1
|
Guo K, Cao Y, Zhao Z, Zhao J, Liu L, Wang H. GGNBP2 regulates histone ubiquitination and methylation in spermatogenesis. Epigenetics 2024; 19:2381849. [PMID: 39109527 PMCID: PMC11734887 DOI: 10.1080/15592294.2024.2381849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/19/2024] [Accepted: 07/14/2024] [Indexed: 09/17/2024] Open
Abstract
Gametogenetin binding protein 2 (GGNBP2) was indispensable in normal spermatids for transformation into mature spermatozoa in mice, and when Gametogenetin binding protein 2 is bound to BRCC36 and RAD51, the complex participates in repairing DNA double-strand breaks (DSB) during the meiotic progression of spermatocytes. Ggnbp2 knockout resulted in the up-regulation of H2AK119ubi and down-regulation of H2BK120ubi in GC-2 cells (mouse spermatogonia-derived cell line) and postnatal day 18 testis lysate. Our results also demonstrated that Gametogenetin binding protein 2 inducedASXL1 to activate the deubiquitinating enzyme BAP1 in deubiquitinating H2A, while Gametogenetin binding protein 2 knockout disrupted the interaction between ASXL1 and BAP1, resulting in BAP1 localization change. Furthermore, the Gametogenetin binding protein 2 deletion reduced H2B ubiquitination by affecting E2 enzymes and E3 ligase binding. Gametogenetin binding protein 2 regulated H2A and H2B ubiquitination levels and controlled H3K27 and H3K79 methylation by PRC2 subunits and histone H3K79 methyltransferase. Altogether, our results suggest that Ggnbp2 knockout increased DNA damage response by promoting H2A ubiquitination and H3K27trimethylation (H3K27me3) and reduced nucleosome stability by decreasing H2B ubiquitination and H3K79 dimethylation (H3K79me2), revealing new mechanisms of epigenetic phenomenon during spermatogenesis. Gametogenetin binding protein 2 seems critical in regulating histone modification and chromatin structure in spermatogenesis.
Collapse
Affiliation(s)
- Kaimin Guo
- Department of Andrology, First hospital of Jilin University, Changchun, China
| | - Yin Cao
- Department of Andrology, First hospital of Jilin University, Changchun, China
| | - Zhiyi Zhao
- Department of Andrology, First hospital of Jilin University, Changchun, China
| | - Jiantao Zhao
- Department of Andrology, First hospital of Jilin University, Changchun, China
| | - Lingyun Liu
- Department of Andrology, First hospital of Jilin University, Changchun, China
| | - Hongliang Wang
- Department of Andrology, First hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Zeng R, Jiang R, Huang W, Wang J, Zhang L, Ma Y, Wu Y, Meng M, Lan H, Lian Q, Leung FW, Sha W, Chen H. Dissecting shared genetic architecture between obesity and multiple sclerosis. EBioMedicine 2023; 93:104647. [PMID: 37300932 PMCID: PMC10363440 DOI: 10.1016/j.ebiom.2023.104647] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Observational studies have associated obesity with an increased risk of multiple sclerosis (MS). However, the role of genetic factors in their comorbidity remains largely unknown. Our study aimed to investigate the shared genetic architecture underlying obesity and MS. METHODS By leveraging data from genome-wide association studies, we investigated the genetic correlation of body mass index (BMI) and MS by linkage disequilibrium score regression and genetic covariance analyser. The casualty was identified by bidirectional Mendelian randomisation. Linkage disequilibrium score regression in specifically expressed genes and multimarker analysis of GenoMic annotation was utilised to explore single-nucleotide polymorphism (SNP) enrichment at the tissue and cell-type levels. Shared risk SNPs were derived using cross-trait meta-analyses and Heritability Estimation from Summary Statistics. We explored the potential functional genes using summary-data-based Mendelian randomization (SMR). The expression profiles of the risk gene in tissues were further examined. FINDINGS We found a significantly positive genetic correlation between BMI and MS, and the causal association of BMI with MS was supported (β = 0.22, P = 8.03E-05). Cross-trait analysis yielded 39 shared risk SNPs, and the risk gene GGNBP2 was consistently identified in SMR. We observed tissue-specific level SNP heritability enrichment for BMI mainly in brain tissues for MS in immune-related tissues, and cell-type-specific level SNP heritability enrichment in 12 different immune cell types in brain, spleen, lung, and whole blood. The expressions of GGNBP2 were significantly altered in the tissues of patients with obesity or MS compared to those of control subjects. INTERPRETATION Our study indicates the genetic correlation and shared risk genes between obesity and MS. These findings provide insights into the potential mechanisms behind their comorbidity and the future development of therapeutics. FUNDING This work was funded by the National Natural Science Foundation of China (82171698, 82170561, 81300279, and 81741067), the Program for High-level Foreign Expert Introduction of China (G2022030047L), the Natural Science Foundation for Distinguished Young Scholars of Guangdong Province (2021B1515020003), Natural Science Foundation of Guangdong Province (2022A1515012081), the Foreign Distinguished Teacher Program of Guangdong Science and Technology Department (KD0120220129), the Climbing Programme of Introduced Talents and High-level Hospital Construction Project of Guangdong Provincial People's Hospital (DFJH201803, KJ012019099, KJ012021143, and KY012021183), and in part by VA Clinical Merit and ASGE clinical research funds (FWL).
