1
|
Grazia Mele V, Chioccarelli T, Diano N, Cappetta D, Ferraro B, Telesca M, Moggio M, Porreca V, De Angelis A, Berrino L, Fasano S, Cobellis G, Chianese R, Manfrevola F. Variation of sperm quality and circular RNA content in men exposed to environmental contamination with heavy metals in 'Land of Fires', Italy. Hum Reprod 2024; 39:1628-1644. [PMID: 38885964 PMCID: PMC11291948 DOI: 10.1093/humrep/deae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/13/2024] [Indexed: 06/20/2024] Open
Abstract
STUDY QUESTION Can illegal discharge of toxic waste into the environment induce a new condition of morpho-epigenetic pathozoospermia in normozoospermic young men? SUMMARY ANSWER Toxic environmental contaminants promote the onset of a new pathozoospermic condition in young normozoospermic men, consisting of morpho-functional defects and a sperm increase of low-quality circular RNA (circRNA) cargo, tightly linked to contaminant bioaccumulation in seminal plasma. WHAT IS KNOWN ALREADY Epidemiological findings have reported several reproductive anomalies depending on exposure to contaminants discharged into the environment, such as germ cell apoptosis, steroidogenesis defects, oxidative stress induction, blood-testis barrier dysfunctions, and poor sperm quality onset. In this scenario, a vast geographical area located in Campania, Italy, called the 'Land of Fires', has been associated with an excessive illegal discharge of toxic waste into the environment, negatively impacting human health, including male reproductive functions. STUDY DESIGN, SIZE, DURATION Semen samples were obtained from healthy normozoospermic men divided into two experimental groups, consisting of men living in the 'Land of Fires' (LF; n = 80) or not (CTRL; n = 80), with age ranging from 25 to 40 years. The study was carried out following World Health Organization guidelines. PARTICIPANTS/MATERIALS, SETTING, METHODS Quality parameters of semen from CTRL- and LF-normozoospermic men were evaluated by computer-assisted semen analysis; high-quality spermatozoa from CTRL and LF groups (n = 80 for each experimental group) were obtained using a 80-40% discontinuous centrifugation gradient. Seminal plasma was collected following centrifugation and used for the dosage of chemical elements, dioxins and steroid hormones by liquid chromatography with tandem mass spectrometry. Sperm morpho-functional investigations (cellular morphology, acrosome maturation, IZUMO1 fertility marker analysis, plasma membrane lipid state, oxidative stress) were assessed on the purified high-quality spermatozoa fraction by immunochemistry/immunofluorescence and western blot analyses. Sperm circRNA cargo was evaluated by quantitative RT-PCR, and the physical interaction among circRNAs and fused in sarcoma (FUS) protein was detected using an RNA-binding protein immunoprecipitation assay. Protein immunoprecipitation experiments were carried out to demonstrate FUS/p-300 protein interaction in sperm cells. Lastly, in vitro lead (Pb) treatment of high-quality spermatozoa collected from normozoospermic controls was used to investigate a correlation between Pb accumulation and onset of the morpho-epigenetic pathozoospermic phenotype. MAIN RESULTS AND THE ROLE OF CHANCE Several morphological defects were identified in LF-spermatozoa, including: a significant increase (P < 0.05 versus CTRL) in the percentage of spermatozoa characterized by structural defects in sperm head and tail; and a high percentage (P < 0.01) of peanut agglutinin and IZUMO1 null signal cells. In agreement with these data, abnormal steroid hormone levels in LF seminal plasma suggest a premature acrosome reaction onset in LF-spermatozoa. The abnormal immunofluorescence signals of plasma membrane cholesterol complexes/lipid rafts organization (Filipin III and Flotillin-1) and of oxidative stress markers [3-nitrotyrosine and 3-nitrotyrosine and 4-hydroxy-2-nonenal] observed in LF-spermatozoa and associated with a sperm motility reduction (P < 0.01), demonstrated an affected membrane fluidity, potentially impacting sperm motility. Bioaccumulation of heavy metals and dioxins occurring in LF seminal plasma and a direct correlation between Pb and deregulated circRNAs related to high- and low-sperm quality was also revealed. In molecular terms, we demonstrated that Pb bioaccumulation promoted FUS hyperacetylation via physical interaction with