1
|
Wang J, Wang S, Wang M, Yang J. Analysis of genes implicated in non-obstructive azoospermia. Steroids 2025; 216:109583. [PMID: 40020767 DOI: 10.1016/j.steroids.2025.109583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Non-obstructive azoospermia (NOA) is the most common cause of male infertility, accounting for approximately 60 % of azoospermia cases. In recent years, gene mutations have emerged as the primary factor under investigation for the etiology of NOA. Therefore, finding the cause and pathogenesis of NOA at the genetic level has become one of the current research hotspots. Genetic analysis of NOA patients revealed that gene mutations primarily concentrate in protein-coding regions and non-coding RNAs, predominantly occurring in cases of non-obstructive azoospermia. Hence, understanding the relationship between these gene mutations and NOA can not only provide new ideas for treatment, but also provide a theoretical basis for revealing the pathogenesis of NOA. This article comprehensively reviews recent advancements in identifying genes that are intricately associated with azoospermia. These results will provide meaningful guidance for the future development of NOA-targeted therapeutic drugs.
Collapse
Affiliation(s)
- Junwei Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China
| | - Shuhui Wang
- Weifang People's Hospital, Weifang, Shandong 261000, China
| | - Meng Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266113, China
| | - Jinfei Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255000, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266113, China.
| |
Collapse
|
2
|
Li C, Shen C, Xiong W, Ge H, Shen Y, Chi J, Zhang H, Tang L, Lu S, Wang J, Fei J, Wang Z. Spem2, a novel testis-enriched gene, is required for spermiogenesis and fertilization in mice. Cell Mol Life Sci 2024; 81:108. [PMID: 38421455 PMCID: PMC10904452 DOI: 10.1007/s00018-024-05147-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/04/2024] [Accepted: 01/27/2024] [Indexed: 03/02/2024]
Abstract
Spermiogenesis is considered to be crucial for the production of haploid spermatozoa with normal morphology, structure and function, but the mechanisms underlying this process remain largely unclear. Here, we demonstrate that SPEM family member 2 (Spem2), as a novel testis-enriched gene, is essential for spermiogenesis and male fertility. Spem2 is predominantly expressed in the haploid male germ cells and is highly conserved across mammals. Mice deficient for Spem2 develop male infertility associated with spermiogenesis impairment. Specifically, the insufficient sperm individualization, failure of excess cytoplasm shedding, and defects in acrosome formation are evident in Spem2-null sperm. Sperm counts and motility are also significantly reduced compared to controls. In vivo fertilization assays have shown that Spem2-null sperm are unable to fertilize oocytes, possibly due to their impaired ability to migrate from the uterus into the oviduct. However, the infertility of Spem2-/- males cannot be rescued by in vitro fertilization, suggesting that defective sperm-egg interaction may also be a contributing factor. Furthermore, SPEM2 is detected to interact with ZPBP, PRSS21, PRSS54, PRSS55, ADAM2 and ADAM3 and is also required for their processing and maturation in epididymal sperm. Our findings establish SPEM2 as an essential regulator of spermiogenesis and fertilization in mice, possibly in mammals including humans. Understanding the molecular role of SPEM2 could provide new insights into future therapeutic treatment of human male infertility and development of non-hormonal male contraceptives.
Collapse
Affiliation(s)
- Chaojie Li
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Wenfeng Xiong
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Haoyang Ge
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Yan Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Jun Chi
- Shanghai Engineering and Technology Research Center for Model Animals, Shanghai Model Organisms Center, Inc, Shanghai, 201203, China
| | - Hongxin Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Lingyun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Shunyuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Jinjin Wang
- Shanghai Engineering and Technology Research Center for Model Animals, Shanghai Model Organisms Center, Inc, Shanghai, 201203, China
| | - Jian Fei
- Shanghai Engineering and Technology Research Center for Model Animals, Shanghai Model Organisms Center, Inc, Shanghai, 201203, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200025, China.
- Shanghai Engineering and Technology Research Center for Model Animals, Shanghai Model Organisms Center, Inc, Shanghai, 201203, China.