Collapse
Affiliation(s)
- Ruijie Zeng
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Rui Jiang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Wentao Huang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiaxuan Wang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Lijun Zhang
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Yuying Ma
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yanjun Wu
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Meijun Meng
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Hekui Lan
- Department of Paediatrics, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Qizhou Lian
- Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China; Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| | - Felix W Leung
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA; Sepulveda Ambulatory Care Center, Veterans Affairs Greater Los Angeles Healthcare System, North Hills, CA, USA.
| | - Weihong Sha
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; School of Medicine, South China University of Technology, Guangzhou 510006, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
| | - Hao Chen
- Department of Gastroenterology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China; School of Medicine, South China University of Technology, Guangzhou 510006, China; Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
| |
Collapse
|
3
|
Kazerani R, Salehipour P, Shah Mohammadi M, Amanzadeh Jajin E, Modarressi MH. Identification of TSGA10 and GGNBP2 splicing variants in 5' untranslated region with distinct expression profiles in brain tumor samples. Front Oncol 2023; 13:1075638. [PMID: 36860313 PMCID: PMC9968883 DOI: 10.3389/fonc.2023.1075638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
INTRODUCTION Brain tumors (BTs) are perceived as one of the most common malignancies among children. The specific regulation of each gene can play a critical role in cancer progression. The present study aimed to determine the transcripts of the TSGA10 and GGNBP2 genes, considering the alternative 5'UTR region, and investigating the expression of these different transcripts in BTs. MATERIAL AND METHODS Public data on brain tumor microarray datasets in GEO were analyzed with R software to evaluate the expression levels of TSGA10 and GGNBP2 genes (the Pheatmap package in R was also used to plot DEGs in a heat map). In addition, to validate our in-silico data analysis, RT-PCR was performed to determine the splicing variants of TSGA10 and GGNBP2 genes in testis and brain tumor samples. The expression levels of splice variants of these genes were analyzed in 30 brain tumor samples and two testicular tissue samples as a positive control. RESULTS In silico results show that the differential expression levels of TSGA10 and GGNBP2 were significant in the GEO datasets of BTs compared to normal samples (with adjusted p-value<0.05 and log fold change > 1). This study's experimental results showed that the TSGA10 gene produces four different transcripts with two distinct promoter regions and splicing exon 4. The relative mRNA expression of transcripts without exon 4 was higher than transcripts with exon 4 in BT samples (p-value<001). In GGNBP2, exon 2 in the 5'UTR region and exon 6 in the coding sequence were spliced. The expression analysis results showed that the relative mRNA expression of transcript variants without exon 2 was higher than other transcript variants with exon 2 in BT samples (p-value<001). CONCLUSION The decreased expression levels of transcripts with longer 5'UTR in BT samples than in testicular or low-grade brain tumor samples may decrease their translation efficiency. Therefore, decreased amounts of TSGA10 and GGNBP2 as potential tumor suppressor proteins, especially in high-grade brain tumors, may cause cancer development by angiogenesis and metastasis.
Collapse
Affiliation(s)
- Reihane Kazerani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pouya Salehipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Science, Tehran, Iran
| | - Mohammadreza Shah Mohammadi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz Amanzadeh Jajin
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
4
|
Xu X, Zhu Z, Xu Y, Tian S, Jiang Y, Zhao H. Effects of zinc finger protein 403 on the proliferation, migration and invasion abilities of prostate cancer cells. Oncol Rep 2020; 44:2455-2464. [PMID: 33125130 PMCID: PMC7610322 DOI: 10.3892/or.2020.7786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 08/19/2020] [Indexed: 11/24/2022] Open
Abstract
Zinc finger protein 403 (ZFP403), located on human chromosome 17q12-21, is closely associated with the development of cancer. However, to date, there are a limited number of studies on the biological functions of this gene, particularly in prostate cancer (PCa). The results of the present study demonstrated that compared with normal tissues, the expression of ZFP403 was markedly lower in PCa tissues, as shown by the evaluation of the Gene Expression Profiling Interactive Analysis 2 database. The decreased expression of ZFP403 in PCa clinical tissues and cell lines was confirmed by immunohistochemistry, reverse transcription-quantitative PCR and western blot analysis. Using short harpin (sh)RNA inhibition, stably-silenced ZFP403 cell lines were then constructed by lentiviral transfection (LV-PC3-shRNA-1 and 2; LV-DU145-shRNA-1 and 2). The results revealed that the knockdown of ZFP403 in PCa cells promoted cellular proliferation, colony formation, migration and invasiveness in vitro. Moreover, the levels of tumor growth- and motility-related proteins were significantly altered after ZFP403-knockdown. A xenograft tumor model using nude mice was established to elucidate the role of ZFP403 in tumorigenesis in vivo. Tumor growth was significantly increased in mice injected with ZFP403-knockdown cells compared with the control mice. Overall, the findings of the present study demonstrate that ZFP403 functions as a tumor suppressor gene in PCa by affecting the proliferation, migration and invasiveness of PCa cells, suggesting its potential use as a clinical diagnostic marker.
Collapse
Affiliation(s)
- Xintong Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P.R. China
| | - Zhihui Zhu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P.R. China
| | - Yipeng Xu
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Shasha Tian
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P.R. China
| | - Yingjun Jiang
- Institute of Cancer Research and Basic Medical Sciences of Chinese Academy of Sciences, Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Huajun Zhao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P.R. China
| |
Collapse
|