1
|
Dias Nunes J, Demeestere I, Devos M. BRCA Mutations and Fertility Preservation. Int J Mol Sci 2023; 25:204. [PMID: 38203374 PMCID: PMC10778779 DOI: 10.3390/ijms25010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Hereditary cancers mostly affect the adolescent and young adult population (AYA) at reproductive age. Mutations in BReast CAncer (BRCA) genes are responsible for the majority of cases of hereditary breast and ovarian cancer. BRCA1 and BRCA2 act as tumor suppressor genes as they are key regulators of DNA repair through homologous recombination. Evidence of the accumulation of DNA double-strand break has been reported in aging oocytes, while BRCA expression decreases, leading to the hypothesis that BRCA mutation may impact fertility. Moreover, patients exposed to anticancer treatments are at higher risk of fertility-related issues, and BRCA mutations could exacerbate the treatment-induced depletion of the ovarian reserve. In this review, we summarized the functions of both genes and reported the current knowledge on the impact of BRCA mutations on ovarian ageing, premature ovarian insufficiency, female fertility preservation strategies and insights about male infertility. Altogether, this review provides relevant up-to-date information on the impact of BRCA1/2 mutations on fertility. Notably, BRCA-mutated patients should be adequately counselled for fertility preservation strategies, considering their higher sensitivity to chemotherapy gonadotoxic effects.
Collapse
Affiliation(s)
- Joana Dias Nunes
- Research Laboratory on Human Reproduction, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.D.N.); (M.D.)
| | - Isabelle Demeestere
- Research Laboratory on Human Reproduction, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.D.N.); (M.D.)
- Fertility Clinic, HUB-Erasme Hospital, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Melody Devos
- Research Laboratory on Human Reproduction, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium; (J.D.N.); (M.D.)
| |
Collapse
|
2
|
Nazari M, Shabani R, Ajdary M, Ashjari M, Shirazi R, Govahi A, Kermanian F, Mehdizadeh M. Effects of Au@Ag core-shell nanostructure with alginate coating on male reproductive system in mice. Toxicol Rep 2023; 10:104-116. [PMID: 36685271 PMCID: PMC9853145 DOI: 10.1016/j.toxrep.2023.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023] Open
Abstract
Despite the widespread use of silver nanoparticles (NPs), these NPs can accumulate and have toxic effects on various organs. However, the effects of silver nanostructures (Ag-NS) with alginate coating on the male reproductive system have not been studied. Therefore, this study aimed to investigate the impacts of this NS on sperm function and testicular structure. After the synthesis and characterization of Ag-NS, the animals were divided into five groups (n = 8), including one control group, two sham groups (received 1.5 mg/kg/day alginate solution for 14 and 35 days), and two treatment groups (received Ag-NS at the same dose and time). Following injections, sperm parameters, apoptosis, and autophagy were analyzed by the TUNEL assay and measurement of the mRNA expression of Bax, Bcl-2, caspase-3, LC3, and Beclin-1. Fertilization rate was assessed by in vitro fertilization (IVF), and testicular structure was analyzed using the TUNEL assay and hematoxylin and eosin (H&E) staining. The results showed that the NS was rod-shaped, had a size of about 60 nm, and could reduce sperm function and fertility. Gene expression results demonstrated an increase in the apoptotic markers and a decrease in autophagy markers, indicating apoptotic cell death. Moreover, Ag-NS invaded testicular tissues, especially in the chronic phase (35 days), resulting in tissue alteration and epithelium disintegration. The results suggest that sperm parameters and fertility were affected. In addition, NS has negative influences on testicular tissues, causing infertility in men exposed to these NS.
