperm function depends on protein abundance, conformation, and PTMs; understanding the sperm proteome may help to identify pathways essential to fertility, even making it possible to unravel the mechanisms involved in idiopathic infertility. In addition, proteomics evaluation offers knowledge regarding alterations that compromise the male reproductive potential.
Collapse
Affiliation(s)
- Mika Alexia Miyazaki
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Raquel Lozano Guilharducci
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paula Intasqui
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo Pimenta Bertolla
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Gómez-Torres MJ, Huerta-Retamal N, Sáez-Espinosa P, Robles-Gómez L, Avilés M, Aizpurua J. Molecular Chaperone HSPA2 Distribution During Hyaluronic Acid Selection in Human Sperm. Reprod Sci 2023; 30:1176-1185. [PMID: 35819578 PMCID: PMC10160204 DOI: 10.1007/s43032-022-01031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/02/2022] [Indexed: 10/17/2022]
Abstract
During fertilization, sperm hyaluronidase activity is essential for spermatozoa to successfully penetrate the hyaluronic acid-enriched extracellular matrix of the cumulus cells. Since molecular chaperones, as the heat shock protein A2, are typically involved in bringing hyaluronic acid receptors to the cell surface, here we evaluated the presence and spatial location of HSPA2 on human spermatozoa based on its hyaluronic acid binding capacity. This study included 16 normozoospermic sperm samples from volunteering donors. The location of HSPA2 was studied in cells before and after 1-h incubation under capacitating conditions, as well as in spermatozoa selected according to their ability of binding to hyaluronic acid. Our results showed no significant differences in HSPA2 immunofluorescent cells before and after 1 h of incubation in capacitating conditions. Nevertheless, after hyaluronic acid selection, the percentage of HSPA2-labelled cells increased significantly, indicating that the interaction with hyaluronic acid may induce the unmasking of HSPA2 epitopes. Furthermore, after swim-up and hyaluronic acid selection, spermatozoa presented a highly immunostained equatorial band with a homogeneous fluorescence throughout the acrosomal region. This distribution has been previously suggested to have important implications in male fertility. Noteworthy, a homogeneous fluorescence among the acrosomal region with a more intense labelling at the apical region was observed only in hyaluronic acid bound sperm cells, which may be associated with primary gamete recognition. Our findings suggest that the hyaluronic acid selection technique and HSPA2 biomarker should be considered candidates to complement the classic seminal analysis before recommending an appropriate assisted reproduction technique.
Collapse
Affiliation(s)
- María José Gómez-Torres
- Departamento de Biotecnología, Universidad de Alicante, 03690, Alicante, Spain.
- Cátedra Human Fertility, Universidad de Alicante, Alicante, Spain.
| | | | - Paula Sáez-Espinosa
- Departamento de Biotecnología, Universidad de Alicante, 03690, Alicante, Spain
| | - Laura Robles-Gómez
- Departamento de Biotecnología, Universidad de Alicante, 03690, Alicante, Spain
| | - Manuel Avilés
- Departamento de Biología Celular E Histología, Universidad de Murcia, Instituto Murciano de Investigación Sociosanitaria (IMIB-Arrixaca), 30003, Murcia, Spain
| | - Jon Aizpurua
- IVF Spain, Medicina Reproductiva, 03540, Alicante, Spain
- Cátedra Human Fertility, Universidad de Alicante, Alicante, Spain
| |
Collapse
|
10
|
Mohanty G, Jena SR, Kar S, Samanta L. Paternal factors in recurrent pregnancy loss: an insight through analysis of non-synonymous single-nucleotide polymorphism in human testis-specific chaperone HSPA2 gene. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62219-62234. [PMID: 34845642 DOI: 10.1007/s11356-021-17799-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Heat shock protein A2 (HSPA2) is a testis-specific molecular chaperone of the 70 kDa heat shock protein (HSP70) family and reported to play a key role in spermatogenesis as well as in the remodelling of the sperm surface during capacitation. It is established that mice lacking HSPA2 gene are infertile and spermatozoa that fail to interact with the zona pellucida of the oocyte consistently lack HSPA2 protein expression. However, its role in post fertilization events is not fully understood. Owing to the importance of HSPA2 in male reproduction, the present study is undertaken to reveal the association between genetic mutation and phenotypic variation in recurrent pregnancy loss (RPL) patients through an in silico prediction analysis. In this study, we used different computational tools and servers such as SIFT, PolyPhen2, PROVEAN, nsSNPAnalyzer, and SNPs & GO to analyse the functional consequences of the nsSNPs in human HSPA2 gene. The most damaging amino acid variants generated were subjected to I-Mutant 2.0 and ConSurf. Post-translational modifications such as phosphorylation mediated by these deleterious nsSNPs were analysed using NetPhos 2.0, and gene-gene interaction study was conducted using GeneMANIA. Finally, in-depth studies of the nsSNPs were studied through Project HOPE. The findings of the study revealed 18 nsSNPs to be deleterious using a combinatorial bioinformatic approach. Further functional analysis suggests that screening of nsSNP variants of HSPA2 that tend to be conserved and has potential to undergo phosphorylation at critical positions (rs764410231, rs200951589, rs756852956) may be useful for predicting outcome in altered reproductive outcome. The physicochemical alterations and its impact on the structural and functional conformity were determined by Project HOPE. Gene-gene interaction depicts its close association with antioxidant enzyme (SOD1) strongly supporting an inefficient oxidative scavenging regulatory mechanism in the spermatozoa of RPL patients as reported earlier. The present study has thus identified high-risk deleterious nsSNPs of HSPA2 gene and would be beneficial in the diagnosis and prognosis of the paternal effects in RPL patients.
Collapse
Affiliation(s)
- Gayatri Mohanty
- Redox Biology & Proteomics Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, Odisha, India
- Centre for Excellence in Environment and Public Health, Ravenshaw University, Cuttack, Odisha, India
| | - Soumya Ranjan Jena
- Redox Biology & Proteomics Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, Odisha, India
- Centre for Excellence in Environment and Public Health, Ravenshaw University, Cuttack, Odisha, India
| | - Sujata Kar
- Department of Obstetrics & Gynaecology, Kar Clinic and Hospital Pvt. Ltd., Bhubaneswar, Odisha, India
| | - Luna Samanta
- Redox Biology & Proteomics Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, Odisha, India.
- Centre for Excellence in Environment and Public Health, Ravenshaw University, Cuttack, Odisha, India.
| |
Collapse
|
11
|
Zmudzinska A, Wisniewski J, Mlynarz P, Olejnik B, Mogielnicka-Brzozowska M. Age-Dependent Variations in Functional Quality and Proteomic Characteristics of Canine (Canis lupus familiaris) Epididymal Spermatozoa. Int J Mol Sci 2022; 23:ijms23169143. [PMID: 36012418 PMCID: PMC9409041 DOI: 10.3390/ijms23169143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 12/01/2022] Open
Abstract
Increased male age is associated with a significant reduction in semen quality. Little is known about the sperm proteome changes resulting from the aging process. This study aimed to investigate the relationship between the functional quality and proteome of epididymal spermatozoa of dogs that were differing in age. The study was conducted on 30 male dogs that were divided into three age groups. G1—12 to 41 months old, G2—42 to 77 months old, and G3—78 to 132 months old. The sperm samples were assessed using a computer-assisted semen analysis (CASA). The epididymal sperm proteins were analyzed using gel electrophoresis (SDS-PAGE), nano-liquid chromatography coupled to quadrupole time of flight mass spectrometry (NanoUPLC-Q-TOF/MS) and bioinformatic tools. The sperm quality parameters were significantly lower in older dogs. NanoUPLC-Q-TOF/MS identification resulted in 865 proteins that were found in the G1, 472 in G2, and 435 in G3. There were seven proteins that were present in all three age groups, and four of them (ACTB, CE10, NPC2, CRISP2) showed significant changes among the studied groups. Age-dependent variations were detected in the sperm proteome composition and were related to important metabolite pathways, which might suggest that several proteins are implicated in sperm maturation and could be potential aging biomarkers.