| |
Collapse
|
3
|
Wei Y, Wang J, Qu R, Zhang W, Tan Y, Sha Y, Li L, Yin T. Genetic mechanisms of fertilization failure and early embryonic arrest: a comprehensive review. Hum Reprod Update 2024; 30:48-80. [PMID: 37758324 DOI: 10.1093/humupd/dmad026] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/07/2023] [Indexed: 10/03/2023] Open
Abstract
BACKGROUND Infertility and pregnancy loss are longstanding problems. Successful fertilization and high-quality embryos are prerequisites for an ongoing pregnancy. Studies have proven that every stage in the human reproductive process is regulated by multiple genes and any problem, at any step, may lead to fertilization failure (FF) or early embryonic arrest (EEA). Doctors can diagnose the pathogenic factors involved in FF and EEA by using genetic methods. With the progress in the development of new genetic technologies, such as single-cell RNA analysis and whole-exome sequencing, a new approach has opened up for us to directly study human germ cells and reproductive development. These findings will help us to identify the unique mechanism(s) that leads to FF and EEA in order to find potential treatments. OBJECTIVE AND RATIONALE The goal of this review is to compile current genetic knowledge related to FF and EEA, clarifying the mechanisms involved and providing clues for clinical diagnosis and treatment. SEARCH METHODS PubMed was used to search for relevant research articles and reviews, primarily focusing on English-language publications from January 1978 to June 2023. The search terms included fertilization failure, early embryonic arrest, genetic, epigenetic, whole-exome sequencing, DNA methylation, chromosome, non-coding RNA, and other related keywords. Additional studies were identified by searching reference lists. This review primarily focuses on research conducted in humans. However, it also incorporates relevant data from animal models when applicable. The results were presented descriptively, and individual study quality was not assessed. OUTCOMES A total of 233 relevant articles were included in the final review, from 3925 records identified initially. The review provides an overview of genetic factors and mechanisms involved in the human reproductive process. The genetic mutations and other genetic mechanisms of FF and EEA were systematically reviewed, for example, globozoospermia, oocyte activation failure, maternal effect gene mutations, zygotic genome activation abnormalities, chromosome abnormalities, and epigenetic abnormalities. Additionally, the review summarizes progress in treatments for different gene defects, offering new insights for clinical diagnosis and treatment. WIDER IMPLICATIONS The information provided in this review will facilitate the development of more accurate molecular screening tools for diagnosing infertility using genetic markers and networks in human reproductive development. The findings will also help guide clinical practice by identifying appropriate interventions based on specific gene mutations. For example, when an individual has obvious gene mutations related to FF, ICSI is recommended instead of IVF. However, in the case of genetic defects such as phospholipase C zeta1 (PLCZ1), actin-like7A (ACTL7A), actin-like 9 (ACTL9), and IQ motif-containing N (IQCN), ICSI may also fail to fertilize. We can consider artificial oocyte activation technology with ICSI to improve fertilization rate and reduce monetary and time costs. In the future, fertility is expected to be improved or restored by interfering with or supplementing the relevant genes.
Collapse
Affiliation(s)
- Yiqiu Wei
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingxuan Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rui Qu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Weiqian Zhang
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiling Tan
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanwei Sha
- Department of Andrology, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
- Fujian Provincial Key Laboratory of Reproductive Health Research, School of Medicine, Xiamen University, Xiamen, China
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Wang SY, Xiang QM, Zhu JQ, Mu CK, Wang CL, Hou CC. The Functions of Pt-DIC and Pt-Lamin B in Spermatogenesis of Portunus trituberculatus. Int J Mol Sci 2023; 25:112. [PMID: 38203284 PMCID: PMC10778907 DOI: 10.3390/ijms25010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Cytoplasmic Dynein is a multiple-subunit macromolecular motor protein involved in the transport process of cells. The Dynein intermediate chain (DIC) is one of the subunits of Dynein-1. In our previous studies, we showed that Pt-DIC may play an important role in the nuclear deformation of spermiogenesis in Portunus trituberculatus. Lamin B is essential for maintaining nuclear structure and functions. Surprisingly, Pt-Lamin B was expressed not only in the perinucleus but also in the pro-acrosome during spermiogenesis in P. trituberculatus. Studies have also shown that Dynein-1 can mediate the transport of Lamin B in mammals. Thus, to study the relationship of Pt-DIC and Pt-Lamin B in the spermatogenesis of P. trituberculatus, we knocked down the Pt-DIC gene in P. trituberculatus by RNAi. The results showed that the distribution of Pt-DIC and Pt-Lamin B in spermiogenesis was abnormal, and the colocalization was weakened. Moreover, we verified the interaction of Pt-DIC and Pt-Lamin B via coimmunoprecipitation. Therefore, our results suggested that both Pt-DIC and Pt-Lamin B were involved in the spermatogenesis of P. trituberculatus, and one of the functions of Dynein-1 is to mediate the transport of Lamin B in the spermiogenesis of P. trituberculatus.
