1
|
Ramachandran R, Sankarganesh D, Suriyakalaa U, Aathmanathan VS, Angayarkanni J, Achiraman S. Interplay of hormones and metabolite excretion with fern pattern prove saliva as a potent indicator of male reproductive status in Kangayam breed cattle. Trop Anim Health Prod 2024; 56:155. [PMID: 38727965 DOI: 10.1007/s11250-024-03990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/15/2024] [Indexed: 06/12/2024]
Abstract
Kangayam cattle are one of the drought breeds in India with distinct attributes. Agricultural transformation has led to a decline in many pure-breed indigenous cattle, including the Kangayam breed. Hence, a study on the reproductive physiology of male Kangayam breed cattle is necessary to disentangle problems in the area of livestock improvement. In this study, we investigated the relationship between serum hormones and bio-constituents and ascertained the potential of saliva as an indicator of the reproductive status of Kangayam cattle (Bos indicus). The present study confirms that cholesterol was higher in intact males and lower in prepubertal and castrated males. Testosterone levels were also higher in intact males than in castrated or prepubertal males. Hence, it can be inferred that high cholesterol levels contribute to active derivatization of testosterone in intact males. In contrast, reduced cholesterol availability leads to decreased testosterone synthesis in castrated and prepubertal males. Furthermore, it is reasonable to speculate that testosterone could have influenced salivary fern patterns in intact males, and thus, fern-like crystallization in the saliva was apparent. The unique salivary compounds identified through GC-MS across various reproductive statuses of Kangayam males may advertise their physiological status to conspecifics. In addition, the presence of odorant-binding protein (OBP) in saliva further supports its role in olfactory communication. This study attested to a posssible interlink between gonadal status and serum biochemical profiles. The salivary fern pattern revealed in this study can be used as a predictive tool, and the presence of putative volatiles and OBP adds evidence to the role of saliva in chemical communication.
Collapse
Affiliation(s)
- Rajamanickam Ramachandran
- Department of Biotechnology, Srimad Andavan Arts and Science College (Autonomous), Tiruchirappalli, Tamilnadu, 620005, India.
| | - Devaraj Sankarganesh
- Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamilnadu, 632014, India
| | | | | | - Jayaraman Angayarkanni
- Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamilnadu, 641046, India
| | - Shanmugam Achiraman
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620024, India.
| |
Collapse
|
2
|
Terminalia brownii Fresen: Stem Bark Dichloromethane Extract Alleviates Pyrogallol-Induced Suppression of Innate Immune Responses in Swiss Albino Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:9293335. [PMID: 36865749 PMCID: PMC9974288 DOI: 10.1155/2023/9293335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/23/2023] [Accepted: 02/04/2023] [Indexed: 02/23/2023]
Abstract
Terminalia brownii is widely used in folklore medicine and has diverse biological activities. However, its effect on the immune system is yet to be studied. Therefore, our study evaluated the immunomodulatory effect of T. brownii on nonspecific immunity. Innate immunity is the initial defence phase against pathogens or injuries. Dichloromethane plant extracts were tested on female Swiss albino mice and Wister rats. The effect of the extract on innate immunity was assessed via total and differential leukocyte counts, tumor necrosis factor-alpha, and nitric oxide production by mouse macrophages. The 3-(4, 5-dimethyl thiazolyl-2)-2, 5-diphenyltetrazolium bromide assay was employed for viability testing. Phytochemical profiling was carried out using gas chromatography-mass spectrometry, while toxicity studies were carried out following the Organization for Economic Cooperation and Development guidelines. Our results demonstrated that administration of T. brownii stem bark dichloromethane extract to pyrogallol-immuno compromised mice significantly (p < 0.05) increased total and differential leukocyte counts compared with the control. The extract showed no adverse effect on the viability of Vero cells and macrophages and significantly (p < 0.05) augmented tumor necrosis factor-alpha and nitric oxide production. Hexadecanoic acid, linoleic acid, octadecanoic acid, squalene, campesterol, stigmasterol, and β-sitosterol, all of which stimulate, were identified in the extract. The extract did not cause any death or toxic signs in rats. In conclusion, T. brownii dichloromethane extract has an immunoenhancing effect on innate immune responses and is not toxic. The observed immunoenhancing impact of the extract was attributed to the presence of the identified compounds. The results of this study provide crucial ethnopharmacological leads towards the development of novel immunomodulators for managing immune-related disorders.