Collapse
Affiliation(s)
- Anna Zmudzinska
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - Jerzy Wisniewski
- Department of Biochemistry, Molecular Biology and Biotechnology, Wroclaw University of Science and Technology, Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Piotr Mlynarz
- Department of Biochemistry, Molecular Biology and Biotechnology, Wroclaw University of Science and Technology, Wyspianskiego 27, 50-370 Wroclaw, Poland
| | - Beata Olejnik
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, Chalubinskiego 10, 50-368 Wroclaw, Poland
| | - Marzena Mogielnicka-Brzozowska
- Department of Animal Biochemistry and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
- Correspondence: ; Tel.: +48-89-524-5259
| |
Collapse
|
12
|
Afsari M, Fesahat F, Talebi AR, Agarwal A, Henkel R, Zare F, Gül M, Iraci N, Cannarella R, Makki M, Anvari M, Sarcheshmeh AA, Talebi AH. ANXA2
,
SP17
,
SERPINA5
,
PRDX2
genes, and sperm
DNA
fragmentation differentially represented in male partners of infertile couples with normal and abnormal sperm parameters. Andrologia 2022; 54:e14556. [DOI: 10.1111/and.14556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/29/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Maliheh Afsari
- Department of Biology & Anatomical Sciences Shahid Sadoughi University of Medical Sciences Yazd Iran
| | - Farzaneh Fesahat
- Reproductive Immunology Research Center Shahid Sadoughi University of Medical Sciences Yazd Iran
| | - Ali Reza Talebi
- Department of Biology & Anatomical Sciences Shahid Sadoughi University of Medical Sciences Yazd Iran
| | - Ashok Agarwal
- American Center for Reproductive Medicine Cleveland Clinic Cleveland Ohio USA
| | - Ralf Henkel
- American Center for Reproductive Medicine Cleveland Clinic Cleveland Ohio USA
- Department of Medical Bioscience University of the Western Cape Bellville South Africa
| | - Fatemeh Zare
- Reproductive Immunology Research Center Shahid Sadoughi University of Medical Sciences Yazd Iran
| | - Murat Gül
- Department of Urology Selcuk University School of Medicine Konya Turkey
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC) University of Catania Catania Italy
| | - Rossella Cannarella
- American Center for Reproductive Medicine Cleveland Clinic Cleveland Ohio USA
- Department of Clinical and Experimental Medicine University of Catania Catania Italy
| | | | - Morteza Anvari
- Department of Biology & Anatomical Sciences Shahid Sadoughi University of Medical Sciences Yazd Iran
| | | | | |
Collapse
|
13
|
Davalieva K, Rusevski A, Velkov M, Noveski P, Kubelka-Sabit K, Filipovski V, Plaseski T, Dimovski A, Plaseska-Karanfilska D. Comparative proteomics analysis of human FFPE testicular tissues reveals new candidate biomarkers for distinction among azoospermia types and subtypes. J Proteomics 2022; 267:104686. [PMID: 35914715 DOI: 10.1016/j.jprot.2022.104686] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 10/16/2022]
Abstract
Understanding molecular mechanisms that underpin azoospermia and discovery of biomarkers that could enable reliable, non-invasive diagnosis is highly needed. Using label-free data-independent LC-MS/MS acquisition coupled with ion mobility, we compared the FFPE testicular proteome of patients with obstructive (OA) and non-obstructive azoospermia (NOA) subtypes hypospermatogenesis (Hyp) and Sertoli cell-only syndrome (SCO). Out of 2044 proteins identified based on ≥2 peptides, 61 proteins had the power to quantitatively discriminate OA from NOA and 30 to quantitatively discriminate SCO from Hyp and OA. Among these, H1-6, RANBP1 and TKTL2 showed superior potential for quantitative discrimination among OA, Hyp and SCO. Integrin signaling pathway, adherens junction, planar cell polarity/convergent extension pathway and Dectin-1 mediated noncanonical NF-kB signaling were significantly associated with the proteins that could discriminate OA from NOA. Comparison with 2 transcriptome datasets revealed 278 and 55 co-differentially expressed proteins/genes with statistically significant positive correlation. Gene expression analysis by qPCR of 6 genes (H1-6, RANBP1, TKTL2, TKTL1, H2BC1, and ACTL7B) with the highest discriminatory power on protein level and the same regulation trend with transcriptomic datasets, confirmed proteomics results. In summary, our results suggest some underlying pathways in azoospermia and broaden the range of potential novel candidates for diagnosis. SIGNIFICANCE: Using a comparative proteomics approach on testicular tissue we have identified several pathways associated with azoospermia and a number of testis-specific and germ cell-specific proteins that have the potential to pinpoint the type of spermatogenesis failure. Furthermore, comparison with transcriptomics datasets based on genome-wide gene expression analyses of human testis specimens from azoospermia patients identified proteins that could discriminate between obstructive and non-obstructive azoospermia subtypes on both protein and mRNA levels. Up to our knowledge, this is the first integrated comparative analysis of proteomics and transcriptomics data from testicular tissues. We believe that the data from our study contributes significantly to increase the knowledge of molecular mechanisms of azoospermia and pave the way for new investigations in regards to non-invasive diagnosis.
Collapse
Affiliation(s)
- Katarina Davalieva
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia, Macedonia.
| | - Aleksandar Rusevski
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia, Macedonia
| | - Milan Velkov
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia, Macedonia
| | - Predrag Noveski
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia, Macedonia
| | - Katerina Kubelka-Sabit
- Laboratory for Histopathology, Clinical Hospital "Sistina", 1000 Skopje, North Macedonia, Macedonia
| | - Vanja Filipovski
- Laboratory for Histopathology, Clinical Hospital "Sistina", 1000 Skopje, North Macedonia, Macedonia
| | - Toso Plaseski
- Faculty of Medicine, Endocrinology and Metabolic Disorders Clinic, 1000 Skopje, North Macedonia, Macedonia
| | - Aleksandar Dimovski
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia, Macedonia; Faculty of Pharmacy, University "St. Cyril and Methodius", 1000 Skopje, North Macedonia, Macedonia
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology "Georgi D Efremov", Macedonian Academy of Sciences and Arts, 1000 Skopje, North Macedonia, Macedonia.
| |
Collapse
|
14
|
Targeted Analysis of HSP70 Isoforms in Human Spermatozoa in the Context of Capacitation and Motility. Int J Mol Sci 2022; 23:ijms23126497. [PMID: 35742939 PMCID: PMC9224233 DOI: 10.3390/ijms23126497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 01/27/2023] Open
Abstract
HSP70s constitute a family of chaperones, some isoforms of which appear to play a role in sperm function. Notably, global proteomic studies analyzing proteins deregulated in asthenozoospermia, a main cause of male infertility characterized by low sperm motility, showed the dysregulation of some HSP70 isoforms. However, to date, no clear trend has been established since the variations in the abundance of HSP70 isoforms differed between studies. The HSPA2 isoform has been reported to play a key role in fertilization, but its dysregulation and possible relocation during capacitation, a maturation process making the spermatozoon capable of fertilizing an oocyte, is debated in the literature. The aim of the present study was to investigate the fate of all sperm HSP70 isoforms during capacitation and in relation to sperm motility. Using Multiple-Reaction Monitoring (MRM) mass spectrometry, we showed that the relative abundance of all detected isoforms was stable between non-capacitated and capacitated spermatozoa. Immunofluorescence using two different antibodies also demonstrated the stability of HSP70 isoform localization during capacitation. We also investigated spermatozoa purified from 20 sperm samples displaying various levels of total and progressive sperm motility. We showed that the abundance of HSP70 isoforms is not correlated to sperm total or progressive motility.
Collapse
|
15
|
Sperm Phosphoproteome: Unraveling Male Infertility. BIOLOGY 2022; 11:biology11050659. [PMID: 35625387 PMCID: PMC9137924 DOI: 10.3390/biology11050659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022]
Abstract
Infertility affects approximately 15% of couples worldwide of childbearing age, and in many cases the etiology of male infertility is unknown. The current standard evaluation of semen is insufficient to establish an accurate diagnosis. Proteomics techniques, such as phosphoproteomics, applied in this field are a powerful tool to understand the mechanisms that regulate sperm functions such as motility, which is essential for successful fertilization. Among the post-translational modifications of sperm proteins, this review summarizes, from a proteomic perspective, the updated knowledge of protein phosphorylation, in human spermatozoa, as a relevant molecular mechanism involved in the regulation of sperm physiology. Specifically, the role of sperm protein phosphorylation in motility and, consequently, in sperm quality is highlighted. Additionally, through the analysis of published comparative phosphoproteomic studies, some candidate human sperm phosphoproteins associated with low sperm motility are proposed. Despite the remarkable advances in phosphoproteomics technologies, the relatively low number of studies performed in human spermatozoa suggests that phosphoproteomics has not been applied to its full potential in studying male infertility yet. Therefore, further studies will improve the application of this procedure and overcome the limitations, increasing the understanding of regulatory mechanisms underlying protein phosphorylation in sperm motility and, consequently, in male fertility.
Collapse
|
16
|
Proteomic Analysis of Intracellular and Membrane-Associated Fractions of Canine (Canis lupus familiaris) Epididymal Spermatozoa and Sperm Structure Separation. Animals (Basel) 2022; 12:ani12060772. [PMID: 35327169 PMCID: PMC8944539 DOI: 10.3390/ani12060772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Epididymal spermatozoa have great potential in current dog reproductive technologies. In the case of azoospermia or when the male dies, the recovery of epididymal spermatozoa opens new possibilities for reproduction. It is of great importance to analyze the quality of the sperm in such cases. Proteomic studies contribute to explaining the role of proteins at various stages of epididymal sperm maturation and offer potential opportunities to use them as markers of sperm quality. The present study showed, for the first time, mass spectrometry and bioinformatic analysis of intracellular and membrane-associated proteins of canine epididymal spermatozoa. Additionally, sonication was used for the separation of dog epididymal sperm morphological elements (heads, tails and acrosomes). The results revealed the presence of differentially abundant proteins in both sperm protein fractions significant for sperm function and fertilizing ability. It was also shown that these proteins participate in important sperm metabolic pathways, which may suggest their potential as sperm quality biomarkers. Abstract This study was provided for proteomic analysis of intracellular and membrane-associated fractions of canine (Canis lupus familiaris) epididymal spermatozoa and additionally to find optimal sonication parameters for the epididymal sperm morphological structure separation and sperm protein isolation. Sperm samples were collected from 15 dogs. Sperm protein fractions: intracellular (SIPs) and membrane-associated (SMAPs) were isolated. After sonication, sperm morphology was evaluated using Spermac Stain™. The sperm protein fractions were analyzed using gel electrophoresis (SDS-PAGE) and nanoliquid chromatography coupled to quadrupole time-of-flight mass spectrometry (NanoLC-Q-TOF/MS). UniProt database-supported identification resulted in 42 proteins identified in the SIPs and 153 proteins in the SMAPs. Differentially abundant proteins (DAPs) were found in SIPs and SMAPs. Based on a gene ontology analysis, the dominant molecular functions of SIPs were catalytic activity (50%) and binding (28%). Hydrolase activity (33%) and transferase activity (21%) functions were dominant for SMAPs. Bioinformatic analysis of SIPs and SMAPs showed their participation in important metabolic pathways in epididymal sperm, which may suggest their potential as sperm quality biomarkers. The use of sonication 150 W, 10 min, may be recommended for the separation of dog epididymal sperm heads, tails, acrosomes and the protein isolation.