Collapse
Affiliation(s)
| | | | | | | | | | - Cong-Cong Hou
- Key Laboratory of Aquacultural Biotechnology, Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo 315211, China; (S.-Y.W.); (Q.-M.X.); (J.-Q.Z.); (C.-K.M.); (C.-L.W.)
| |
Collapse
|
5
|
Braham A, Ghedir H, Ben Khedher MB, Ajina M, Saad A, Ibala-Romdhane S. Nuclear sperm integrity and ICSI prognosis in Tunisian patients with MMAF syndrome (multiple morphological abnormalities of the sperm flagella). HUM FERTIL 2023; 26:1429-1438. [PMID: 37671855 DOI: 10.1080/14647273.2023.2251679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 06/15/2023] [Indexed: 09/07/2023]
Abstract
Multiple Morphological Abnormalities of the Sperm Flagella (MMAF) is a severe form of teratozoospermia associated with several sperm flagellar abnormalities. The study included 52 patients with MMAF syndrome and a control group of 25 fertile men. The impact of nuclear sperm quality on intracytoplasmic sperm injection (ICSI) results was studied in 20 couples. TUNEL assay was used to assess sperm DNA fragmentation and aniline-blue staining was used to assess chromatin condensation. To investigate chromosomal meiotic segregation, we used fluorescence in situ hybridization (FISH). Semen morphology analysis revealed a mosaic of multiple flagella morphological abnormalities, including 46.73% short flagella, 16.22% bent flagella, 22.07% coiled flagella, and 10.90% absent flagella, all of which were associated with a high percentage of sperm head abnormalities. The mean DNA fragmentation index was substantially higher in patients compared to controls (p = 0.001), whereas the rate of aniline blue-reacted spermatozoa was not significantly different. There was a significant difference in aneuploidy frequencies between the two groups (p < 0.05). Infertile males with MMAF syndrome had lower sperm nuclear quality, which affected ICSI results. As a result, better sperm selection procedures are being employed to increase the success rate of assisted reproductive technologies (ART).
Collapse
Affiliation(s)
- Asma Braham
- Department of Cytogenetic and Reproductive Biology, Farhat Hached University Hospital, Sousse, Tunisia
| | - Houda Ghedir
- Department of Cytogenetic and Reproductive Biology, Farhat Hached University Hospital, Sousse, Tunisia
| | - Myriam Beya Ben Khedher
- Department of Cytogenetic and Reproductive Biology, Farhat Hached University Hospital, Sousse, Tunisia
| | - Mounir Ajina
- Reproductive Medicine Unit, University Hospital Farhat Hached, Sousse, Tunisia
- University of Medicine of Sousse, Farhat Hached Hospital, University of Sousse, Sousse, Tunisia
| | - Ali Saad
- Department of Cytogenetic and Reproductive Biology, Farhat Hached University Hospital, Sousse, Tunisia
- University of Medicine of Sousse, Farhat Hached Hospital, University of Sousse, Sousse, Tunisia
| | - Samira Ibala-Romdhane
- Department of Cytogenetic and Reproductive Biology, Farhat Hached University Hospital, Sousse, Tunisia
- University of Medicine of Sousse, Farhat Hached Hospital, University of Sousse, Sousse, Tunisia
| |
Collapse
|
6
|
Chan CC, Yen TH, Tseng HC, Mai B, Ho PK, Chou JL, Wu GJ, Huang YC. A Comprehensive Genetic Study of Microtubule-Associated Gene Clusters for Male Infertility in a Taiwanese Cohort. Int J Mol Sci 2023; 24:15363. [PMID: 37895049 PMCID: PMC10607339 DOI: 10.3390/ijms242015363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Advanced reproductive technologies are utilized to identify the genetic mutations that lead to spermatogenic impairment, and allow informed genetic counseling to patients to prevent the transmission of genetic defects to offspring. The purpose of this study was to identify potential single nucleotide polymorphisms (SNPs) associated with male infertility. Genetic variants that may cause infertility are identified by combining the targeted next-generation sequencing (NGS) panel and whole exome sequencing (WES). The validation step of Sanger sequencing adds confidence to the identified variants. Our analysis revealed five distinct affected genes covering seven SNPs based on the targeted NGS panel and WES data: SPATA16 (rs16846616, 1515442, 1515441), CFTR (rs213950), KIF6 (rs2273063), STPG2 (r2903150), and DRC7 (rs3809611). Infertile men have a higher mutation rate than fertile men, especially those with azoospermia. These findings strongly support the hypothesis that the dysfunction of microtubule-related and spermatogenesis-specific genes contributes to idiopathic male infertility. The SPATA16, CFTR, KIF6, STPG2, and DRC7 mutations are associated with male infertility, specifically azoospermia, and a further examination of this genetic function is required.
Collapse
Affiliation(s)
- Chying-Chyuan Chan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114201, Taiwan; (C.-C.C.)
- Department of Obstetrics and Gynecology, Taipei City Hospital-Renai Branch, Taipei 103212, Taiwan
| | - Te-Hsin Yen
- Department of Obstetrics and Gynecology, Taipei City Hospital-Renai Branch, Taipei 103212, Taiwan
| | - Hao-Chen Tseng
- School of Pharmacy, National Defense Medical Center, Taipei 114201, Taiwan
| | - Brang Mai
- School of Pharmacy, National Defense Medical Center, Taipei 114201, Taiwan
| | - Pin-Kuan Ho
- School of Dentistry, National Defense Medical Center, Taipei 114201, Taiwan
| | - Jian-Liang Chou
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114201, Taiwan; (C.-C.C.)