p-300 and, in turn, its shuttling from sperm head to tail, significantly enhancing (P < 0.01 versus CTRL) the endogenous backsplicing of sperm low-quality circRNAs in LF-spermatozoa. LIMITATIONS, REASONS FOR CAUTION Participants were interviewed to better understand their area of origin, their eating habits as well as their lifestyles, however any information incorrectly communicated or voluntarily omitted that could potentially compromise experimental group determination cannot be excluded. A possible association between seminal Pb content and other heavy metals in modulating sperm quality should be explored further. Future investigations will be performed in order to identify potential synergistic or anti-synergistic effects of heavy metals on male reproduction. WIDER IMPLICATIONS OF THE FINDINGS Our study provides new findings regarding the effects of environmental contaminants on male reproduction, highlighting how a sperm phenotype classified as normozoospermic may potentially not match with a healthy morpho-functional and epigenetic one. Overall, our results improve the knowledge to allow a proper assessment of sperm quality through circRNAs as biomarkers to select spermatozoa with high morpho-epigenetic quality to use for ART. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by 'Convenzione Azienda Sanitaria Locale (ASL) Caserta, Regione Campania' (ASL CE Prot. N. 1217885/DIR. GE). The authors have no conflict of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Vincenza Grazia Mele
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Teresa Chioccarelli
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Nadia Diano
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, University of Salento, Lecce, Italy
| | - Bruno Ferraro
- UOSD of Reproductive Pathophysiology, Marcianise Hospital, Caserta, Italy
| | - Marialucia Telesca
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Martina Moggio
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Veronica Porreca
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Silvia Fasano
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Gilda Cobellis
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| | - Francesco Manfrevola
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Naples, Italy
| |
Collapse
|
2
|
Hussain T, Metwally E, Murtaza G, Kalhoro DH, Chughtai MI, Tan B, Omur AD, Tunio SA, Akbar MS, Kalhoro MS. Redox mechanisms of environmental toxicants on male reproductive function. Front Cell Dev Biol 2024; 12:1333845. [PMID: 38469179 PMCID: PMC10925774 DOI: 10.3389/fcell.2024.1333845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/25/2024] [Indexed: 03/13/2024] Open
Abstract
Humans and wildlife, including domesticated animals, are exposed to a myriad of environmental contaminants that are derived from various human activities, including agricultural, household, cosmetic, pharmaceutical, and industrial products. Excessive exposure to pesticides, heavy metals, and phthalates consequently causes the overproduction of reactive oxygen species. The equilibrium between reactive oxygen species and the antioxidant system is preserved to maintain cellular redox homeostasis. Mitochondria play a key role in cellular function and cell survival. Mitochondria are vulnerable to damage that can be provoked by environmental exposures. Once the mitochondrial metabolism is damaged, it interferes with energy metabolism and eventually causes the overproduction of free radicals. Furthermore, it also perceives inflammation signals to generate an inflammatory response, which is involved in pathophysiological mechanisms. A depleted antioxidant system provokes oxidative stress that triggers inflammation and regulates epigenetic function and apoptotic events. Apart from that, these chemicals influence steroidogenesis, deteriorate sperm quality, and damage male reproductive organs. It is strongly believed that redox signaling molecules are the key regulators that mediate reproductive toxicity. This review article aims to spotlight the redox toxicology of environmental chemicals on male reproduction function and its fertility prognosis. Furthermore, we shed light on the influence of redox signaling and metabolism in modulating the response of environmental toxins to reproductive function. Additionally, we emphasize the supporting evidence from diverse cellular and animal studies.