Collapse
|
17
|
Rowlison T, Comizzoli P. The Knowns and Unknowns about Epididymal Extracellular Vesicles in Different Animal Species. Adv Biol (Weinh) 2021; 6:e2101066. [PMID: 34816626 DOI: 10.1002/adbi.202101066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/04/2021] [Indexed: 11/07/2022]
Abstract
Sperm maturation during epididymal transit is a long and complex process. Although the roles of epididymal extracellular vesicles (EVs) on sperm quality have been extensively studied in recent years, there are still a lot of unexplored areas and too few species that are studied. The objective of this review is to focus on the contribution of epididymal EVs through the apocrine secretion of key factors, including proteins and small RNAs. Furthermore, the authors explore the alterations in the content of these vesicles related to male fertility and the effects of environmental stressors, and how these factors vary across taxa. Last, potential applications are covered, and the next steps in that field of research are highlighted.
Collapse
Affiliation(s)
- Tricia Rowlison
- Smithsonian Conservation Biology Institute, National Zoological Park, 3001 Connecticut Avenue NW, Washington, DC, 20008, USA
| | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, 3001 Connecticut Avenue NW, Washington, DC, 20008, USA
| |
Collapse
|
18
|
Hezavehei M, Mirzaei M, Sharafi M, Wu Y, Gupta V, Fitzhenry M, Kouchesfahani HM, Eftekhari-Yazdi P, Baharvand H, Dalman A, Haynes PA, Shahverdi A, Salekdeh GH. Proteomics study reveals the molecular mechanisms underlying cryotolerance induced by mild sublethal stress in human sperm. Cell Tissue Res 2021; 387:143-157. [PMID: 34729646 DOI: 10.1007/s00441-021-03537-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 10/05/2021] [Indexed: 10/19/2022]
Abstract
The preconditioning of human sperm with sublethal nitrosative stress before cryopreservation can potentially improve the thawed sperm quality. However, the underlying mechanisms behind this protective strategy are not entirely understood. We compared the cryosurvival of human sperm exposed to 0.01 μM nitric oxide (NO) throughout the cryopreservation and used multiplexed quantitative proteomics approach to identify changes in the proteome profile of preconditioned sperm cells. Semen samples were obtained from 30 normospermia donors and then each sample was divided into three equal parts: fresh (F), frozen-control (C), and frozen exposed to nitric oxide (NO). The sperm undergoing mild sublethal stress showed higher values for motility and viability compared to the frozen control sperm. Moreover, out of 2912 identified proteins, 248 proteins were detected as differentially abundant proteins (DAPs) between cryopreserved groups and fresh group (F) (p < 0.05). Gene ontology (GO) analysis of differentially abundant proteins indicated that the abundance of proteins associated with glycolysis, gluconeogenesis, and fertilization processes was reduced while oxidative phosphorylation pathway was increased in abundance in cryopreserved sperm compared to the fresh sperm. Moreover, redox protein such as thioredoxin 17 was increased in abundance in the NO group compared to the control freezing group. Therefore, the pre-conditioning of sperm prior to cryopreservation may play an important role in maintaining the redox balance in mitochondria of sperm after freezing. Overall, our results indicate that arylsulfatase A (ARSA), serine protease 37 (PRSS37), and sperm surface protein (SP17) may potentially serve as protein biomarkers associated with screening the fertilization potential of the thawed sperm.
Collapse
Affiliation(s)
- Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.,Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Macquarie University, Sydney, NSW, Australia
| | - Mohsen Sharafi
- Department of Animal Science, College of Agriculture, Tarbiat Modarres University, Tehran, Iran
| | - Yunqi Wu
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | - Vivek Gupta
- Department of Clinical Medicine, Macquarie University, Sydney, NSW, Australia
| | - Matthew Fitzhenry
- Australian Proteome Analysis Facility, Macquarie University, Sydney, NSW, Australia
| | | | - Poopak Eftekhari-Yazdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Azam Dalman
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Paul A Haynes
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.
| | - Ghasem Hosseini Salekdeh
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW, Australia. .,Department of Molecular Systems Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
19
|
Feng Y, Wang R, Su D, Zhai Y, Wang L, Yu L, Zhang Y, Ma X, Ma F. Identifying new sperm Western blot loading controls. Andrologia 2021; 53:e14226. [PMID: 34478154 DOI: 10.1111/and.14226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/31/2021] [Accepted: 08/12/2021] [Indexed: 02/05/2023] Open
Abstract
The measurement of protein expression level plays a pivotal role in both biological and medical studies. Housekeeping proteins, generally encoded by housekeeping genes are used as loading control proteins to normalize protein expression. Obviously, proper reference standards are essential for adequate analysis of protein expression. However, our study showed that the widely used normalisation proteins, whose expression levels varied greatly among sperm samples, were unsuitable for data standardisation. To uncover the proteins steadily expressed in sperm, we analysed several published transcriptome data of sperm. Seven proteins whose expression levels were relatively stable (co-efficient variation values less than 0.35) were selected and further evaluated by quantitative real-time polymerase chain reaction, Western Blot (WB) and immunocytochemistry. Our results showed that among the classical housekeeping proteins, only β-tubulin remained constant in sperm samples from 85 individuals. Compared with other classical housekeeping proteins such as glyceraldehyde 3-phosphate dehydrogenase, actin and histone H3, Cullin-1 (CUL1) and F-box only protein 7 (FBXO7) seemed to be more suitable to be used as internal controls for WB in sperm protein studies. Combined with the locations of these proteins, CUL1 and FBXO7 were suggested to be used as a housekeeping protein for total proteins.
Collapse
Affiliation(s)
- Ying Feng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Ruohan Wang
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dongmei Su
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yujia Zhai
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lin Wang
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lin Yu
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,Human Sperm Bank, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xue Ma
- Department of Pediatric Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Zhao Y, Wang Y, Guo F, Lu B, Sun J, Wang J, Ren Z. iTRAQ-based proteomic analysis of sperm reveals candidate proteins that affect the quality of spermatozoa from boars on plateaus. Proteome Sci 2021; 19:9. [PMID: 34330296 PMCID: PMC8323236 DOI: 10.1186/s12953-021-00177-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 07/09/2021] [Indexed: 01/19/2023] Open
Abstract
Background Tibetan pigs (TP) exhibit heritable adaptations to their hypoxic environments as a result of natural selection. However, candidate proteins that affect the sperm quality of boars on plateaus have not yet been clearly investigated. Methods In this study, to reveal the candidate proteins that affect the quality of spermatozoa of boars on plateaus, we analyzed the sperm quality using computer-assisted semen analysis (CASA) system and reactive oxygen species (ROS) levels. We also compared the proteomes of sperm proteomes between TP and Yorkshire pigs (YP) raised at high altitudes using the isobaric tags for relative and absolute quantitation (iTRAQ) in combination with the liquid chromatography-tandem mass spectrometry (LC–MS/MS) proteomic method, and confirmed the relative expression levels of the four proteins by western blotting. Results The sperm quality of the TP was superior to that of the YP on plateaus. Of the 1,555 quantified proteins, 318 differentially expressed proteins (DEPs) were identified. Gene ontology (GO) analysis revealed that the DEPs were predominantly associated with the sorbitol metabolic process, removal of superoxide radicals, cellular response to superoxide, response to superoxide and regulation of the mitotic spindle assembly. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were mainly enriched in pathways involved in the regulation of the actin cytoskeleton, glutathione metabolism, oxidative phosphorylation, and estrogen signaling. Based on the protein–protein interaction (PPI) network analysis, we identified 8 candidate proteins (FN1, EGF, HSP90B1, CFL1, GPX4, NDUFA6, VDAC2, and CP) that might play important roles and affect the sperm quality of boars on plateaus. Moreover, the relative expression levels of four proteins (CFL1, EGF, FN1, and GPX4) were confirmed by western blot analysis. Conclusions Our study revealed 8 candidate proteins (FN1, EGF, HSP90B1, CFL1, GPX4, NDUFA6, VDAC2, and CP) that affect the sperm quality of boar on plateaus and provide a reference for further studies on improving sperm quality and the molecular breeding of boars on plateaus. Supplementary Information The online version contains supplementary material available at 10.1186/s12953-021-00177-9.