Collapse
|
3
|
Gao Y, Ma X, Zhou Y, Li Y, Xiang D. Dietary supplementation of squalene increases the growth performance of early-weaned piglets by improving gut microbiota, intestinal barrier, and blood antioxidant capacity. Front Vet Sci 2022; 9:995548. [PMID: 36406080 PMCID: PMC9669083 DOI: 10.3389/fvets.2022.995548] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
This study aimed to investigate the effects of dietary squalene (SQ) supplementation on the growth performance of early-weaned piglets. Twenty early-weaned piglets were randomly divided into two groups, the squalene group (SQ) and the control group (CON). The CON group was fed a basal diet, and the SQ group was fed a basal diet with 250 mg/kg squalene. The feeding period lasted 21 days. The results showed that SQ significantly increased the final body weight (FWB, P < 0.05), average daily gain (ADG, P < 0.05), and average daily feed intake (ADFI, P < 0.05) and significantly decreased the F/G ratio (feed intake/gain, P < 0.05) and diarrhea index (DI, P < 0.05). In terms of blood biochemical indicators, SQ significantly increased anti-inflammatory factors such as transforming growth factor-β (TGF-β, P < 0.001), interleukin-10 (IL-10, P < 0.001), and interferon-γ (IFN-γ, P < 0.01), and decreased pro-inflammatory factors such as tumor necrosis factor-α (TFN-α, P < 0.001) and interleukin-6 (IL-6, P < 0.001). Furthermore, SQ significantly increased blood antioxidant indexes (P < 0.001) such as superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT), and total antioxidant capacity (T-AOC) and significantly decreased the level of malondialdehyde (MDA) (P < 0.001). The villus height (P < 0.001) and V/C ratio (villus height/crypt depth, P < 0.001) of the jejunum were significantly increased in the SQ group, while the crypt depth (P < 0.01) was decreased compared to the CON group. The intestinal permeability indexes, namely diamine oxidase (DAO), D-lactic acid (D-Lac), regenerative insulin-derived protein 3 (REG-3), and FITC-Dextran 4 (FD4), significantly decreased the concentrations in the treatment group (P < 0.001), and the antioxidant indexes of the jejunum, such as SOD, GSH-Px, CAT, and MDA, were improved by adding SQ. The qPCR results showed that adding SQ could significantly increase the mRNA expression of jejunal tight-junction proteins, such as zonula occludens-1 (ZO-1, P < 0.001), Occludin (P < 0.001), Claudin (P < 0.001), glucagon-like peptide-2 (GLP-2, P < 0.001), and insulin-like growth factor-1 (IGF-1, P < 0.001). Then, we used Western blotting experiments to further confirm the qPCR results. In addition, it was found that adding SQ increased the abundance of beneficial bacteria such as Gemmiger (P < 0.01) and decreased the abundance of harmful bacteria such as Alloprevotella (P < 0.05), Desulfovibrio (P < 0.05), and Barnesiella (P < 0.05). It was interesting that there was a very close correlation among the fecal microbes, growth performance parameters, intestinal barrier, and blood biochemical indicators. In conclusion, the data suggest that SQ supplementation could effectively improve the growth performance of early-weaned piglets by improving the gut microbiota, intestinal barrier, and antioxidant capacity of the blood and jejunal mucosa.
Collapse
Affiliation(s)
- Yang Gao
- College of Life Science, Baicheng Normal University, Baicheng, China
- *Correspondence: Yang Gao
| | - Xue Ma
- College of Life Science, Baicheng Normal University, Baicheng, China
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yingqing Zhou
- College of Life Science, Baicheng Normal University, Baicheng, China
| | - Yongqiang Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Dong Xiang
- Muyuan Joint Stock Company, Nanyang, China
| |
Collapse
|
4
|
Xu Q, Hu L, Miao W, Fu Z, Jin Y. Parental exposure to 3-methylcholanthrene before gestation adversely affected the endocrine system and spermatogenesis in male F1 offspring. Reprod Toxicol 2022; 110:161-171. [PMID: 35487396 DOI: 10.1016/j.reprotox.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
The compound 3-methylcholanthrene (3-MC) is an environmental pollutant belonging to the PAHs, which reportedly have the potential to disrupt the endocrine systems of animals. In the present study, 4-week-old male and female mice were given 3-MC through their diet at a dose of 0.5mg/kg of chow for 6 weeks before pregnancy. The first filial (F1) generation offspring of exposed or unexposed parental mice were sacrificed at the age of 5 or 10 weeks (F1-5W or F1-10W), and the potential effects on the F0 and F1 offspring were evaluated. The results showed that the serum and testicular testosterone (T) levels and the genes involved in T synthesis in F0 males and male F1-5W individuals born from female mice exposed to 3-MC were significantly decreased. In addition, histological analysis suggested that exposure to 3-MC significantly disrupted testicular morphology in F0 mice and in the offspring of female mice exposed to 3-MC. Further investigation revealed that genes involved in spermatogenesis, such as Phosphoglycerate kinase 2 (Pgk2), Glial cell derived neurotrophic factor (Gdnf), Myeloblastosis oncogene (Myb), DEAD box helicase 4 (Ddx4) and KIT proto-oncogene receptor tyrosine kinase (Kit), were suppressed in these mice. However, the adverse effects of parental 3-MC exposure on the adolescent mice were mitigated when they grew to adulthood, which was verified by studies on F1-10W mice. Our results suggest that female exposure to 3-MC has the potential to disrupt the endocrine system and spermatogenesis in male offspring; nevertheless, the adverse effects might be mitigated with age.