Collapse
Affiliation(s)
- Tarique Hussain
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Elsayed Metwally
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ghulam Murtaza
- Department of Livestock and Fisheries, Government of Sindh, Karachi, Pakistan
| | - Dildar Hussain Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, Pakistan
| | - Muhammad Ismail Chughtai
- Animal Science Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, China
| | - Ali Dogan Omur
- Department of Artificial Insemination, Faculty, Veterinary Medicine, Ataturk University, Erzurum, Türkiye
| | - Shakeel Ahmed Tunio
- Department of Livestock Management, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Tandojam, Sindh, Pakistan
| | - Muhammad Shahzad Akbar
- Faculty of Animal Husbandry and Veterinary Sciences, University of Poonch, Rawalakot, Pakistan
| | - Muhammad Saleem Kalhoro
- Department of Agro-Industrial, Food, and Environmental Technology, Faculty of Applied Science, Food and Agro-Industrial Research Centre, King Mongkut’s University of Technology North Bangkok, Bangkok, Thailand
| |
Collapse
|
3
|
Chronic oral exposure to short chain chlorinated paraffins induced testicular toxicity by promoting NRF2-mediated oxidative stress. Toxicol Lett 2023; 376:1-12. [PMID: 36642205 DOI: 10.1016/j.toxlet.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
As a widespread environmental contaminant, short chain chlorinated paraffins (SCCPs) has attracted great attention. However, the toxicity of SCCPs on male reproductive system remains ambiguous. In this study, we treated mice with SCCPs by gavage and investigated the toxic effects of SCCPs on testis. According to the results, the sperm parameters of mice were significantly reduced after exposure to 1, 10, 100 mg/kg body mass per day SCCPs for 35 days. SCCPs resulted in disorderly arranged seminiferous epithelium and increased apoptotic cells in testes. Both in vivo and in vitro experiments indicated that the oxidative stress was induced after SCCPs exposure, and dysfunction of nuclear factor erythroid-related factor (NRF2) signaling pathway played a role in this process. Moreover, resveratrol, an NRF2 activator, could alleviate the damage of SCCPs onmale reproductive system. Our study indicated that oxidative stress is the key point for explaining the testicular toxicity caused by SCCPs, and NRF2 could be used as a potential target for clinical treatment to alleviate the reproductive toxicity induced by SCCPs.
Collapse
|
4
|
Zhou X, Lei D, Tang J, Wu M, Ye H, Zhang Q. Whole genome sequencing and analysis of fenvalerate degrading bacteria Citrobacter freundii CD-9. AMB Express 2022; 12:51. [PMID: 35523901 PMCID: PMC9076782 DOI: 10.1186/s13568-022-01392-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/25/2022] [Indexed: 11/10/2022] Open
Abstract
Citrobacter freundii CD-9 is a Gram-negative bacteria sourced from factory sludge that can use fenvalerate as its sole carbon source and has a broad degradation spectrum for pyrethroid pesticides. The whole genome of CD-9 sequenced using Illumina HiSeq PE150 was reported in this study. The CD-9 genome size was 5.33 Mb and the G + C content was 51.55%. A total of 5291 coding genes, 9 5s-rRNA, and 79 tRNA were predicted bioinformatically. 3586 genes annotated to the Kyoto Encyclopedia of Genes and Genomes (KEGG) database that can be involved in 173 metabolic pathways, including various microbial metabolic pathways that degrade exogenous chemicals, especially those that degrade aromatic compounds, and also produce a variety of bioactive substances. Fifty genes related to pyrethroid degradation were identified in the C. freundii CD-9 genome, including 9 dioxygenase, 25 hydrolase, and 16 esterase genes. Notably, RT-qPCR results showed that from the predicted 13 genes related to fenvalerate degradation, the expression of six genes, including esterase, HAD family hydrolase, lipolytic enzyme, and gentisic acid dioxygenase, was induced in the presence of fenvalerate. In this study, the key genes and degradation mechanism of C. freundii CD-9 were analyzed and the results provide scientific evidence to support its application in environmental bioremediation. It can establish application models for different environmental pollution management by constructing genetically engineered bacteria for efficient fenvalerate or developing enzyme formulations that can be industrially produced.