Collapse
Affiliation(s)
- Yanling Zhao
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, P.R. China
| | - Yaomei Wang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, P.R. China
| | - Feipeng Guo
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, P.R. China
| | - Bo Lu
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, P.R. China
| | - Jiale Sun
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, P.R. China
| | - Jianzhou Wang
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, P.R. China
| | - Zili Ren
- College of Animal Science, Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, P.R. China.
| |
Collapse
|
21
|
Liang J, Zheng Y, Zeng W, Chen L, Yang S, Du P, Wang Y, Yu X, Zhang X. Proteomic Profile of Sperm in Infertile Males Reveals Changes in Metabolic Pathways. Protein J 2021; 40:929-939. [PMID: 34213690 PMCID: PMC8593027 DOI: 10.1007/s10930-021-10013-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 11/30/2022]
Abstract
The objective of the present study was to investigate the differences in the proteomic profiles of sperm from infertile males with severe oligoasthenoteratozoospermia requiring intracytoplasmic sperm injection (ICSI) and normal control sperm from fertile males. Isobaric tag for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry was performed for identifying proteins in the sperm of infertile and fertile males. Differentially expressed proteins were analyzed via the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases through the Database for Annotation, Visualization, and Integrated Discovery, and protein-protein networks were produced using the Search Tool for Retrieval of Interacting Genes. Immunofluorescence and western blotting verified the differential expression of Y-box-binding protein 1(YBX1), adenylate kinase 1 (AK1), and aconitase 2, mitochondrial (ACO2) proteins. Altogether, 3444 proteins were identified in the sperm of infertile and fertile males, and 938 were differentially expressed between the two groups. Pairwise comparisons revealed that 226 and 712 proteins were significantly upregulated and downregulated in infertile males, respectively. These proteins were significantly enriched in metabolic pathways as per KEGG enrichment analysis. YBX1 expression was upregulated in the sperm heads of patients requiring ICSI treatment, whereas AK1 and ACO2, which are critical enzymes involved in energy metabolism, were downregulated in the sperm tails of the same patients. This result indicates that metabolism may have a crucial role in maintaining normal sperm function. Overall, our results provide insights that will further help in investigating the pathogenic mechanisms of infertility and possible therapeutic strategies.
Collapse
Affiliation(s)
- Jiaying Liang
- Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400, Guangdong, China
| | - Yichun Zheng
- Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400, Guangdong, China.
| | - Weihong Zeng
- Children Inherit Metabolism and Endocrine Department, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Liuqing Chen
- Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400, Guangdong, China
| | - Shaofen Yang
- Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400, Guangdong, China
| | - Peng Du
- Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400, Guangdong, China
| | - Yujiang Wang
- Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400, Guangdong, China
| | - Xingsu Yu
- Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400, Guangdong, China
| | - Xiqian Zhang
- Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400, Guangdong, China.
| |
Collapse
|
22
|
You JB, McCallum C, Wang Y, Riordon J, Nosrati R, Sinton D. Machine learning for sperm selection. Nat Rev Urol 2021; 18:387-403. [PMID: 34002070 DOI: 10.1038/s41585-021-00465-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 02/04/2023]
Abstract
Infertility rates and the number of couples seeking fertility care have increased worldwide over the past few decades. Over 2.5 million cycles of assisted reproductive technologies are being performed globally every year, but the success rate has remained at ~33%. Machine learning, an automated method of data analysis based on patterns and inference, is increasingly being deployed within the health-care sector to improve diagnostics and therapeutics. This technique is already aiding embryo selection in some fertility clinics, and has also been applied in research laboratories to improve sperm analysis and selection. Tremendous opportunities exist for machine learning to advance male fertility treatments. The fundamental challenge of sperm selection - selecting the most promising candidate from 108 gametes - presents a challenge that is uniquely well-suited to the high-throughput capabilities of machine learning algorithms paired with modern data processing capabilities.
Collapse
Affiliation(s)
- Jae Bem You
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada.,Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Christopher McCallum
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Yihe Wang
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Jason Riordon
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Reza Nosrati
- Department of Mechanical & Aerospace Engineering, Monash University, Clayton, VIC, Australia
| | - David Sinton
- Department of Mechanical & Industrial Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
23
|
Aldahhan RA, Stanton PG. Heat stress response of somatic cells in the testis. Mol Cell Endocrinol 2021; 527:111216. [PMID: 33639219 DOI: 10.1016/j.mce.2021.111216] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/30/2020] [Accepted: 02/15/2021] [Indexed: 02/06/2023]
Abstract
The testis is a temperature-sensitive organ that needs to be maintained 2-7 °C below core body temperature to ensure the production of normal sperm. Failure to maintain testicular temperature in mammals impairs spermatogenesis and leads to low sperm counts, poor sperm motility and abnormal sperm morphology in the ejaculate. This review discusses the recent knowledge on the response of testicular somatic cells to heat stress and, specifically, regarding the relevant contributions of heat, germ cell depletion and inflammatory reactions on the functions of Sertoli and Leydig cells. It also outlines mechanisms of testicular thermoregulation, as well as the thermogenic factors that impact testicular function.
Collapse
Affiliation(s)
- Rashid A Aldahhan
- Department of Anatomy, College of Medicine, Imam Abdulrahman Bin Faisal University, P.O. Box 2114, Dammam, 31541, Saudi Arabia.
| | - Peter G Stanton
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
24
|
Tanga BM, Qamar AY, Raza S, Bang S, Fang X, Yoon K, Cho J. Semen evaluation: methodological advancements in sperm quality-specific fertility assessment - A review. Anim Biosci 2021; 34:1253-1270. [PMID: 33902175 PMCID: PMC8255896 DOI: 10.5713/ab.21.0072] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/30/2021] [Indexed: 11/27/2022] Open
Abstract
Assessment of male fertility is based on the evaluation of sperm. Semen evaluation measures various sperm quality parameters as fertility indicators. However, semen evaluation has limitations, and it requires the advancement and application of strict quality control methods to interpret the results. This article reviews the recent advances in evaluating various sperm-specific quality characteristics and methodologies, with the help of different assays to assess sperm-fertility status. Sperm evaluation methods that include conventional microscopic methods, computer-assisted sperm analyzers (CASA), and flow cytometric analysis, provide precise information related to sperm morphology and function. Moreover, profiling fertility-related biomarkers in sperm or seminal plasma can be helpful in predicting fertility. Identification of different sperm proteins and diagnosis of DNA damage has positively contributed to the existing pool of knowledge about sperm physiology and molecular anomalies associated with different infertility issues in males. Advances in methods and sperm-specific evaluation has subsequently resulted in a better understanding of sperm biology that has improved the diagnosis and clinical management of male factor infertility. Accurate sperm evaluation is of paramount importance in the application of artificial insemination and assisted reproductive technology. However, no single test can precisely determine fertility; the selection of an appropriate test or a set of tests and parameters is required to accurately determine the fertility of specific animal species. Therefore, a need to further calibrate the CASA and advance the gene expression tests is recommended for faster and field-level applications.
Collapse
Affiliation(s)
- Bereket Molla Tanga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea.,Faculty of Veterinary Medicine, Hawassa University, 05, Hawassa, Ethiopia
| | - Ahmad Yar Qamar
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea.,Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang 35200, Sub-campus University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Sanan Raza
- Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang 35200, Sub-campus University of Veterinary and Animal Sciences, Lahore 54000, Pakistan.,Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang 35200, Sub-campus University of Veterinary and Animal Sciences, Lahore 54000, PakistanDepartment of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Aydin 09016, Turkey
| | - Seonggyu Bang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Xun Fang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Kiyoung Yoon
- Department of Companion Animal, Shingu College, Seongnam 13174, Korea
| | - Jongki Cho
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
25
|
Santiago J, Santos MAS, Fardilha M, Silva JV. Stress response pathways in the male germ cells and gametes. Mol Hum Reprod 2021; 26:1-13. [PMID: 31814009 DOI: 10.1093/molehr/gaz063] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/31/2019] [Indexed: 12/20/2022] Open
Abstract
The unfolded protein response (UPR) is a conserved and essential cellular pathway involved in protein quality control that is activated in response to several cellular stressors such as diseases states, ageing, infection and toxins. The cytosol, endoplasmic reticulum (ER) and mitochondria are continuously exposed to new proteins and in situations of aberrant protein folding; one of three lines of defence may be activated: (i) heat-shock response, (ii) mitochondrial UPR and (iii) ER UPR. These pathways lead to different signal transduction mechanisms that activate or upregulate transcription factors that, in turn, regulate genes that increase the cell's ability to correct the conformation of poorly folded proteins or, ultimately, lead to apoptosis. Despite the recent progress in understanding such biological processes, few studies have focused on the implications of the UPR in male infertility, highlighting the need for a first approach concerning the presence of these components in the male reproductive system. In testis, there is a high rate of protein synthesis, and the UPR mechanisms are well described. However, the presence of these mechanisms in spermatozoa, apparently transcriptionally inactive cells, is contentious, and it is unclear how sperm cells deal with stress. Here, we review current concepts and mechanisms of the UPR and highlight the relevance of these stress response pathways in male fertility, especially the presence and functional activation of those components in male germinal cells and spermatozoa.