Collapse
Affiliation(s)
- Qihao Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China
| | - Lingyu Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China
| | - Wenyu Miao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, Zhejiang, China.
| |
Collapse
|
5
|
Abd-Elkareem M, Soliman M, Abd El-Rahman MA, Abou Khalil NS. The protective effect of Nigella sativa seeds against monosodium glutamate-induced hepatic dysfunction in rats. Toxicol Rep 2022; 9:147-153. [PMID: 35145878 PMCID: PMC8818490 DOI: 10.1016/j.toxrep.2022.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 11/12/2022] Open
Abstract
MSG-challenged rats were characterized by hepatic dysfunction and redox imbalance along with increased programmed cell death. The negative consequences of MSG consumption have been partially overcome by the nutritional inclusion of NSS. NSS restores the redox potential and ameliorates the histopathological deteriorations and apoptosis in the liver. These outcomes are of major importance in paving the road towards the incorporation of NSS as a candidate strategy against MSG-related abnormalities.
Monosodium glutamate (MSG) is one of the most commonly used feed additives which poses a threat to public health. Nigella sativa is a promising natural approach in this issue due to its antioxidant, hypolipidemic, and cytoprotective characters. Here, we investigated the potential protective effect of Nigella sativa seed (NSS) against MSG-induced hepatotoxicity in rats. To accomplish this objective, fifteen adult Wistar albino rats were randomly and equally divided into three groups for 21 days: the control group received no treatment, MSG group supplemented with MSG at a dose of 30 g/kg feed, and MSG + NSS group supplemented with MSG at the same previous dose together with NSS at a dose of 30 g/kg feed. NSS succeeded in boosting serum alkaline phosphatase activity and total cholesterol, triglycerides, and glucose levels. It reduced lipid peroxides in the serum and down-regulated glutathione reductase and superoxide dismutase 2 immuno-expression in the hepatic cells. NSS intervention provided cytoprotection by improving the histo-architecture of the liver and reducing the number of apoptotic cells. NSS was effective in protecting against the hepatotoxicity of MSG through its antioxidant and anti-apoptotic effects. These findings are of utmost significance in directing the attention towards the incorporation of NSS in our food industry as well as a health remedy in traditional medicine to fight MSG-related hepatic abnormalities.
Collapse
|
6
|
Abd-Elkareem M, Abd El-Rahman MAM, Khalil NSA, Amer AS. Antioxidant and cytoprotective effects of Nigella sativa L. seeds on the testis of monosodium glutamate challenged rats. Sci Rep 2021; 11:13519. [PMID: 34188150 PMCID: PMC8242002 DOI: 10.1038/s41598-021-92977-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 06/14/2021] [Indexed: 02/06/2023] Open
Abstract
Monosodium glutamate (MSG) is one of the most widely spread food additives that might cause male infertility. However, Nigella sativa L. seeds (NSS) could provide a solution. This study was designed to investigate the potential effects of NSS on rats ingesting MSG. To achieve this aim, adult male albino rats were randomly equally assigned into three groups for 21 days: control group received no treatment, MSG group received MSG as 30 g/kg feed, and MSG + NSS group received MSG as 30 g/kg and NSS as 30 g/kg feed. Testis histomorphometry showed marked deterioration by MSG as atrophic seminiferous tubules with degeneration of their lining cells, damaged Leydig cells and decreased germ cells number. Periodic Acid Schiff stain indicated irregular interrupted basement membranes. Glutathione reductase, superoxide dismutase 2 (SOD2), and caspase-3 immuno-expressions increased in testicular cells. Testosterone levels were significantly decreased in MSG challenged rats along with significant increase in luteinizing hormone levels, whereas NSS normalized this hormonal profile. MSG exposure also caused significantly increased lipid peroxides (LPO), glutathione-S-transferase, and total antioxidant capacity (TAC) whereas nitric oxide and SOD2 were significantly decreased. NSS succeeded in rebalance LPO and TAC and ameliorated the histoarchitectural disturbances. NSS mitigated MSG-induced testicular impairment by its antioxidant and cytoprotective activities.