Collapse
|
5
|
Huang S, Lu Y, Li S, Zhou T, Wang J, Xia J, Zhang X, Zhou Z. Key proteins of proteome underlying sperm malformation of rats exposed to low fenvalerate doses are highly related to P53. ENVIRONMENTAL TOXICOLOGY 2021; 36:1181-1194. [PMID: 33656234 DOI: 10.1002/tox.23117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Fenvalerate (Fen) is an endocrine disruptor, capable of interfering with the activity of estrogen and androgen. Our objective was to explore the molecular mechanisms of Fen on sperm in vivo. Adult male Sprague-Dawley rats were orally exposed to 0, 0.00625, 0.125, 2.5, 30 mg/kg/day Fen for 8 weeks. Sperm morphology, differential proteomics of sperm and testes, bioinformatic analysis, western blotting (WB), and RT-PCR were used to explore the mechanism of Fen on sperm. Data showed that low Fen doses significantly induced sperm malformations. In sperm proteomics, 47 differentially expressed (DE) proteins were enriched in biological processes (BPs) related to energy metabolism, response to estrogen, spermatogenesis; and enriched in cellular components (CCs) relating to energy-metabolism, sperm fibrous sheath and their outer dense fibers. In testicular proteomics, 56 DE proteins were highly associated with mRNA splicing, energy metabolism; and enriched in CCs relating to vesicles, myelin sheath, microtubules, mitochondria. WB showed that the expression of selected proteins was identical to their tendency in 2D gels. Literature indicates that key DE proteins in proteomic profiles (such as Trap1, Hnrnpa2b1, Hnrnpk, Hspa8, and Gapdh) are involved in P53-related processes or morphogenesis or spermatogenesis. Also, P53 mRNA and protein levels were significantly increased by Fen; bioinformatic re-analysis showed that 88.5% DE proteins and P53 formed a complex interacting network, and the key DE proteins were coenriched with P53-related BPs. Results indicate that key DE proteins of proteome underlying sperm malformations of rats exposed to low Fen doses are highly related to P53.
Collapse
Affiliation(s)
- Shaoping Huang
- Department of Histology and Embryology, Medical School, Southeast University, Nanjing, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Ying Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Suying Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Reproductive Center of Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
- Central Laboratory, Wuxi Maternity and Child Health Care Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Jing Wang
- Zhong Da Hospital, Southeast University, Nanjing, China
| | - Jiangyan Xia
- Zhong Da Hospital, Southeast University, Nanjing, China
| | - Xinxin Zhang
- Department of Histology and Embryology, Medical School, Southeast University, Nanjing, China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Park HJ, Lee WY, Zhang M, Hong KH, Park C, Kim JH, Song H. Evaluation of Resmethrin Toxicity to Neonatal Testes in Organ Culture. Toxicol Sci 2021; 173:53-64. [PMID: 31593228 DOI: 10.1093/toxsci/kfz212] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Resmethrin is a widely used pyrethroid insecticide, which causes low toxicity in mammals. However, its toxicity in testes has not been fully investigated. Therefore, we evaluated the toxicity of resmethrin in mouse testes using an in vitro organ culture. Mouse testicular fragments (MTFs) derived from neonates were cultured in medium containing resmethrin for 30 days. Effects on spermatogenesis in the cultured testes were investigated as functions of both time and dose. Resmethrin significantly downregulated the transcription levels of marker genes for spermatogonia and the number of spermatogenic germ cells relative to those of the controls, according to quantitative PCR and immunostaining. In addition, spermatocyte was observed in the control, but not in 50 μM resmethrin-exposed cultures. Levels of the SYCP3 meiotic marker and phosphorylated H2AX decreased by resmethrin treatment, as observed by Western blotting. Toxic or apoptotic effects of resmethrin in Sertoli and Leydig cells from MTFs were not observed by immunostaining and Tunnel assay. No changes in the expression of steroidogenic enzymes were noted. Apoptosis was only detected in the germ cells of resmethrin-treated MTFs. Thus, the highest dose of resmethrin tested (50 μM) completely inhibited spermatogenesis, because of apoptosis of germ cells and spermatocytes. Although the in vivo toxicity of resmethrin has not yet been studied in detail, significant evidence for cytotoxicity was observed in our organ cultures. This methodological approach is useful for the study of reproductive toxicity before proceeding to animal models, as it greatly reduces the use of laboratory animals.