Collapse
Key Words
- AA, Ascorbic acid
- AMPkinase, 5' adenosine monophosphate-activated protein kinase
- ANOVA, Analysis of variance
- Ag-NPs, silver nanoparticles
- AgNO3,, Silver nitrate
- Apoptosis
- Atg3, Autophagy related 3
- Autophagy
- BAX, Bcl-2-associated X protein
- BTB, Blood-testes barrier
- Bcl-2, B-cell lymphoma 2
- CSNs, Core-shell nanostructures
- CTAB, Cetyltrimethylammonium bromide
- DLS, Dynamic light scattering
- DW, Distilled water
- FTIR, Fourier transform infrared spectroscopy
- FYN kinase, Proto-oncogene tyrosine-protein kinase
- Fertilization
- H2SO4,, Sulphuric acid
- HAuCl4, Tetrachloroauric acid trihydrate
- HR-TEM, High-resolution transmission electron microscopy
- ICP-MS, Inductively coupled plasma mass spectrometry
- IL, Interleukins
- IU, International Unit
- IgE, Immunoglobulin E
- NIH, National Institutes of Health
- NMRI, Naval Medical Research Institute
- NMs, Nanomaterials
- NRs, Nano rods
- NaBH4,, Sodium borohydride
- NaOH, Sodium hydroxide
- Nanostructures
- OD, Optical density
- PBS, Phosphate-buffered saline
- PI, Propidium Iodide
- PMSG, Pregnant Mare Serum Gonadotropin
- PdI, Polydispersity index
- ROS, Reactive oxygen species
- SD, standard deviation
- SERS, Surface enhanced Raman scattering
- SNRs, Silver Nano rods
- SSCs, Spermatogonial stem cells
- Semen analysis
- TDT, Terminal deoxynucleotidyl transferase
- TGA, Thermal gravimetric Analysis
- TGF-β, Transforming growth factor
- TUNEL, Terminal deoxynucleotidyl transferase dUTP nick end labeling
- Testicular tissue
- cDNA, Complementary DNA
- ct, cycle threshold
- dUTP, Deoxyuridine triphosphate
- hCG, human chorionic gonadotropin
- q RT-PCR, Quantitative real time - polymerase chain reaction
- rpm, Rotations Per Minute
Collapse
Affiliation(s)
- Mahsa Nazari
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Reproductive Sciences and Technology Research Center, Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| | - Marziyeh Ajdary
- Endometriosis Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mohsen Ashjari
- Chemical Engineering Department, Faculty of Engineering, University of Kashan, Kashan, Iran
| | - Reza Shirazi
- Department of Anatomy, School of Medical Sciences, Medicine & Health, UNSW Sydney, Sydney, Australia
| | - Azam Govahi
- Endometriosis Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fatemeh Kermanian
- Department of Anatomy, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Mehdizadeh
- Reproductive Sciences and Technology Research Center, Department of Anatomy, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Llavanera M, Delgado-Bermúdez A, Ribas-Maynou J, Salas-Huetos A, Yeste M. A systematic review identifying fertility biomarkers in semen: a clinical approach through Omics to diagnose male infertility. Fertil Steril 2022; 118:291-313. [PMID: 35718545 DOI: 10.1016/j.fertnstert.2022.04.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To identify the most robust molecular biomarkers in sperm and seminal plasma for the diagnosis of male infertility, and to evaluate their clinical use. DESIGN Systematic review. SETTING Not applicable. PATIENT(S) Accessible studies reporting well-defined (in)fertile populations and semen molecular biomarkers were included in this review. INTERVENTION(S) A systematic search of the literature published in MEDLINE-PubMed and EMBASE databases was performed, following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. MAIN OUTCOME MEASURE(S) The primary outcome was the content, expression, or activity of molecular biomarkers in human semen samples. Only studies reporting a receiver-operating characteristic (ROC) analysis values were included. RESULT(S) Eighty-nine studies were included. Direct evaluation of sperm DNA damage has high potential as a diagnostic biomarker of fertility and assisted reproductive technology outcomes (area under the curve [AUCs] median = 0.67). Regarding strand break-associated chromatin modifications, γH2AX levels show good predictive value for the diagnosis of male infertility (AUCs median = 0.93). Some noncoding ribonucleic acid (RNA) exhibit excellent predictive values; miR-34c-5p in semen is the most well-characterized and robust transcriptomic biomarker (AUCs median = 0.78). While many proteins in semen show fair diagnostic value for sperm quality and fertilizing capacity, the levels of some, such as TEX101, in seminal plasma have an excellent diagnostic potential (AUCs median = 0.69). Although individual metabolites and metabolomic profiles in seminal plasma present good predictive value, the latter seem to be better than the former when inferring sperm quality and fertilizing capacity. CONCLUSION(S) The current review supports that some Omics (e.g., DNA structure and integrity, genomics and epigenomics, transcriptomics, metabolomics, and proteomics) could be considered relevant molecular biomarkers that may help identify infertility etiologies and fertilization prognosis with cost-effective, simple, and accurate diagnosis.