- Department of Research and Development, National Defense Medical Center, Taipei 114201, Taiwan
| | - Gwo-Jang Wu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114201, Taiwan; (C.-C.C.)
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Tri-Service General Hospital, Taipei 114202, Taiwan
| | - Yu-Chuan Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114201, Taiwan; (C.-C.C.)
- School of Pharmacy, National Defense Medical Center, Taipei 114201, Taiwan
- Department of Research and Development, National Defense Medical Center, Taipei 114201, Taiwan
| |
Collapse
|
7
|
Wang Y, Su M, Chen Y, Huang X, Ruan L, Lv Q, Li L. Research progress on the role and mechanism of DNA damage repair in germ cell development. Front Endocrinol (Lausanne) 2023; 14:1234280. [PMID: 37529603 PMCID: PMC10390305 DOI: 10.3389/fendo.2023.1234280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023] Open
Abstract
In the complex and dynamic processes of replication, transcription, and translation of DNA molecules, a large number of replication errors or damage can occur which lead to obstacles in the development process of germ cells and result in a decreased reproductive rate. DNA damage repair has attracted widespread attention due to its important role in the maintenance and regulation of germ cells. This study reports on a systematic review of the role and mechanism of DNA damage repair in germline development. First, the causes, detection methods, and repair methods of DNA damage, and the mechanism of DNA damage repair are summarized. Second, a summary of the causes of abnormal DNA damage repair in germ cells is introduced along with common examples, and the relevant effects of germ cell damage. Third, we introduce the application of drugs related to DNA damage repair in the treatment of reproductive diseases and related surgical treatment of abnormal DNA damage, and summarize various applications of DNA damage repair in germ cells. Finally, a summary and discussion is given of the current deficiencies in DNA damage repair during germ cell development and future research development. The purpose of this paper is to provide researchers engaged in relevant fields with a further systematic understanding of the relevant applications of DNA damage repair in germ cells and to gain inspiration from it to provide new research ideas for related fields.
Collapse
Affiliation(s)
- Yan Wang
- College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- College of Biology & Pharmacy, Yulin Normal University, Yulin, China
| | - Mengrong Su
- College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- College of Biology & Pharmacy, Yulin Normal University, Yulin, China
| | - Yujie Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin, China
| | - Xinyu Huang
- College of Biology & Pharmacy, Yulin Normal University, Yulin, China
| | - Lian Ruan
- College of Biology & Pharmacy, Yulin Normal University, Yulin, China
| | - Qizhuang Lv
- College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
- College of Biology & Pharmacy, Yulin Normal University, Yulin, China
| | - Li Li
- College of Biology & Pharmacy, Yulin Normal University, Yulin, China
| |
Collapse
|
8
|
Abstract
In recent years, the incidence of teratospermia has been increasing, and it has become a very important factor leading to male infertility. The research on the molecular mechanism of teratospermia is also progressing rapidly. This article briefly summarizes the clinical incidence of teratozoospermia, and makes a retrospective summary of related studies reported in recent years. Specifically discussing the relationship between gene status and spermatozoa, the review aims to provide the basis for the genetic diagnosis and gene therapy of teratozoospermia.
Collapse
|
9
|
Crafa A, Condorelli RA, La Vignera S, Calogero AE, Cannarella R. Globozoospermia: A Case Report and Systematic Review of Literature. World J Mens Health 2023; 41:49-80. [PMID: 36047070 PMCID: PMC9826911 DOI: 10.5534/wjmh.220020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Globozoospermia is a genetic syndrome characterized by the presence of round-headed spermatozoa and infertility due to the inability of these spermatozoa to fertilize the oocyte. In this article, we present the clinical case of a young globozoospermic patient with a new, not yet described mutation of the DPY19L2 gene. We also performed a systematic review of the literature on gene mutations, the outcome of assisted reproductive techniques, and the risk of transmission of abnormalities to the offspring in patients with globozoospermia and made recommendations to offer a more appropriate clinical management of these patients. MATERIALS AND METHODS We performed a systematic search in the PubMed, Google Scholar, and Scopus databases from their inception to December 2021. The search strategy included the combination of the following Medical Subjects Headings (MeSH) terms and keywords: "globozoospermia", "round-headed spermatozoa", "round head spermatozoa", "intracytoplasmic sperm injection", "ICSI", "offspring", "child health", "assisted reproductive technique outcome". All the eligible studies were selected following the PECOS (Population, Exposure, Comparison/Comparator, Outcomes, Study design) model. The quality of included studies was assessed by applying the "Cambridge Quality Checklists". RESULTS The main genes involved in the pathogenesis of globozoospermia are DPY19L2, SPATA16, PICK1, GGN, SPACA1, ZPBP, CCDC62, and CCNB3 genes. Other genes could also play a role. These include C2CD6, C7orf61, CCIN, DNH17, DNH6, PIWIL4, and CHPT1. Globozoospermic patients should undergo ART to achieve fertility. In particular, intracytoplasmic sperm injection with assisted oocyte activation or intracytoplasmic morphologically-selected sperm injection appears to be associated with a higher success rate. Patients with globozoospermia should also be evaluated for the high rate of sperm aneuploidy which appears to influence the success rate of ART but does not appear to be associated with an increased risk of transmission of genetic abnormalities to offspring. CONCLUSIONS This systematic review summarizes the evidence on the gene panel to be evaluated, ICSI outcomes, and the health of the offspring in patients with globozoospermia. Evidence-based recommendations on the management of patients with globozoospermia are provided.