Collapse
Affiliation(s)
- Hyun-Jung Park
- Department of Stem Cell and Regenerative Biology, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Won-Young Lee
- Department of Beef Science, Korea National College of Agricultures and Fisheries, Jeonju-si, Jeonbuk 54874, Republic of Korea
| | - Mingtian Zhang
- Department of Stem Cell and Regenerative Biology, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kwon-Ho Hong
- Department of Stem Cell and Regenerative Biology, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biology, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biology, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biology, Konkuk University, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
7
|
Ravula AR, Yenugu S. Effect of oral administration of a mixture of pyrethroids at doses relevant to human exposure on the general and male reproductive physiology in the rat. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111714. [PMID: 33396045 DOI: 10.1016/j.ecoenv.2020.111714] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 11/13/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Studies on the effects of unintentional intake of pyrethroid pesticides that are akin to actual human exposure settings are very rare. Such an exposure is primarily by consuming the food products as routine diet that contain residual levels of pyrethroids. In this study, rats were orally administered for 15 months with a mixture of pyrethroids at a dose that is one-fifth (high dose; HD) or one-twenty fifth (low dose; LD) of the residual levels commonly present in the average amount of rice and vegetables consumed by Indian population. Lipid profile, kidney and liver function were assessed. Lipid peroxidation, nitric oxide, antioxidant enzyme activities and histopathological changes were analyzed in the liver, lung, kidney, pancreas, testes, caput, cauda and prostate. The effect on the male reproductive system as a function of sperm count, enzyme activity of 3β-HSD and 17β-HSD and the expression profile of genes involved in spermatogenesis, steroidogenesis, genetic reprogramming and apoptosis of male gametes were evaluated. Significant increase in the relative organ weight, perturbations in the activities of antioxidant enzymes, lipid profile and liver function were observed in both LD and HD groups. Damage to the anatomical architecture was evident in all the tissues due to pyrethroid toxicity. Exposure to LD and HD of pyrethroid mixture resulted in decreased sperm count, activities of 3β-HSD and 17β-HSD, impaired capacitation and acrosome reaction and perturbations in the expression of genes that govern male gamete production. Results of our study indicate that exposure to pyrethroids for longer durations even at doses that are far below the residual levels present in the food consumed will result in severe damage to general physiological processes as well as reproductive function.
Collapse
Affiliation(s)
- Anandha Rao Ravula
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Suresh Yenugu
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India.