Collapse
Affiliation(s)
- Marc Llavanera
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Ariadna Delgado-Bermúdez
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Jordi Ribas-Maynou
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Albert Salas-Huetos
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain; Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts; Consorcio CIBER, M.P., Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Marc Yeste
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| |
Collapse
|
4
|
Zhu W, Jiang L, Li Y, Sun J, Lin C, Huang X, Ni W. DNA comethylation analysis reveals a functional association between BRCA1 and sperm DNA fragmentation. Fertil Steril 2022; 117:963-973. [PMID: 35256191 DOI: 10.1016/j.fertnstert.2022.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/06/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES To identify the DNA comethylation patterns associated with sperm DNA fragmentation (SDF) and to explore the potential associations of hub genes with SDF. DESIGN Prospective study. SETTING University-affiliated reproductive medicine center. PATIENT(S) A total of 300 male patients consulting for couple infertility were recruited from the First Affiliated Hospital of Wenzhou Medical University. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Comethylation network analysis based on the genome-wide methylation profile of spermatozoal DNA from 20 men was performed to identify hub modules and genes involved in SDF. Human spermatozoa were used for targeted bisulfite amplicon sequencing (267 men) or droplet digital polymerase chain reaction (45 men). The potential role of Brca1 in DNA damage was explored in mouse GC2 spermatocyte cells. Oxidative damage to spermatocytes was modeled by incubating GC2 cells with H2O2 (25 mM) for 90 minutes. RESULT(S) BRCA1 was identified as a hub gene in SDF. Promoter hypermethylation of BRCA1 was observed in those samples with a high DNA fragmentation index (DFI) compared to those with a low DFI. Concomitantly, BRCA1 mRNA expression was lower in samples with a high DFI than with a low DFI. In the GC2 cell model, Brca1 knockdown reduced cell proliferation and increased sensitivity to oxidative stress. Moreover, it increased double-strand breaks and decreased the protein levels of the DNA repair genes MRE11 and RAD51. CONCLUSION(S) A prominent cluster of comethylated patterns associated with SDF was identified. BRCA1 may be the hub gene involved in sperm DNA damage.
Collapse
Affiliation(s)
- Weijian Zhu
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Lei Jiang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yan Li
- Reproductive Medicine Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Junhui Sun
- Reproductive Medicine Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Chunchun Lin
- Reproductive Medicine Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xuefeng Huang
- Reproductive Medicine Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Wuhua Ni
- Reproductive Medicine Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.
| |
Collapse
|
5
|
Zhu W, Jiang L, Pan C, Sun J, Huang X, Ni W. Deoxyribonucleic acid methylation signatures in sperm deoxyribonucleic acid fragmentation. Fertil Steril 2021; 116:1297-1307. [PMID: 34253331 DOI: 10.1016/j.fertnstert.2021.06.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/05/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To evaluate Deoxyribonucleic acid (DNA) methylation patterns in sperm from men with differential levels of sperm DNA fragmentation index (DFI). DESIGN Prospective study. SETTING University-affiliated reproductive medicine center. PATIENT(S) A total of 278 male patients consulting for couple infertility were recruited from the First Affiliated Hospital of Wenzhou Medical University. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Genome-wide DNA methylation analysis was performed using Infinium MethylationEPIC BeadChip on spermatozoal DNA from 20 male patients. Differentially methylated regions (DMRs) were identified and validated using targeted bisulfite amplicon sequencing in spermatozoal DNA from 266 males. RESULT(S) Unsupervised hierarchical clustering analysis revealed three main clusters corresponding to sperm DFI levels (low, medium, or high). Between-cluster comparisons identified 959 (medium-low), 738 (high-medium), and 937 (high-low) DMRs. Sixty-six DMRs were validated in the 266-sample cohort, of which nine CpG fragments corresponding to nine genes (BLCAP, DIRAS3, FAM50B, GNAS, MEST, TSPAN32, PSMA8, SYCP1, and TEX12) exhibited significantly altered methylation in those with high DFI (≥25%) compared with those with low DFI (<25%). CONCLUSION(S) We identified and validated a distinct DNA methylation signature associated with sperm DNA damage in a large, unselected cohort. These results indicate that sperm DNA damage may affect DNA methylation patterns in human sperm.