Collapse
Affiliation(s)
- Mahmoud Abd-Elkareem
- grid.252487.e0000 0000 8632 679XDepartment of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Mokhless A. M. Abd El-Rahman
- grid.252487.e0000 0000 8632 679XDepartment of Food Science and Technology, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Nasser S. Abou Khalil
- grid.252487.e0000 0000 8632 679XDepartment of Medical Physiology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ayman S. Amer
- grid.252487.e0000 0000 8632 679XDepartment of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
7
|
De la Cruz-Concepción B, Espinoza-Rojo M, Álvarez-Fitz P, Illades-Aguiar B, Acevedo-Quiroz M, Zacapala-Gómez AE, Navarro-Tito N, Jiménez-Wences H, Torres-Rojas FI, Mendoza-Catalán MA. Cytotoxicity of Ficus Crocata Extract on Cervical Cancer Cells and Protective Effect against Hydrogen Peroxide-Induced Oxidative Stress in HaCaT Non-Tumor Cells. PLANTS 2021; 10:plants10010183. [PMID: 33478134 PMCID: PMC7835743 DOI: 10.3390/plants10010183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
Oxidative stress causes several chronic diseases including cancer. Some chemotherapeutic agents are not selective against tumor cells, causing oxidative stress in non-tumor cells. This study aimed to evaluate the cytotoxic effect of acetone extract of Ficus crocata
(Miq.) Mart. ex Miq. (F. crocata) leaves (Ace-EFc) on cervical cancer cells, as well as its protective effect on hydrogen peroxide (H2O2)-induced lipoperoxidation and cytotoxicity in non-tumor HaCaT cells. Antioxidant activity was determined using the DPPH and ABTS radicals. Cell viability and lipoperoxidation were determined with MTT and 1-methyl-2-phenylindole assays, respectively. A model of H2O2-induced cytotoxicity and oxidative damage in HaCaT cells was established. HaCaT cells were exposed to the extract before or after exposure to H2O2, and oxidative damage and cell viability were evaluated. Ace-EFc inhibited the DPPH and ABTS radicals and showed a cytotoxic effect on SiHa and HeLa cells. Furthermore, the extract treatment had a protective effect on hydrogen peroxide-induced lipoperoxidation and cytotoxicity, avoiding the increase in MalonDiAldehyde (MDA) levels and the decrease in cell viability (p < 0.001). These results suggest that the metabolites of F. crocata leaves possess antioxidant and cytoprotective activity against oxidative damage. Thus, they could be useful for protecting cells from conditions that cause oxidative stress.
Collapse
Affiliation(s)
- Brenda De la Cruz-Concepción
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (B.D.l.C.-C.); (B.I.-A.); (A.E.Z.-G.); (F.I.T.-R.)
| | - Mónica Espinoza-Rojo
- Laboratorio de Biología Molecular y Genómica, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico;
| | - Patricia Álvarez-Fitz
- Laboratorio de Toxicología, CONACYT-Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico;
| | - Berenice Illades-Aguiar
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (B.D.l.C.-C.); (B.I.-A.); (A.E.Z.-G.); (F.I.T.-R.)
| | - Macdiel Acevedo-Quiroz
- Departamento de Química y Bioquímica, Tecnológico Nacional de México, Instituto Tecnológico/IT de Zacatepec, Calzada Tecnológico 27, Centro, Zacatepec 62780, Morelos, Mexico;
| | - Ana E. Zacapala-Gómez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (B.D.l.C.-C.); (B.I.-A.); (A.E.Z.-G.); (F.I.T.-R.)
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico;
| | - Hilda Jiménez-Wences
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico;
| | - Francisco I. Torres-Rojas
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (B.D.l.C.-C.); (B.I.-A.); (A.E.Z.-G.); (F.I.T.-R.)
| | - Miguel A. Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico; (B.D.l.C.-C.); (B.I.-A.); (A.E.Z.-G.); (F.I.T.-R.)
- Laboratorio de Investigación en Biomoléculas, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Guerrero, Mexico;
- Correspondence: ; Tel.: +52-747-4710901
| |
Collapse
|