Collapse
Affiliation(s)
- J Santiago
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193, Aveiro, Portugal
| | - M A S Santos
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193, Aveiro, Portugal
| | - M Fardilha
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193, Aveiro, Portugal
| | - J V Silva
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, 3810-193, Aveiro, Portugal.,Reproductive Genetics and Embryo-fetal Development Group, Institute for Innovation and Health Research (I3S), University of Porto, 4200-135, Porto, Portugal.,Department of Microscopy, Laboratory of Cell Biology, and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
26
|
Martínez-Fresneda L, Sylvester M, Shakeri F, Bunes A, Del Pozo JC, García-Vázquez FA, Neuhoff C, Tesfaye D, Schellander K, Santiago-Moreno J. Differential proteome between ejaculate and epididymal sperm represents a key factor for sperm freezability in wild small ruminants. Cryobiology 2021; 99:64-77. [PMID: 33485896 DOI: 10.1016/j.cryobiol.2021.01.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/14/2021] [Accepted: 01/16/2021] [Indexed: 01/23/2023]
Abstract
Epididymal sperm shows higher cryoresistance than ejaculated sperm. Although the sperm proteome seems to affect cell cryoresistance, studies aiming at identifying proteins involved in sperm freezing-tolerance are scarce. The aims of this study were to investigate differences of sperm freezability and proteome between epididymal and ejaculated sperm in three mountain ungulates: Iberian ibex, Mouflon and Chamois. Sperm samples were cryopreserved in straws by slow freezing. Tandem mass tag-labeled peptides from sperm samples were analyzed by high performance liquid chromatography coupled to a mass spectrometer in three technical replicates. The statistical analysis was done using the moderated t-test of the R package limma. Differences of freezability between both types of sperm were associated with differences of the proteome. Overall, epididymal sperm showed higher freezability than ejaculated sperm. Between 1490 and 1883 proteins were quantified in each species and type of sperm sample. Cross species comparisons revealed a total of 76 proteins that were more abundant in epididymal than in ejaculated sperm in the three species of study whereas 3 proteins were more abundant in ejaculated than epididymal sperm in the three species of study (adjusted P < 0.05; |log2| fold-change > 0.5). Many of the proteins that were associated with higher cryoresistance are involved in stress response and redox homeostasis. In conclusion, marked changes of sperm proteome were detected between epididymal and ejaculated sperm. This work contributes to update the sperm proteome of small ruminants and to identify candidate markers of sperm freezability.
Collapse
Affiliation(s)
- Lucía Martínez-Fresneda
- Department of Animal Reproduction, Spanish National Institute for Agricultural and Food Research and Technology (INIA), Avda Puerta de Hierro km 5.9, 28040, Madrid, Spain; Department of Animal Breeding and Husbandry, Institute of Animal Science, Endenicher Allee 15, University of Bonn, 53115, Bonn, Germany; Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Marc Sylvester
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Farhad Shakeri
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany; Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Andreas Bunes
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany; Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Juan C Del Pozo
- Centre for Biotechnology and Plant Genomic, Polytechnic University of Madrid-National Institute for Agricultural and Food Research and Technology (UPM-INIA), Autopista M-40 Km 38, 28223, Madrid, Spain
| | - Francisco A García-Vázquez
- Department of Physiology, Faculty of Veterinary Science, International Excellence Campus for Higher Education and Research 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Christiane Neuhoff
- Department of Animal Breeding and Husbandry, Institute of Animal Science, Endenicher Allee 15, University of Bonn, 53115, Bonn, Germany
| | - Dawit Tesfaye
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory, Colorado State University, 3105 Rampart Rd, 80521, Fort Collins, CO, USA
| | - Karl Schellander
- Department of Animal Breeding and Husbandry, Institute of Animal Science, Endenicher Allee 15, University of Bonn, 53115, Bonn, Germany
| | - Julian Santiago-Moreno
- Department of Animal Reproduction, Spanish National Institute for Agricultural and Food Research and Technology (INIA), Avda Puerta de Hierro km 5.9, 28040, Madrid, Spain.
| |
Collapse
|
27
|
Dias TR, Agarwal A, Pushparaj PN, Ahmad G, Sharma R. Reduced semen quality in patients with testicular cancer seminoma is associated with alterations in the expression of sperm proteins. Asian J Androl 2020; 22:88-93. [PMID: 31006710 PMCID: PMC6958970 DOI: 10.4103/aja.aja_17_19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Testicular cancer seminoma is one of the most common types of cancer among men of reproductive age. Patients with this condition usually present reduced semen quality, even before initiating cancer therapy. However, the underlying mechanisms by which testicular cancer seminoma affects male fertility are largely unknown. The aim of this study was to investigate alterations in the sperm proteome of men with seminoma undergoing sperm banking before starting cancer therapy, in comparison to healthy proven fertile men (control group). A routine semen analysis was conducted before cryopreservation of the samples (n = 15 per group). Men with seminoma showed a decrease in sperm motility (P = 0.019), total motile count (P = 0.001), concentration (P = 0.003), and total sperm count (P = 0.001). Quantitative proteomic analysis identified 393 differentially expressed proteins between the study groups. Ten proteins involved in spermatogenesis, sperm function, binding of sperm to the oocyte, and fertilization were selected for validation by western blot. We confirmed the underexpression of heat shock-related 70 kDa protein 2 (P = 0.041), ubiquinol-cytochrome C reductase core protein 2 (P = 0.026), and testis-specific sodium/potassium-transporting ATPase subunit alpha-4 (P = 0.016), as well as the overexpression of angiotensin I converting enzyme (P = 0.005) in the seminoma group. The altered expression levels of these proteins are associated with spermatogenesis dysfunction, reduced sperm kinematics and motility, failure in capacitation and fertilization. The findings of this study may explain the decrease in the fertilizing ability of men with seminoma before starting cancer therapy.
Collapse
Affiliation(s)
- Tânia R Dias
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.,Department of Health Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã 6201-001, Portugal.,Department of Microscopy and Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto 4050-313, Portugal
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Peter N Pushparaj
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, Jeddah 21589, Saudi Arabia
| | - Gulfam Ahmad
- Division of Pathology, School of Medical Sciences, Sydney University, Lidcombe NSW 2141, Australia
| | - Rakesh Sharma
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
28
|
Belardin LB, de Andrade MBR, Intasqui P, Spaine DM, Bertolla RP, Antoniassi MP. Restoration of the apoptosis pathways' proteins levels after orchiectomy in testicular tumour patients. Andrologia 2020; 52:e13846. [PMID: 33070399 DOI: 10.1111/and.13846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 11/27/2022] Open
Abstract
Seminal plasma proteins already demonstrated to reflect the testicular environment function and important regulatory mechanisms. However, it is crucial to understand which of these proteins participate in probable altered pathways in testicular germ cell tumours and after unilateral orchiectomy. In this study, we proposed to verify, by a multiplex approach, the levels of DNA damage and apoptosis pathways' proteins, in seminal plasma of men before and after unilateral orchiectomy, and also in control men. Comparing pre- and post-orchiectomy groups, just the apoptosis pathways' proteins presented different levels, in which Bad was lower and Bcl2, Akt, caspase-9, p53 and caspase-8 were higher after orchiectomy. When comparing pre- and post-orchiectomy groups with control, both presented lower levels of ChK1, Chk2, H2AX, p53 and p21, for DNA damage pathway. Regarding the apoptosis pathway, lower levels of JNK, Bcl2, Akt, caspase-9, p53 and caspase-8 and higher levels of Bad were observed before orchiectomy. The post-orchiectomy group did not differ from controls, demonstrating a probable restoration on its proteins levels. We can conclude that testicular tumours can alter both of the assessed pathways, and its removal is associated with a probable restoration of the apoptosis pathway.
Collapse
Affiliation(s)
- Larissa Berloffa Belardin
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Paula Intasqui
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Deborah Montagnini Spaine
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ricardo Pimenta Bertolla
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil.,Hospital São Paulo, São Paulo, Brazil
| | - Mariana Pereira Antoniassi
- Department of Surgery, Division of Urology, Human Reproduction Section, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Candenas L, Chianese R. Exosome Composition and Seminal Plasma Proteome: A Promising Source of Biomarkers of Male Infertility. Int J Mol Sci 2020; 21:E7022. [PMID: 32987677 PMCID: PMC7583765 DOI: 10.3390/ijms21197022] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/09/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023] Open
Abstract
Infertility has become a global health issue, with approximately 50% of infertility cases generated by disorders in male reproduction. Spermatozoa are conveyed towards female genital tracts in a safe surrounding provided by the seminal plasma. Interestingly, this dynamically changing medium is a rich source of proteins, essential not only for sperm transport, but also for its protection and maturation. Most of the seminal proteins are acquired by spermatozoa in transit through exosomes (epididymosomes and prostasomes). The high number of seminal proteins, the increasing knowledge of their origins and biological functions and their differential expression in the case of azoospermia, asthenozoospermia, oligozoospermia and teratozoospermia or other conditions of male infertility have allowed the identification of a wide variety of biomarker candidates and their involvement in biological pathways, thus to strongly suggest that the proteomic landscape of seminal plasma may be a potential indicator of sperm dysfunction. This review summarizes the current knowledge in seminal plasma proteomics and its potentiality as a diagnostic tool in different degrees of male infertility.