Collapse
Affiliation(s)
- Weijian Zhu
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Lei Jiang
- Central Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Chengshuang Pan
- Reproductive Medicine Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Junhui Sun
- Reproductive Medicine Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xuefeng Huang
- Reproductive Medicine Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Wuhua Ni
- Reproductive Medicine Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
6
|
Hologlu D, Gunes S, Asci R, Henkel R, Guvenc T. Association among sperm chromatin condensation, sperm DNA fragmentation and 8-OHdG in seminal plasma and semen parameters in infertile men with oligoasthenoteratozoospermia. Andrologia 2021; 54:e14268. [PMID: 34632608 DOI: 10.1111/and.14268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/17/2021] [Accepted: 09/24/2021] [Indexed: 11/27/2022] Open
Abstract
The present study aimed to investigate the clinical role of standard sperm diagnosis parameters (sperm concentration, motility, morphology) as well as aniline blue staining of histones, 8-OHdG, TUNEL assay were performed on semen samples in infertile men with oligoasthenoteratozoospermia (OAT). Thirty-two infertile and ten proven fertile men were included in the study. Chromatin condensation sperm in infertile men was significantly lower compared to the fertile men (p < 0.0001). Age, sperm concentration, morphology and motility were significantly negatively correlated with chromatin condensation (p < 0.05). However, no significant correlations among the chromatin condensation, SDF and sperm DNA damage were detected in terms of 8-OHdG concentration.
Collapse
Affiliation(s)
- Dilara Hologlu
- Health Sciences Institute, Department of Multidisciplinary Molecular Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Sezgin Gunes
- Health Sciences Institute, Department of Multidisciplinary Molecular Medicine, Ondokuz Mayis University, Samsun, Turkey.,Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, Samsun, Turkey
| | - Ramazan Asci
- Health Sciences Institute, Department of Multidisciplinary Molecular Medicine, Ondokuz Mayis University, Samsun, Turkey.,Faculty of Medicine, Department of Urology, Ondokuz Mayis University, Samsun, Turkey
| | - Ralf Henkel
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.,Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tolga Guvenc
- Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
7
|
Rotondo JC, Lanzillotti C, Mazziotta C, Tognon M, Martini F. Epigenetics of Male Infertility: The Role of DNA Methylation. Front Cell Dev Biol 2021; 9:689624. [PMID: 34368137 PMCID: PMC8339558 DOI: 10.3389/fcell.2021.689624] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
In recent years, a number of studies focused on the role of epigenetics, including DNA methylation, in spermatogenesis and male infertility. We aimed to provide an overview of the knowledge concerning the gene and genome methylation and its regulation during spermatogenesis, specifically in the context of male infertility etiopathogenesis. Overall, the findings support the hypothesis that sperm DNA methylation is associated with sperm alterations and infertility. Several genes have been found to be differentially methylated in relation to impaired spermatogenesis and/or reproductive dysfunction. Particularly, DNA methylation defects of MEST and H19 within imprinted genes and MTHFR within non-imprinted genes have been repeatedly linked with male infertility. A deep knowledge of sperm DNA methylation status in association with reduced reproductive potential could improve the development of novel diagnostic tools for this disease. Further studies are needed to better elucidate the mechanisms affecting methylation in sperm and their impact on male infertility.
Collapse
|
8
|
Åsenius F, Danson AF, Marzi SJ. DNA methylation in human sperm: a systematic review. Hum Reprod Update 2021; 26:841-873. [PMID: 32790874 DOI: 10.1093/humupd/dmaa025] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Studies in non-human mammals suggest that environmental factors can influence spermatozoal DNA methylation, and some research suggests that spermatozoal DNA methylation is also implicated in conditions such as subfertility and imprinting disorders in the offspring. Together with an increased availability of cost-effective methods of interrogating DNA methylation, this premise has led to an increasing number of studies investigating the DNA methylation landscape of human spermatozoa. However, how the human spermatozoal DNA methylome is influenced by environmental factors is still unclear, as is the role of human spermatozoal DNA methylation in subfertility and in influencing offspring health. OBJECTIVE AND RATIONALE The aim of this systematic review was to critically appraise the quality of the current body of literature on DNA methylation in human spermatozoa, summarize current knowledge and generate recommendations for future research. SEARCH METHODS A comprehensive literature search of the PubMed, Web of Science and Cochrane Library databases was conducted using the search terms 'semen' OR 'sperm' AND 'DNA methylation'. Publications from 1 January 2003 to 2 March 2020 that studied human sperm and were written in English were included. Studies that used sperm DNA methylation to develop methodologies or forensically identify semen were excluded, as were reviews, commentaries, meta-analyses or editorial texts. The Grading of Recommendations, Assessment, Development and Evaluations (GRADE) criteria were used to objectively evaluate quality of evidence in each included publication. OUTCOMES The search identified 446 records, of which 135 were included in the systematic review. These 135 studies were divided into three groups according to area of research; 56 studies investigated the influence of spermatozoal DNA methylation on male fertility and abnormal semen parameters, 20 studies investigated spermatozoal DNA methylation in pregnancy outcomes including offspring health and 59 studies assessed the influence of environmental factors on spermatozoal DNA methylation. Findings from studies that scored as 'high' and 'moderate' quality of evidence according to GRADE criteria were summarized. We found that male subfertility and abnormal semen parameters, in particular oligozoospermia, appear to be associated with abnormal spermatozoal DNA methylation of imprinted regions. However, no specific DNA methylation signature of either subfertility or abnormal semen parameters has been convincingly replicated in genome-scale, unbiased analyses. Furthermore, although findings require independent replication, current evidence suggests that the spermatozoal DNA methylome is influenced by cigarette smoking, advanced age and environmental pollutants. Importantly however, from a clinical point of view, there is no convincing evidence that changes in spermatozoal DNA methylation influence pregnancy outcomes or offspring health. WIDER IMPLICATIONS Although it appears that the human sperm DNA methylome can be influenced by certain environmental and physiological traits, no findings have been robustly replicated between studies. We have generated a set of recommendations that would enhance the reliability and robustness of findings of future analyses of the human sperm methylome. Such studies will likely require multicentre collaborations to reach appropriate sample sizes, and should incorporate phenotype data in more complex statistical models.