| |
Collapse
|
8
|
Zhang X, Zhang T, Ren X, Chen X, Wang S, Qin C. Pyrethroids Toxicity to Male Reproductive System and Offspring as a Function of Oxidative Stress Induction: Rodent Studies. Front Endocrinol (Lausanne) 2021; 12:656106. [PMID: 34122335 PMCID: PMC8190395 DOI: 10.3389/fendo.2021.656106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/14/2021] [Indexed: 11/30/2022] Open
Abstract
Pyrethroids may be related to male reproductive system damage. However, the results of many previous studies are contradictory and uncertain. Therefore, a systematic review and a meta-analysis were performed to assess the relationship between pyrethroid exposure and male reproductive system damage. A total of 72 articles were identified, among which 57 were selected for meta-analysis, and 15 were selected for qualitative analysis. Pyrethroid exposure affected sperm count (SMD= -2.0424; 95% CI, -2.4699 to -1.6149), sperm motility (SMD=-3.606; 95% CI, -4.5172 to -2.6948), sperm morphology (SMD=2.686; 95% CI, 1.9744 to 3.3976), testis weight (SMD=-1.1591; 95% CI, -1.6145 to -0.7038), epididymal weight (SMD=-1.1576; 95% CI, -1.7455 to -0.5697), and serum testosterone level (SMD=-1.9194; 95% CI, -2.4589 to -1.3798) in the studies of rats. We found that gestational and lactational exposure to pyrethroids can reduce sperm count (SMD=1.8469; 95% CI, -2.9010 to -0.7927), sperm motility (SMD=-2.7151; 95% CI, -3.9574 to -1.4728), testis weight (SMD=-1.4361; 95% CI, -1.8873 to -0.9848), and epididymal weight (SMD=-0.6639; 95% CI, -0.9544 to -0.3733) of F1 offspring. Exposure to pyrethroids can increase malondialdehyde (SMD=3.3451; 95% CI 1.9914 to 4.6988) oxide in testes and can reduce the activities of glutathione (SMD=-2.075; 95% CI -3.0651 to -1.0848), superoxide dismutase (SMD=-2.4856; 95% CI -3.9612 to -1.0100), and catalase (SMD=-2.7564; 95% CI -3.9788 to -1.5340). Pyrethroid exposure and oxidative stress could damage male sperm quality. Gestational and lactational pyrethroid exposure affects the reproductive system of F1 offspring.
Collapse
Affiliation(s)
| | | | | | | | | | - Chao Qin
- *Correspondence: Chao Qin, ; ShangQian Wang,
| |
Collapse
|
9
|
Yang Y, Zhan F, Wang YC, Wang B, Shi MX, Guo C, Xu DX, Meng XH. Pubertal fenvalerate exposure impairs cognitive and behavioral development partially through down-regulating hippocampal thyroid hormone receptor signaling. Toxicol Lett 2020; 332:192-201. [PMID: 32693020 DOI: 10.1016/j.toxlet.2020.07.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 12/18/2022]
Abstract
Fenvalerate, a synthetic pyrethroid insecticide, is an environmental endocrine disruptor and neurodevelopmental toxicant. An early report found that pubertal exposure to high-dose fenvalerate impaired cognitive and behavioral development. Here, we aimed to further investigate the effect of pubertal exposure to low-dose fenvalerate on cognitive and behavioral development. Mice were orally administered with fenvalerate (0.2, 1.0 and 5.0 mg/kg) daily from postnatal day (PND) 28 to PND56. Learning and memory were assessed by Morris water maze. Anxiety-related activities were detected by open-field and elevated plus-maze. Increased anxiety activities were observed only in females exposed to fenvalerate. Spatial learning and memory were damaged only in females exposed to fenvalerate. Histopathology observed numerous scattered shrinking neurons and nuclear pyknosis in hippocampal CA1 region. Neuronal density was reduced in hippocampal CA1 region of fenvalerate-exposed mice. Mechanistically, hippocampal thyroid hormone receptor (TR)β1 was down-regulated in a dose-dependent manner in females. In addition, TRα1 was declined only in females exposed to 5.0 mg/kg fenvalerate. Taken together, these suggests that pubertal exposure to low-dose fenvalerate impairs cognitive and behavioral development in a gender-dependent manner. Hippocampal TR signaling may be, at least partially, involved in fenvalerate-induced impairment of cognitive and behavioral development.