Collapse
Affiliation(s)
- Luz Candenas
- Instituto de Investigaciones Químicas, CSIC, Avenida Américo Vespucio 49, 41092 Sevilla, Spain;
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, via Costantinopoli 16, 80138 Napoli, Italy
| |
Collapse
|
30
|
Distinct Proteomic Profile of Spermatozoa from Men with Seminomatous and Non-Seminomatous Testicular Germ Cell Tumors. Int J Mol Sci 2020; 21:ijms21144817. [PMID: 32650378 PMCID: PMC7404221 DOI: 10.3390/ijms21144817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/19/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) are predominant in young males (15–44 years). Seminomatous and non-seminomatous TGCTs account for about 98% of all TGCTs cases. In this study, we aimed to compare the sperm proteome of patients with seminomatous and non-seminomatous TGCTs to identify possible protein biomarkers that could help distinguish between them in a non-invasive manner. We analyzed semen samples from patients with seminomatous or non-seminomatous TGCTs (n = 15/group) that were cryopreserved before the start of cancer treatment. Quantitative proteomic analysis was conducted on pooled samples (n = 3/group) and a total of 258 differentially expressed proteins (DEPs) were identified. The overexpression of acrosin precursor (ACR) and chaperonin containing TCP1 subunit 6B (CCT6B) as well as the underexpression of S100 calcium-binding protein A9 (S100A9) in the spermatozoa of patients with non-seminomatous TGCTs were validated by western blotting conducted on individual samples (n = 6 for seminomatous group and n = 6 for non-seminomatous group). Our overall results suggest an association between the higher and faster invasiveness of non-seminomatous TGCTs and the altered protein expressions, providing important information for future studies.
Collapse
|
31
|
Panner Selvam MK, Finelli R, Agarwal A, Henkel R. Proteomics and metabolomics - Current and future perspectives in clinical andrology. Andrologia 2020; 53:e13711. [PMID: 32598566 DOI: 10.1111/and.13711] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Proteomics and metabolomics are emerging as promising tools to investigate the molecular mechanisms associated with male infertility. Proteins and metabolites play a pivotal role in regulating the molecular pathways associated with physiological functions of spermatozoa. Semen analysis, physical examination and laboratory work up cannot identify the etiology of infertility in 30%-40% of cases, which are classified as idiopathic. Therefore, the application of proteomics and metabolomics in the field of andrology will aid to overcome the limitations of the standard semen analysis. Understanding the molecular pathways associated with male infertility will help in planning ad hoc treatments, contributing to the clinical management of infertile patients. In this review, proteomics and metabolomics studies on spermatozoa and seminal plasma are discussed with a focus on molecular biomarkers associated with male infertility-related conditions.
Collapse
Affiliation(s)
| | - Renata Finelli
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
32
|
Martins AD, Panner Selvam MK, Agarwal A, Alves MG, Baskaran S. Alterations in seminal plasma proteomic profile in men with primary and secondary infertility. Sci Rep 2020; 10:7539. [PMID: 32372034 PMCID: PMC7200760 DOI: 10.1038/s41598-020-64434-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023] Open
Abstract
Proteome of seminal plasma provides profound information related to the male reproductive health. This pilot study was conducted to characterize proteomic profile of seminal plasma from men with primary, or secondary infertility and compare it with proven fertile men. Study participants (n = 59) were recruited at the Cleveland Clinic and divided according to their fertility status: proven fertile (n = 39); primary infertility (n = 11) and secondary infertility (n = 9). Proteomic shotgun analysis revealed a total of 515 peptides common to primary infertility and control group; whereas 523 peptides were common to secondary infertility and control group. Bioinformatic analysis revealed dysregulation of biological processes such as cell secretion and vesicle mediated transport in primary infertility, whereas immune system response, regulation of proteolysis and iron homeostasis were dysregulated in secondary infertility. Western blot validation showed overexpression of ANXA2 and CDC42, and underexpression of SEMG2 proteins in primary infertility; and overexpression of ANXA2 and APP proteins in secondary infertility. This study elucidates the potential role of differentially expressed proteins in the seminal plasma as diagnostic biomarker for primary and secondary infertility. Furthermore, our results suggest maturation failure and immune reaction response as the main cause of infertility in men with primary and secondary infertility, respectively. Additional validation of the proteins involved in the above pathways is warranted.
Collapse
Affiliation(s)
- Ana D Martins
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
| | | | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
| | - Marco G Alves
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
33
|
Agarwal A, Baskaran S, Panner Selvam MK, Barbăroșie C, Master K. Unraveling the Footsteps of Proteomics in Male Reproductive Research: A Scientometric Approach. Antioxid Redox Signal 2020; 32:536-549. [PMID: 31861964 DOI: 10.1089/ars.2019.7945] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significance: Male reproductive research at molecular level has gained more attention as it offers the cellular mechanisms and biological pathways implicated in the reproductive physiology. Several researchers across the world have used global proteomic approach in conjunction with advanced bioinformatics software to identify putative biomarkers for various male infertility conditions. Recent Advances: Introduction of advance proteomic platforms has made it easier to generate enormous amount of data in a short period of time. In this article, we have reviewed the functional and comparative proteomic studies in the area of male reproductive research. We have discussed the key proteins and associated cellular pathways such as oxidative phosphorylation and mitochondrial dysfunction implicated in the various male infertility conditions. Furthermore, for the first time scientometric approach was used to analyze the publication trends and hot topics in proteomics of male reproductive research. Critical Issues: Analysis of publication trends revealed that majority of the published studies were focused on varicocele and asthenozoospermia, while very limited research has been conducted on assisted reproductive technology (ART). This area of research requires more attention as it would facilitate identification of novel biomarkers to catalogue proteomic characteristics of spermatozoa for achieving better results in ART. Future Directions: Future research should be focused on the development and validation of a biomarker panel for specific male infertility scenarios based on etiology. Translation of validated proteomic biomarkers into tests or assays for male infertility conditions would enable the physician to provide better management for the patients.
Collapse
Affiliation(s)
- Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio
| | | | - Cătălina Barbăroșie
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio.,Department of Genetics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Kruyanshi Master
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
34
|
Abstract
Personalized medicine gathers the most relevant data involved in human health. Currently, the diagnosis of male infertility is limited to spermiogram, which does not provide information on the male fertile potential. New diagnostic methods are required. The application of omics techniques in the study of male reproductive health renders a huge amount of data providing numerous novel infertility biomarkers, from genes to metabolites, to diagnose the cause of male infertility. Recent studies hold the promise that these biomarkers will allow a noninvasive infertility diagnosis and the improvement of the sperm selection techniques.
Collapse
Affiliation(s)
- Nicolás Garrido
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI (IUIVI), Avda. Fernando Abril Martorell, nº106, Torre A, Planta 1(a), Valencia 46026, Spain.
| | - Irene Hervás
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI (IUIVI), Avda. Fernando Abril Martorell, nº106, Torre A, Planta 1(a), Valencia 46026, Spain
| |
Collapse
|
35
|
Martin-Hidalgo D, Serrano R, Zaragoza C, Garcia-Marin LJ, Bragado MJ. Human sperm phosphoproteome reveals differential phosphoprotein signatures that regulate human sperm motility. J Proteomics 2020; 215:103654. [DOI: 10.1016/j.jprot.2020.103654] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/09/2020] [Accepted: 01/18/2020] [Indexed: 12/20/2022]
|
36
|
Agarwal A, Panner Selvam MK, Baskaran S. Proteomic Analyses of Human Sperm Cells: Understanding the Role of Proteins and Molecular Pathways Affecting Male Reproductive Health. Int J Mol Sci 2020; 21:ijms21051621. [PMID: 32120839 PMCID: PMC7084638 DOI: 10.3390/ijms21051621] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Human sperm proteomics research has gained increasing attention lately, which provides complete information about the functional state of the spermatozoa. Changes in the sperm proteome are evident in several male infertility associated conditions. Global proteomic tools, such as liquid chromatography tandem mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight, are used to profile the sperm proteins to identify the molecular pathways that are defective in infertile men. This review discusses the use of proteomic techniques to analyze the spermatozoa proteome. It also highlights the general steps involved in global proteomic approaches including bioinformatic analysis of the sperm proteomic data. Also, we have presented the findings of major proteomic studies and possible biomarkers in the diagnosis and therapeutics of male infertility. Extensive research on sperm proteome will help in understanding the role of fertility associated sperm proteins. Validation of the sperm proteins as biomarkers in different male infertility conditions may aid the physician in better clinical management.