Collapse
Affiliation(s)
- Andrea Crafa
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | | | - Sandro La Vignera
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Aldo Eugenio Calogero
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Rossella Cannarella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| |
Collapse
|
10
|
Faja F, Pallotti F, Cargnelutti F, Senofonte G, Carlini T, Lenzi A, Lombardo F, Paoli D. Molecular Analysis of DPY19L2, PICK1 and SPATA16 in Italian Unrelated Globozoospermic Men. Life (Basel) 2021; 11:life11070641. [PMID: 34209343 PMCID: PMC8307282 DOI: 10.3390/life11070641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
This study aims to evaluate genetic contribution and sperm DNA fragmentation (SDF) in a cohort of 18 unrelated globozoospermic Italian men (Group G). Semen samples were assessed according to the WHO 2010 Laboratory Manual and compared with 31 fertile controls. We focused our genetic analysis on the exons of the main globozoospermia-associated genes, performing qualitative PCR to assess deletion of DPY19L2 and sequencing to detect mutations of SPATA16 and PICK1. SDF was evaluated using the TUNEL assay. In Group G, 10 patients had a complete form of globozoospermia, whereas 8 patients had a partial form. Molecular analysis revealed deletion of DPY19L2 in six of the patients, all of them with complete globozoospermia, while no mutations were found in the examined exons of PICK1 and SPATA16. TUNEL analysis showed a higher SDF% in Group G. Our findings confirm DPY19L2 defects as the most frequent genetic alteration in Italian patients contributing to globozoospermic phenotypes. Furthermore, spermatozoa with acrosomal defects could also display high levels of SDF as a possible consequence of abnormally remodeled chromatin. The possible effect on offspring of chromatin structure abnormalities and altered DNA integrity should be carefully evaluated by clinicians, especially regarding the feasibility and safety of artificial reproductive techniques, which represent the only treatment that allows these patients to conceive.
Collapse
|
11
|
Han B, Wang L, Yu S, Ge W, Li Y, Jiang H, Shen W, Sun Z. One potential biomarker for teratozoospermia identified by in-depth integrative analysis of multiple microarray data. Aging (Albany NY) 2021; 13:10208-10224. [PMID: 33819193 PMCID: PMC8064145 DOI: 10.18632/aging.202781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/16/2021] [Indexed: 12/27/2022]
Abstract
Teratozoospermia is a common category of male infertility and with the increase in clinical patients and the increasing sophistication of assisted reproductive technology, there is an urgent need for an accurate semen diagnostic biomarker to accomplish rapid diagnosis of patients with teratozoospermia and accurately assess the success rate of assisted reproductive technologies. In this study, we performed gene differential expression analysis on two publicly available DNA microarray datasets (GSE6872 and GSE6967), followed by GSEA analysis to parse their enriched KEGG pathways, and WGCNA analysis to obtain the most highly correlated modules. Subsequent in-depth comparative analysis of the modules screened into the two datasets resulted in a gene set containing the identical expression trend, and then the differentially expressed genes in the set were screened using the corresponding criteria. Finally, three differentially expressed genes common to both datasets were selected. In addition, we validated the expression changes of this gene using another dataset (GSE6968) and in vitro experiments, and only screened one potential semen biomarker gene whose expression trend was identical to those in other datasets, which will also provide an important theoretical basis for the diagnosis and treatment of teratozoospermia.