Collapse
Affiliation(s)
| | - Amy F Danson
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sarah J Marzi
- UK Dementia Research Institute, Imperial College London, London W12 0NN, UK.,Department of Brain Sciences, Imperial College London, London, UK
| |
Collapse
|
9
|
Selvaraju S, Ramya L, Parthipan S, Swathi D, Binsila BK, Kolte AP. Deciphering the complexity of sperm transcriptome reveals genes governing functional membrane and acrosome integrities potentially influence fertility. Cell Tissue Res 2021; 385:207-222. [PMID: 33783607 DOI: 10.1007/s00441-021-03443-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
Deciphering sperm transcriptome is the key to understanding the molecular mechanisms governing peri-fertilization, embryonic development, and pregnancy establishment. This study aimed to profile sperm transcriptome to identify signature transcripts regulating male fertility. Semen samples were collected from 47 bulls with varied fertility rates. The sperm total RNA was isolated (n = 8) and subjected to transcriptome sequencing. Based on the expression pattern obtained from RNA profiling, the bulls were grouped (p = 0.03) into high-fertile and sub-fertile, and signature transcripts controlling sperm functions and fertility were identified. The results were validated using the OMIM database, qPCR, and sperm function tests. The sperm contains 1100 to 1700 intact transcripts, of which BCL2L11 and CAPZA3 were abundant and associated (p < 0.05) with spermatogenesis and post-embryonic organ morphogenesis. The upregulated genes in the acrosome integrity and functional membrane integrity groups had a close association with the fertility rate. The biological functions of these upregulated genes (p < 0.05) in the high-fertile bulls were associated with spermatogenesis (AFF4 and BRIP1), sperm motility (AK6 and ATP6V1G3), capacitation and zona binding (AGFG1), embryo development (TCF7 and AKIRIN2), and placental development (KRT19). The transcripts involved in pathways regulating embryonic development such as translation (EEF1B2 and MTIF3, p = 8.87E-05) and nonsense-mediated decay (RPL23 and RPL7A, p = 5.01E-27) were upregulated in high-fertile bulls. The identified transcripts may significantly impact oocyte function, embryogenesis, trophectoderm development, and pregnancy establishment. In addition, the study also reveals that the genes governing sperm functional membrane integrity and acrosome integrity have a prospective effect on male fertility.
Collapse
Affiliation(s)
- Sellappan Selvaraju
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India.