Collapse
|
37
|
Chen W, Guo X, Jin Z, Li R, Shen L, Li W, Cai W, Zhang G. Transcriptional alterations of genes related to fertility decline in male rats induced by chronic sleep restriction. Syst Biol Reprod Med 2020; 66:99-111. [DOI: 10.1080/19396368.2019.1678694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wenyang Chen
- Hebei Provincial Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou, China
- Research and Development Department, Peking Medriv Academy of Genetics and Reproduction, Peking, China
| | - Xingdao Guo
- Research and Development Department, Peking Medriv Academy of Genetics and Reproduction, Peking, China
| | - Zhiping Jin
- Research and Development Department, Peking Medriv Academy of Genetics and Reproduction, Peking, China
| | - Runan Li
- Hebei Provincial Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou, China
- Research and Development Department, Peking Medriv Academy of Genetics and Reproduction, Peking, China
| | - Lixia Shen
- Hebei Provincial Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou, China
| | - Wei Li
- Hebei Provincial Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou, China
| | - Wangting Cai
- Research and Development Department, Peking Medriv Academy of Genetics and Reproduction, Peking, China
| | - Guirong Zhang
- Hebei Provincial Key Laboratory of Neuropharmacology, Department of Pharmacy, Hebei North University, Zhangjiakou, China
- Research and Development Department, Peking Medriv Academy of Genetics and Reproduction, Peking, China
| |
Collapse
|
38
|
Agarwal A, Panner Selvam MK, Samanta L, Vij SC, Parekh N, Sabanegh E, Tadros NN, Arafa M, Sharma R. Effect of Antioxidant Supplementation on the Sperm Proteome of Idiopathic Infertile Men. Antioxidants (Basel) 2019; 8:E488. [PMID: 31623114 PMCID: PMC6827009 DOI: 10.3390/antiox8100488] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 12/17/2022] Open
Abstract
Antioxidant supplementation in idiopathic male infertility has a beneficial effect on semen parameters. However, the molecular mechanism behind this effect has not been reported. The objective of this study was to evaluate the sperm proteome of idiopathic infertile men pre- and post-antioxidant supplementation. Idiopathic infertile men were provided with oral antioxidant supplementation once daily for a period of 6 months. Of the 379 differentially expressed proteins (DEPs) between pre- and post-antioxidant treatment patients, the majority of the proteins (n = 274) were overexpressed following antioxidant treatment. Bioinformatic analysis revealed the activation of oxidative phosphorylation pathway and upregulation of key proteins involved in spermatogenesis, sperm maturation, binding of sperm, fertilization and normal reproductive function. In addition, the transcriptional factors associated with antioxidant defense system (PPARGC1A) and free radical scavenging (NFE2L2) were predicted to be functionally activated post-treatment. Key DEPs, namely, NDUFS1, CCT3, PRKARA1 and SPA17 validated by Western blot showed significant overexpression post-treatment. Our novel proteomic findings suggest that antioxidant supplementation in idiopathic infertile men improves sperm function at the molecular level by modulating proteins involved in CREM signaling, mitochondrial function and protein oxidation. Further, activation of TRiC complex helped in nuclear compaction, maintenance of telomere length, flagella function, and expression of zona pellucida receptors for sperm-oocyte interaction.
Collapse
Affiliation(s)
- Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
- Department of Urology, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Manesh Kumar Panner Selvam
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
- Department of Urology, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Luna Samanta
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
- Redox Biology Laboratory, Department of Zoology, Ravenshaw University, Cuttack 753003, India.
| | - Sarah C Vij
- Department of Urology, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Neel Parekh
- Department of Urology, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Edmund Sabanegh
- Department of Urology, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Nicholas N Tadros
- Division of Urology, Southern Illinois University School of Medicine, Springfield, IL 62769, USA.
| | - Mohamed Arafa
- Department of Urology, Hamad Medical Corporation, Doha 00974, Qatar.
| | - Rakesh Sharma
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
- Department of Urology, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
39
|
Panner Selvam MK, Agarwal A, Pushparaj PN, Baskaran S, Bendou H. Sperm Proteome Analysis and Identification of Fertility-Associated Biomarkers in Unexplained Male Infertility. Genes (Basel) 2019; 10:genes10070522. [PMID: 31336797 PMCID: PMC6678187 DOI: 10.3390/genes10070522] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 01/13/2023] Open
Abstract
Up to 30% of men with normal semen parameters suffer from infertility and the reason for this is unknown. Altered expression of sperm proteins may be a major cause of infertility in these men. Proteomic profiling was performed on pooled semen samples from eight normozoospermic fertile men and nine normozoospermic infertile men using LC-MS/MS. Furthermore, key differentially expressed proteins (DEPs) related to the fertilization process were selected for validation using Western blotting. A total of 1139 and 1095 proteins were identified in normozoospermic fertile and infertile men, respectively. Of these, 162 proteins were identified as DEPs. The canonical pathway related to free radical scavenging was enriched with upregulated DEPs in normozoospermic infertile men. The proteins associated with reproductive system development and function, and the ubiquitination pathway were underexpressed in normozoospermic infertile men. Western blot analysis revealed the overexpression of annexin A2 (ANXA2) (2.03 fold change; P = 0.0243), and underexpression of sperm surface protein Sp17 (SPA17) (0.37 fold change; P = 0.0205) and serine protease inhibitor (SERPINA5) (0.32 fold change; P = 0.0073) in men with unexplained male infertility (UMI). The global proteomic profile of normozoospermic infertile men is different from that of normozoospermic fertile men. Our data suggests that SPA17, ANXA2, and SERPINA5 may potentially serve as non-invasive protein biomarkers associated with the fertilization process of the spermatozoa in UMI.
Collapse
Affiliation(s)
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hocine Bendou
- South African National Bioinformatics Institute (SANBI), SA Medical Research Council Bioinformatics Unit, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| |
Collapse
|
40
|
Panner Selvam MK, Agarwal A, Dias TR, Martins AD, Baskaran S, Samanta L. Round cells do not contaminate or mask human sperm proteome in proteomic studies using cryopreserved samples. Andrologia 2019; 51:e13325. [PMID: 31168855 DOI: 10.1111/and.13325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/21/2019] [Accepted: 05/05/2019] [Indexed: 12/14/2022] Open
Abstract
Semen contains leucocytes and round cells, besides spermatozoa. The objective of this study was to identify whether the proteins from round cells and leucocytes affect the proteomic analysis of spermatozoa. Cryopreserved human sperm samples were divided into four groups: (1) samples with ≥1 × 106 /ml leucocytes unprocessed; (2) samples with ≥1 × 106 /ml leucocytes processed by 65% density centrifugation; (3) samples with round cells <1 × 106 /ml unprocessed; and (4) samples with round cells <1 × 106 /ml processed by 65% density centrifugation. Samples from each group (1, 2, 3 and 4) were pooled (n = 5) for quantitative proteomic analysis using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Comparative analysis revealed nine differentially expressed proteins (DEPs) groups 1 and 2. Moreover, five DEPs were identified between groups 3 and 4. We observed that cylicin-1, Atlastin-1 and vesicle transport protein SFT2B are specific to spermatozoa, and none of them were associated with leucocytes. The number of DEPs in spermatozoa of processed and unprocessed cryopreserved semen samples was negligible. Our results indicate that the presence of round cells (<1 × 106 /ml) in the seminal ejaculation does not interfere in the accurate detection of spermatozoa proteome by LC-MS/MS.
Collapse
Affiliation(s)
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Tânia R Dias
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio.,Universidade da Beira Interior, Covilhã, Portugal.,Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
| | - Ana D Martins
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio.,Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio
| | - Luna Samanta
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio.,Redox biology Laboratory, Department of Zoology, Ravenshaw University, Cuttack, India
| |
Collapse
|
41
|
Otasevic V, Kalezic A, Macanovic B, Jankovic A, Stancic A, Garalejic E, Korac A, Korac B. Evaluation of the antioxidative enzymes in the seminal plasma of infertile men: Contribution to classic semen quality analysis. Syst Biol Reprod Med 2019; 65:343-349. [PMID: 30964348 DOI: 10.1080/19396368.2019.1600171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Protein expression/activity of antioxidative defense enzymes (AD) in seminal plasma of fertile men might be used as biomarkers of male fertility status. To test this concept, the present study examined the semen parameters of males among 14 normal idiopathic (normozoospermia) and 84 subnormal (teratozoospermia, oligoteratozoospermia, oligoasthenoteratozoospermia) infertile individuals\. We investigated levels of protein expression/activity of Cu, Zn superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD), catalase and glutathione peroxidase (GSH-Px), their association with functional sperm parameters, as well as their potential to serve as biomarkers of specific sperm pathologies. Although the activity of CuZnSOD and protein expression of catalase were significantly correlated with several sperm parameters, underlying their potential role in etiology of various sperm abnormalities, investigation of their potential usefulness as a biomarker of semen quality showed that these AD enzymes could not distinguish subtle differences between various sperm pathologies. In contrast, GSH-Px activity was decreased in all groups with sperm pathologies and was a very good indicator of aberrations in functional sperm parameters, explaining up to 94.6% of infertility cases where functional sperm parameters were affected. Therefore, assessment of GSH-Px activity showed the potential to discriminate between infertile males with normal and subnormal semen characteristics and may prove useful in the evaluation of male (in)fertility. Abbreviations: AD: antioxidative defense; Cu, Zn SOD: copper, zinc superoxide dismutase; GSH-Px: glutathione peroxidase; MnSOD: manganese superoxide dismutase; NS: normospermia; OATS: oligoasthenoteratozoospermia; OTS: oligoteratozoospermia; ROC: receiver operating characteristic; ROS: reactive oxygen species; TS: teratozoospermia; WHO: world health organization.