Collapse
Affiliation(s)
- Yang Yang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China
| | - Feng Zhan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China
| | - Ye-Cheng Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China
| | - Bo Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China
| | - Meng-Xing Shi
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China
| | - Ce Guo
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China
| | - De-Xiang Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China; Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, Anhui, China.
| | - Xiu-Hong Meng
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Ministry of Education of the People's Republic of China; Anhui Provincial Key Laboratory of Population Health & Aristogenics, Hefei, Anhui, China.
| |
Collapse
|
10
|
Selvaraju V, Baskaran S, Agarwal A, Henkel R. Environmental contaminants and male infertility: Effects and mechanisms. Andrologia 2020; 53:e13646. [PMID: 32447772 DOI: 10.1111/and.13646] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
The escalating prevalence of male infertility and decreasing trend in sperm quality have been correlated with rapid industrialisation and the associated discharge of an excess of synthetic substances into the environment. Humans are inevitably exposed to these ubiquitously distributed environmental contaminants, which possess the ability to intervene with the growth and function of male reproductive organs. Several epidemiological reports have correlated the blood and seminal levels of environmental contaminants with poor sperm quality. Numerous in vivo and in vitro studies have been conducted to investigate the effect of various environmental contaminants on spermatogenesis, steroidogenesis, Sertoli cells, blood-testis barrier, epididymis and sperm functions. The reported reprotoxic effects include alterations in the spermatogenic cycle, increased germ cell apoptosis, inhibition of steroidogenesis, decreased Leydig cell viability, impairment of Sertoli cell structure and function, altered expression of steroid receptors, increased permeability of blood-testis barrier, induction of peroxidative and epigenetic alterations in spermatozoa resulting in poor sperm quality and function. In light of recent scientific reports, this review discusses the effects of environmental contaminants on the male reproductive function and the possible mechanisms of action.
Collapse
Affiliation(s)
- Vaithinathan Selvaraju
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL, USA
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
11
|
Hu Y, Zhang Y, Vinturache A, Wang Y, Shi R, Chen L, Qin K, Tian Y, Gao Y. Effects of environmental pyrethroids exposure on semen quality in reproductive-age men in Shanghai, China. CHEMOSPHERE 2020; 245:125580. [PMID: 31855762 DOI: 10.1016/j.chemosphere.2019.125580] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/26/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Animal experiments have revealed that pyrethroids (PYRs) exposure could affect semen quality, however evidence on humans being is limited and controversial. OBJECTS To explore the potential effects of environmental PYRs exposure on semen quality in reproductive age men. METHODS We conducted a cross-sectional study of 346 men who planned to conceive and addressed to hospital for preconception examination. PYRs exposure was assessed by analyzing PYRs urinary metabolites [3-phenoxybenzoic acid (3PBA), trans- and cis-3-(2,2-Dichlorovinyl) -2,2-dimethylcy clopropane carboxylic acid (TDCCA and CDCCA)] levels using gas chromatography-mass spectrometry. Semen quality was assessed by a computer-aided semen analyzer. RESULTS For a detection rate of 99.7%, 76.6%, and 22.0%, the median levels (μg/g creatinine) of PYRs metabolites were 0.46 for 3PBA, 0.38 for TDCCA and under detection limit for CDCCA. Linear regression models found negative associations between 3PBA and sperm morphology (β = -2.12, 95% CI: -4.02 to -0.22) as well as between TDCCA and log-transformed total sperm count (β = -0.09, 95% CI: -0.16 to -0.01). In logistic regression models, men with the highest quartile of 3PBA had higher risk of poor semen quality (having below-reference semen parameter, OR = 2.40, 95% CI: 1.26 to 4.54; having below-reference sperms morphology, OR = 3.08, 95% CI: 1.10 to 8.60) compared to men in the lowest quartile. CONCLUSIONS Our study suggests that environmental PYRs exposure might adversely affect semen parameters of reproductive age men in Shanghai, China. Further studies are needed to confirm our findings and demonstrate a causal relationship between PYRs exposure and semen quality.
Collapse
Affiliation(s)
- Yi Hu
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Center for Medical Bioinformatics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Angela Vinturache
- Department of Obstetrics & Gynaecology, John Radcliffe Hospital, Oxford University Hospital Trust, Headley Way, Oxford, OX3 9DU, UK
| | - Yiwen Wang
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Shi
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Limie Chen
- Department of Public Health, Wuxi Medical School, Jiangnan University, China
| | - Kaili Qin
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Tian
- MOE and Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|