| | - Laxman Ramya
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| | - Sivashanmugam Parthipan
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| | - Divakar Swathi
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| | - Bala Krishnan Binsila
- Reproductive Physiology Laboratory, Animal Physiology Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| | - Atul P Kolte
- Omics Laboratory, Animal Nutrition Division, ICAR-National Institute of Animal Nutrition and Physiology, Adugodi, Bengaluru, 560030, India
| |
Collapse
|
10
|
Metin Mahmutoglu A, Gunes S, Asci R, Henkel R, Aydin O. Association of XRCC1 and ERCC2 promoters' methylation with chromatin condensation and sperm DNA fragmentation in idiopathic oligoasthenoteratozoospermic men. Andrologia 2020; 53:e13925. [PMID: 33355950 DOI: 10.1111/and.13925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/23/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
The aim of the study was to investigate whether the promoter methylation of XRCC1 and ERCC2 genes is associated with sperm DNA fragmentation and chromatin condensation in idiopathic oligoasthenoteratozoospermic men. This study involved 77 infertile men with idiopathic oligoasthenoteratozoospermia and 51 normozoospermic controls. The methylight method, TUNEL assay and aniline blue staining were used for the evaluation of XRCC1 and ERCC2 genes' methylation, SDF and sperm chromatin condensation, respectively. SDF (p = .004) and XRCC1 methylation (p = .0056) were found to be significantly higher in men with idiopathic OAT than in the controls, while mature spermatozoa frequency was higher in controls as compared to infertile men (p < .0001). No significant association was found between SDF and methylation of XRCC1 and ERCC2 genes (p = .9277 and p = .8257, respectively). However, compared to the cut-off point obtained by receiver operating characteristic analysis, a significant association was found between SDF and XRCC1 methylation, positive and negative methylation groups, generated according to the cut-off value for XRCC1. XRCC1 methylation was found to have a significant effect on chromatin condensation (p = .0017). No significant difference was detected among ERCC2 methylation, male infertility and SDF. In conclusion, XRCC1 methylation may have a role in sperm chromatin condensation and idiopathic OAT.
Collapse
Affiliation(s)
- Asli Metin Mahmutoglu
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, Samsun, Turkey
| | - Sezgin Gunes
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, Samsun, Turkey.,Department of Multidisciplinary Molecular Medicine, Graduate School of Health Sciences, Ondokuz Mayis University, Samsun, Turkey
| | - Ramazan Asci
- Department of Multidisciplinary Molecular Medicine, Graduate School of Health Sciences, Ondokuz Mayis University, Samsun, Turkey.,Faculty of Medicine, Department of Urology, Ondokuz Mayis University, Samsun, Turkey
| | - Ralf Henkel
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Oguz Aydin
- Faculty of Medicine, Department of Pathology, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
11
|
Hekim N, Gunes S, Asci R, Henkel R, Abur U. Semiquantitative promoter methylation of MLH1 and MSH2 genes and their impact on sperm DNA fragmentation and chromatin condensation in infertile men. Andrologia 2020; 53:e13827. [PMID: 33112435 DOI: 10.1111/and.13827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/28/2020] [Accepted: 08/09/2020] [Indexed: 12/19/2022] Open
Abstract
To investigate the semiquantitative methylation alterations of MLH1 and MSH2 and the possible association among methylation of MLH1 and MSH2, sperm DNA fragmentation and sperm chromatin condensation in idiopathic oligoasthenoteratozoospermic men. Seventy-five idiopathic infertile men and 52 fertile and/or normozoospermic men were included in the study. SDF was analysed using the TUNEL assay in semen samples of 100 men. Promoter methylation of MLH1 and MSH2 genes was assessed by semiquantitative methylight analysis in semen samples of 39 and 40 men respectively. Sperm chromatin condensation was evaluated using aniline blue staining in 114 men. MLH1 promoter methylation was positively correlated with the percentage of aniline blue positive spermatozoa (r = 0.401, p = 0.0188). On the other hand, MSH2 promoter methylation was negatively correlated with sperm concentration and total sperm count (r = -0.421, p = 0.0068 and r = 0.4408, p = 0.009 respectively). The percentage of aniline blue positive spermatozoa in the control group was significantly lower than in the OAT group (p < 0.0001) and negatively correlated with total sperm count (r = -0.683, p < 0.0001), progressive sperm motility (r = -0.628, p < 0.0001), total motility (r = -0.639, p < 0.0001) and normal morphology (r = -0.668, p < 0.0001). Promoter methylation profile of MLH1 and MSH2 genes may play role on sperm DNA packaging and conventional semen parameters respectively.
Collapse
Affiliation(s)
- Neslihan Hekim
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Sezgin Gunes
- Department of Medical Biology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey.,Department of Multidisciplinary Molecular Medicine, Health Sciences Institute, Ondokuz Mayis University, Samsun, Turkey
| | - Ramazan Asci
- Department of Multidisciplinary Molecular Medicine, Health Sciences Institute, Ondokuz Mayis University, Samsun, Turkey.,Department of Urology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ralf Henkel
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa.,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ummet Abur
- Department of Multidisciplinary Molecular Medicine, Health Sciences Institute, Ondokuz Mayis University, Samsun, Turkey.,Department of Medical Genetics, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|