Collapse
Affiliation(s)
- Baoquan Han
- Urology Department, Peking University Shenzhen Hospital, Shenzhen Peking University and The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Lu Wang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuai Yu
- Urology Department, Peking University Shenzhen Hospital, Shenzhen Peking University and The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Wei Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yaqi Li
- Urology Department, Zaozhuang Hospital of Zaozhuang Mining Group, Zaozhuang 277100, China
| | - Hui Jiang
- Department of Urology, Department of Andrology, Department of Human Sperm Bank, Peking University Third Hospital, Beijing 100191, China
| | - Wei Shen
- Urology Department, Peking University Shenzhen Hospital, Shenzhen Peking University and The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China.,College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhongyi Sun
- Urology Department, Peking University Shenzhen Hospital, Shenzhen Peking University and The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| |
Collapse
|
12
|
Pleuger C, Lehti MS, Dunleavy JE, Fietz D, O'Bryan MK. Haploid male germ cells-the Grand Central Station of protein transport. Hum Reprod Update 2020; 26:474-500. [PMID: 32318721 DOI: 10.1093/humupd/dmaa004] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/15/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The precise movement of proteins and vesicles is an essential ability for all eukaryotic cells. Nowhere is this more evident than during the remarkable transformation that occurs in spermiogenesis-the transformation of haploid round spermatids into sperm. These transformations are critically dependent upon both the microtubule and the actin cytoskeleton, and defects in these processes are thought to underpin a significant percentage of human male infertility. OBJECTIVE AND RATIONALE This review is aimed at summarising and synthesising the current state of knowledge around protein/vesicle transport during haploid male germ cell development and identifying knowledge gaps and challenges for future research. To achieve this, we summarise the key discoveries related to protein transport using the mouse as a model system. Where relevant, we anchored these insights to knowledge in the field of human spermiogenesis and the causality of human male infertility. SEARCH METHODS Relevant studies published in English were identified using PubMed using a range of search terms related to the core focus of the review-protein/vesicle transport, intra-flagellar transport, intra-manchette transport, Golgi, acrosome, manchette, axoneme, outer dense fibres and fibrous sheath. Searches were not restricted to a particular time frame or species although the emphasis within the review is on mammalian spermiogenesis. OUTCOMES Spermiogenesis is the final phase of sperm development. It results in the transformation of a round cell into a highly polarised sperm with the capacity for fertility. It is critically dependent on the cytoskeleton and its ability to transport protein complexes and vesicles over long distances and often between distinct cytoplasmic compartments. The development of the acrosome covering the sperm head, the sperm tail within the ciliary lobe, the manchette and its role in sperm head shaping and protein transport into the tail, and the assembly of mitochondria into the mid-piece of sperm, may all be viewed as a series of overlapping and interconnected train tracks. Defects in this redistribution network lead to male infertility characterised by abnormal sperm morphology (teratozoospermia) and/or abnormal sperm motility (asthenozoospermia) and are likely to be causal of, or contribute to, a significant percentage of human male infertility. WIDER IMPLICATIONS A greater understanding of the mechanisms of protein transport in spermiogenesis offers the potential to precisely diagnose cases of male infertility and to forecast implications for children conceived using gametes containing these mutations. The manipulation of these processes will offer opportunities for male-based contraceptive development. Further, as increasingly evidenced in the literature, we believe that the continuous and spatiotemporally restrained nature of spermiogenesis provides an outstanding model system to identify, and de-code, cytoskeletal elements and transport mechanisms of relevance to multiple tissues.
Collapse
Affiliation(s)
- Christiane Pleuger
- School of Biological Sciences, Monash University, Clayton 3800, Australia.,Institute for Veterinary Anatomy, Histology and Embryology, Justus-Liebig University Giessen, Giessen 35392, Germany.,Hessian Centre of Reproductive Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Mari S Lehti
- School of Biological Sciences, Monash University, Clayton 3800, Australia.,Institute of Biomedicine, University of Turku, Turku 20520, Finland
| | | | - Daniela Fietz
- Institute for Veterinary Anatomy, Histology and Embryology, Justus-Liebig University Giessen, Giessen 35392, Germany.,Hessian Centre of Reproductive Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Moira K O'Bryan
- School of Biological Sciences, Monash University, Clayton 3800, Australia
| |
Collapse
|
13
|
Beurois J, Cazin C, Kherraf ZE, Martinez G, Celse T, Touré A, Arnoult C, Ray PF, Coutton C. Genetics of teratozoospermia: Back to the head. Best Pract Res Clin Endocrinol Metab 2020; 34:101473. [PMID: 33183966 DOI: 10.1016/j.beem.2020.101473] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Spermatozoa are polarized cells with a head and a flagellum joined by the connecting piece. Head integrity is critical for normal sperm function, and head defects consistently lead to male infertility. Abnormalities of the sperm head are among the most severe and characteristic sperm defects. Patients presenting with a monomorphic head sperm defects such as globozoospermia or marcrozoospermia were analyzed permitting to identify several key genes for spermatogenesis such as AURKC and DPY19L2. The study of patients with other specific sperm head defects such as acephalic spermatozoa have also enabled the identification of new infertility genes such as SUN5. Here, we review the genetic causes leading to morphological defects of sperm head. Advances in the genetics of male infertility are necessary to improve the management of infertility and will pave the road towards future strategies of treatments, especially for patients with the most severe phenotype as sperm head defects.