Collapse
Affiliation(s)
- Vesna Otasevic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade , Belgrade , Serbia
| | - Andjelika Kalezic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade , Belgrade , Serbia
| | - Biljana Macanovic
- IVF Department, The Clinic of Gynecology and Obstetrics "Narodni front" , Belgrade , Serbia
| | - Aleksandra Jankovic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade , Belgrade , Serbia
| | - Ana Stancic
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade , Belgrade , Serbia
| | - Eliana Garalejic
- IVF Department, The Clinic of Gynecology and Obstetrics "Narodni front" , Belgrade , Serbia
| | - Aleksandra Korac
- Faculty of Biology, Institute of Zoology and Center for Electron Microscopy, University of Belgrade , Belgrade , Serbia
| | - Bato Korac
- Department of Physiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade , Belgrade , Serbia
| |
Collapse
|
42
|
Zhu F, Yan P, Zhang J, Cui Y, Zheng M, Cheng Y, Guo Y, Yang X, Guo X, Zhu H. Deficiency of TPPP2, a factor linked to oligoasthenozoospermia, causes subfertility in male mice. J Cell Mol Med 2019; 23:2583-2594. [PMID: 30680919 PMCID: PMC6433727 DOI: 10.1111/jcmm.14149] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/14/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022] Open
Abstract
Oligoasthenozoospermia is a major cause of male infertility; however, its etiology and pathogenesis are unclear and may be associated with specific gene abnormalities. This study focused on Tppp2 (tubulin polymerization promoting protein family member 2), whose encoded protein localizes in elongating spermatids at stages IV‐VIII of the seminiferous epithelial cycle in testis and in mature sperm in the epididymis. In human and mouse sperm, in vitro inhibition of TPPP2 caused significantly decreased motility and ATP content. Studies on Tppp2 knockout (KO) mice demonstrated that deletion of TPPP2 resulted in male subfertility with a significantly decreased sperm count and motility. In Tppp2−/− mice, increased irregular mitochondria lacking lamellar cristae, abnormal expression of electron transfer chain molecules, lower ATP levels, decreased mitochondrial membrane potential and increased apoptotic index were observed in sperm, which could be the potential causes for its oligoasthenozoospermia phenotype. Moreover, we identified a potential TPPP2‐interactive protein, eEf1b (eukaryotic translation elongation factor 1 beta), which plays an important role in protein translation extension. Thus, TPPP2 is probably a potential pathogenic factor in oligoasthenozoospermia. Deficiency of TPPP2 might affect the translation of specific proteins, altering the structure and function of sperm mitochondria, and resulting in decreased sperm count, motility and fertility.
Collapse
Affiliation(s)
- Feng Zhu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Peipei Yan
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China.,Department of Pathology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital Nanjing, China
| | - Jingjing Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Meimei Zheng
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Yiwei Cheng
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xiaoyu Yang
- Clinical Center of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Hui Zhu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
43
|
Panner Selvam MK, Agarwal A, Dias TR, Martins AD, Samanta L. Presence of Round Cells Proteins do not Interfere with Identification of Human Sperm Proteins from Frozen Semen Samples by LC-MS/MS. Int J Mol Sci 2019; 20:ijms20020314. [PMID: 30646561 PMCID: PMC6359632 DOI: 10.3390/ijms20020314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 12/22/2022] Open
Abstract
In sperm proteomic experiments round cells and leukocyte proteins are profiled along with sperm proteome. The influence of round cell and leukocyte proteins on the sperm proteome has not been investigated. The objective of this study was to identify if the proteins from round cells, including leukocytes, interfere with the proteomic analysis of spermatozoa in frozen semen samples. Proteomic profiling of sperm was performed using liquid chromatography-tandem mass spectrometry in four groups: Group 1 contained neat semen with round cells and leukocytes ≥ 1 × 106/mL, group 2 contained neat semen with round cells ≥ 1 × 106/mL that was processed by 65% density gradient to remove the round cells and leukocytes, group 3 contained neat semen with round cells < 1 × 106/mL, and group 4 contained neat semen with round cells < 1 × 106/mL that was processed by 65% density gradient to remove the round cells. Pure leukocyte culture was used as control group. A total of 1638, 1393, 1755, and 1404 proteins were identified in groups 1, 2, 3, and 4, respectively. Comparative analysis of group 1 vs. 3 revealed 26 (1.18%) differentially expressed proteins (DEPs). On the other hand, only 6 (0.31%) DEPs were observed with group 2 vs. 4. Expression of these DEPs were either absent or very low in the control group. The results of our proteomics analysis failed to show any influence of non-spermatogenic round cell proteins on sperm proteome identification. These results validate the use of neat semen samples for sperm proteomic studies.
Collapse
Affiliation(s)
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Tânia R Dias
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
- Universidade da Beira Interior, 6201-001 Covilhã, Portugal.
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, 4050-313 Porto, Portugal.
| | - Ana D Martins
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, 4050-313 Porto, Portugal.
| | - Luna Samanta
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
- Redox Biology Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack 753003, India.
| |
Collapse
|
44
|
Munuce MJ, Marini PE, Teijeiro JM. Expression profile and distribution of Annexin A1, A2 and A5 in human semen. Andrologia 2019; 51:e13224. [DOI: 10.1111/and.13224] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/17/2018] [Accepted: 11/29/2018] [Indexed: 12/25/2022] Open
Affiliation(s)
- María José Munuce
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas; CONICET, Universidad Nacional de Rosario; Rosario Argentina
| | - Patricia Estela Marini
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas; CONICET, Universidad Nacional de Rosario; Rosario Argentina
- Consejo de Investigaciones de la Universidad Nacional de Rosario and Instituto de Biología Molecular y Celular de Rosario, IBR-CONICET; Rosario Argentina
| | - Juan Manuel Teijeiro
- Laboratorio de Medicina Reproductiva, Facultad de Ciencias Bioquímicas y Farmacéuticas; CONICET, Universidad Nacional de Rosario; Rosario Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET; Rosario Argentina
| |
Collapse
|
45
|
Panner Selvam MK, Agarwal A, Dias TR, Martins AD, Baskaran S, Samanta L. Molecular Pathways Associated with Sperm Biofunction Are Not Affected by the Presence of Round Cell and Leukocyte Proteins in Human Sperm Proteome. J Proteome Res 2018; 18:1191-1197. [DOI: 10.1021/acs.jproteome.8b00829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Tânia R. Dias
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio 44195, United States
- Universidade da Beira Interior, 6201-001 Covilhã, Portugal
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, 4050-313 Porto, Portugal
| | - Ana D. Martins
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio 44195, United States
- Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, 4050-313 Porto, Portugal
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio 44195, United States
| | - Luna Samanta
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio 44195, United States
- Redox Biology Laboratory, Department of Zoology, Ravenshaw University, Cuttack, Odisha 753003, India
| |
Collapse
|
46
|
Dias TR, Agarwal A, Pushparaj PN, Ahmad G, Sharma R. New Insights on the Mechanisms Affecting Fertility in Men with Non-Seminoma Testicular Cancer before Cancer Therapy. World J Mens Health 2018; 38:198-207. [PMID: 30588784 PMCID: PMC7076305 DOI: 10.5534/wjmh.180099] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/22/2018] [Accepted: 11/25/2018] [Indexed: 01/02/2023] Open
Abstract
Purpose Patients with non-seminoma testicular cancer (NSTC) cancer can be subfertile or infertile, and present reduced sperm quality, but the underlying mechanisms are unknown. The aim of this study was to compare the sperm proteome of patients with NSTC, who cryopreserved their sperm before starting cancer treatment, with that from healthy fertile men. Materials and Methods Semen volume, sperm motility and sperm concentration were evaluated before the cryopreservation of samples from patients with NSTC (n=15) and the control group (n=15). Sperm proteomic analysis was performed by liquid chromatography-tandem mass spectrometry and the differentially expressed proteins (DEPs) between the two groups were identified using bioinformatic tools. Results A total of 189 DEPs was identified in the dataset, from which five DEPs related to sperm function and fertilization were selected for validation by Western blot. We were able to validate the underexpression of the mitochondrial complex subunits NADH:Ubiquinone Oxidoreductase Core Subunit S1 (NDUFS1) and ubiquinol-cytochrome C reductase core protein 2 (UQCRC2), as well as the underexpression of the testis-specific sodium/potassium-transporting ATPase subunit alpha-4 (ATP1A4) in the NSTC group. Conclusions Our results indicate that sperm mitochondrial dysfunction may explain the observed decrease in sperm concentration, total sperm count and total motile count in NSTC patients. The identified DEPs may serve as potential biomarkers for the pathophysiology of subfertility/infertility in patients with NSTC. Our study also associates the reduced fertilizing ability of NSTC patients with the dysregulation of important sperm molecular mechanisms.
Collapse
Affiliation(s)
- Tania R Dias
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Universidade da Beira Interior, Covilhã, Portugal.,Department of Microscopy, Laboratory of Cell Biology, Institute of Biomedical Sciences Abel Salazar and Unit for Multidisciplinary Research in Biomedicine, University of Porto, Porto, Portugal
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.
| | - Peter N Pushparaj
- Center of Excellence in Genomic Medicine Research, Faculty of Applied Medical Sciences, Jeddah, Saudi Arabia
| | - Gulfam Ahmad
- Division of Pathology, School of Medical Sciences, Sydney University, Sydney, Australia
| | - Rakesh Sharma
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|