Collapse
Affiliation(s)
- Julie Beurois
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France
| | - Caroline Cazin
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France
| | - Zine-Eddine Kherraf
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France; CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France
| | - Guillaume Martinez
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France; CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France; CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | - Tristan Celse
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France; CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France; CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France
| | - Aminata Touré
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France
| | - Christophe Arnoult
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France
| | - Pierre F Ray
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France; CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France
| | - Charles Coutton
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, 38000, Grenoble, France; CHU de Grenoble, UM GI-DPI, Grenoble, F-38000, France; CHU Grenoble Alpes, UM de Génétique Chromosomique, Grenoble, France.
| |
Collapse
|
14
|
Celse T, Cazin C, Mietton F, Martinez G, Martinez D, Thierry-Mieg N, Septier A, Guillemain C, Beurois J, Clergeau A, Mustapha SFB, Kharouf M, Zoghmar A, Chargui A, Papaxanthos A, Dorphin B, Foliguet B, Triki C, Sifer C, Lauton D, Tachdjian G, Schuler G, Lejeune H, Puechberty J, Bessonnat J, Pasquier L, Mery L, Poulain M, Chaabouni M, Sermondade N, Cabry R, Benbouhadja S, Veau S, Frapsauce C, Mitchell V, Achard V, Satre V, Hennebicq S, Zouari R, Arnoult C, Kherraf ZE, Coutton C, Ray PF. Genetic analyses of a large cohort of infertile patients with globozoospermia, DPY19L2 still the main actor, GGN confirmed as a guest player. Hum Genet 2020; 140:43-57. [PMID: 33108537 DOI: 10.1007/s00439-020-02229-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022]
Abstract
Globozoospermia is a rare phenotype of primary male infertility inducing the production of round-headed spermatozoa without acrosome. Anomalies of DPY19L2 account for 50-70% of all cases and the entire deletion of the gene is by far the most frequent defect identified. Here, we present a large cohort of 69 patients with 20-100% of globozoospermia. Genetic analyses including multiplex ligation-dependent probe amplification, Sanger sequencing and whole-exome sequencing identified 25 subjects with a homozygous DPY19L2 deletion (36%) and 14 carrying other DPY19L2 defects (20%). Overall, 11 deleterious single-nucleotide variants were identified including eight novel and three already published mutations. Patients with a higher rate of round-headed spermatozoa were more often diagnosed and had a higher proportion of loss of function anomalies, highlighting a good genotype phenotype correlation. No gene defects were identified in patients carrying < 50% of globozoospermia while diagnosis efficiency rose to 77% for patients with > 50% of globozoospermia. In addition, results from whole-exome sequencing were scrutinized for 23 patients with a DPY19L2 negative diagnosis, searching for deleterious variants in the nine other genes described to be associated with globozoospermia in human (C2CD6, C7orf61, CCDC62, CCIN, DNAH17, GGN, PICK1, SPATA16, and ZPBP1). Only one homozygous novel truncating variant was identified in the GGN gene in one patient, confirming the association of GGN with globozoospermia. In view of these results, we propose a novel diagnostic strategy focusing on patients with at least 50% of globozoospermia and based on a classical qualitative PCR to detect DPY19L2 homozygous deletions. In the absence of the latter, we recommend to perform whole-exome sequencing to search for defects in DPY19L2 as well as in the other previously described candidate genes.
Collapse
Affiliation(s)
- Tristan Celse
- Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, 38000, Grenoble, France.,CHU Grenoble Alpes, UM GI-DPI, 38000, Grenoble, France
| | - Caroline Cazin
- Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, 38000, Grenoble, France.,CHU Grenoble Alpes, UM GI-DPI, 38000, Grenoble, France
| | - Flore Mietton
- CHU Grenoble Alpes, UM GI-DPI, 38000, Grenoble, France
| | - Guillaume Martinez
- Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, 38000, Grenoble, France.,CHU Grenoble Alpes, UM de Génétique Chromosomique, 38000, Grenoble, France
| | | | | | - Amandine Septier
- Université Grenoble Alpes, CNRS, TIMC-IMAG, 38000, Grenoble, France
| | - Catherine Guillemain
- Pôle Femmes-Parents-Enfants, Centre Clinico-Biologique AMP-CECOS, Plateforme Cancer et Fertilité ONCOPACA-Corse, Assistance-Publique des Hôpitaux de Marseille (AP-HM), Marseille, France.,Aix Marseille University, INSERM, MMG, UMR_S 1251, Marseille, France
| | - Julie Beurois
- Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, 38000, Grenoble, France
| | | | | | - Mahmoud Kharouf
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, 1003, Tunis, Tunisia
| | - Abdelali Zoghmar
- Reproduction Sciences and Surgery Clinique, Ibn Rochd, Constantine, Algeria
| | - Ahmed Chargui
- Faculté de Médecine, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre, Centre Hospitalier Universitaire (CHU) Cochin, Service d'Histologie-Embryologie-Biologie de la Reproduction, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Aline Papaxanthos
- Department of Obstetrics, Gynecology and Reproductive Medicine, Bordeaux University Hospital, Bordeaux, France
| | | | - Bernard Foliguet
- Toxicology and Molecular Biology, Institute Jean Lamour UMR 7198 du CNRS, Université de Lorraine, 54000, Nancy, France
| | - Chema Triki
- Centre d'AMP, Clinique Hannibal, Les Berges du Lac, 1053, Tunis, Tunisia
| | - Christophe Sifer
- Service de Biologie de la Reproduction, d'Histo-Embryologie et Cytogénétique, Hôpital Jean-Verdier, Avenue du 14 Juillet, 93140, Bondy, France
| | - Dominique Lauton
- Department of Endocrinology, Diabetes, Nutrition, Montpellier University Hospital, Montpellier, France
| | - Gérard Tachdjian
- UMR 967, INSERM, Service d'Histologie Embryologie et Cytogénétique, Hôpitaux Universitaires Paris-Sud, AP-HP, Clamart, France
| | | | - Hervé Lejeune
- Reproductive Medicine Department, Hospices Civils de Lyon, Lyon, France
| | - Jacques Puechberty
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Hôpital Arnaud de Villeneuve, CHU de Montpellier, Université Montpelier, Montpellier, France
| | - Julien Bessonnat
- CHU de Grenoble, UF de Biologie de la Procréation, 38000, Grenoble, France
| | - Laurent Pasquier
- Service de Génétique Clinique, CLAD Ouest, CHU Rennes, Rennes, France
| | - Lionel Mery
- Service de Médecine de la Reproduction, CHU de Saint-Étienne, Hôpital Nord, 42055, Saint-Étienne Cedex 2, France
| | - Marine Poulain
- Department of Obstetrics and Gynecology, Hôpital Foch, Université de Paris Ouest (UVSQ), Suresnes, France
| | - Myriam Chaabouni
- Polyclinique les Jasmins, Centre d'Aide Médicale à la Procréation, Centre Urbain Nord, 1003, Tunis, Tunisia
| | - Nathalie Sermondade
- Service de Biologie de la Reproduction-CECOS, Hôpital Tenon, AP-HP, 75020, Paris, France
| | - Rosalie Cabry
- Department of Obstetrics, Gynaecology and Reproductive Medicine, Picardie University Jules Verne, Amiens University Medical Centre, Amiens, France
| | - Sebti Benbouhadja
- Reproduction Sciences and Surgery Clinique, Ibn Rochd, Constantine, Algeria
| | - Ségolène Veau
- CHU, Centre d'AMP-CECOS, University Rennes, 16 Boulevard de Bulgarie, 35000, Rennes, France
| | - Cynthia Frapsauce
- CHU Bretonneau, Médecine et Biologie de la Reproduction-CECOS, Tours, France
| | - Valérie Mitchell
- EA 4308, Department of Reproductive Biology and Spermiology-CECOS Lille, University Medical Center, 59037, Lille, France
| | - Vincent Achard
- CECOS-Laboratoire de Biologie de la Reproduction, Pôle de Gynécologie Obstétrique et Reproduction (Gynépôle), Assistance Publique-Hôpitaux de Marseille (AP-HM) la Conception, 13005, Marseille, France.,Centre Clinico-Biologique d'Assistance Médicale à la Procréation, Pôle de Gynécologie Obstétrique et Reproduction (Gynépôle), Assistance Publique-Hôpitaux de Marseille (AP-HM) la Conception, 13005, Marseille, France.,Faculté de Médecine, Institut Méditerranéen de Biodiversité et d'Écologie (IMBE UMR 7263), Equipe Biogénotoxicologie, Santé Humaine et Environnement, Aix Marseille Université, CNRS, IRD, Université Avignon, 27, Boulevard Jean-Moulin, 13385, Marseille Cedex 5, France
| | - Veronique Satre
- Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, 38000, Grenoble, France.,CHU Grenoble Alpes, UM de Génétique Chromosomique, 38000, Grenoble, France
| | - Sylviane Hennebicq
- Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, 38000, Grenoble, France.,CHU de Grenoble, UF de Biologie de la Procréation, 38000, Grenoble, France
| | - Raoudha Zouari
- Pôle Femmes-Parents-Enfants, Centre Clinico-Biologique AMP-CECOS, Plateforme Cancer et Fertilité ONCOPACA-Corse, Assistance-Publique des Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Christophe Arnoult
- Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, 38000, Grenoble, France
| | - Zine-Eddine Kherraf
- Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, 38000, Grenoble, France.,CHU Grenoble Alpes, UM GI-DPI, 38000, Grenoble, France
| | - Charles Coutton
- Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, 38000, Grenoble, France.,CHU Grenoble Alpes, UM de Génétique Chromosomique, 38000, Grenoble, France
| | - Pierre F Ray
- Institute for Advanced Biosciences, Team Genetics Epigenetics and Therapies of Infertility, Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, 38000, Grenoble, France. .,CHU Grenoble Alpes, UM GI-DPI, 38000, Grenoble, France.
| |
Collapse
|