1
|
Yilmaz N, Hudaykulıyeva J, Gul S. Phoenixin-14 may ameliorate testicular damage caused by torsion-detorsion by reducing oxidative stress and inflammation in prepubertal rats. Tissue Cell 2024; 88:102405. [PMID: 38754242 DOI: 10.1016/j.tice.2024.102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/18/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
The present study aimed to investigate the effects of Phoenixin-14 (PNX-14) on oxidative damage, inflammatory response, histopathological variations, and serum testosterone levels in testicular tissues. Forty-eight Wistar albino prepubertal male rats were divided into 4 groups (Sham, TTD, TT+PNX+TD, TTD+PNX) (n=12). The torsion period was 2 hours and the detorsion period was 24 hours in the testicular torsion/detorsion (TD) groups. A single PNX-14 (50 µg/kg) dose was injected into the rats in the TT+PNX TD group on the 90th minute of torsion, and it was injected into the rats in the TTD+PNX group at the beginning of detorsion. Oxidative damage in testicular tissues was determined based on superoxide dismutase (SOD), malondialdehyde (MDA), total antioxidant status (TAS) and total oxidant status (TOS), and inflammatory damage was determined based on TNF-α and IL-6 levels. Histopathological variations were investigated with the Periodic Acid Schiff (PAS) staining method in testicular tissues and analyzed based on Johnsen scores. Spermatogonia cells were examined immunohistochemically. Serum testosterone levels were determined with the enzyme-linked immunosorbent assay (ELISA). A significant increase in oxidative stress and inflammation parameters was determined in the TTD group when compared to the other groups (p<0.05). PNX-14 treatment led to a statistically significant decrease in these parameters and significantly repaired the TD damage in testicular tissue (p<0.05). Johnsen scoring revealed significant improvement in PNX-14 groups and an increase in spermatogonia count, supporting the biochemical findings (p<0.05). PNX-14 could be a potential therapeutic agent in testicular TD damage and further studies should be conducted to elucidate the present study findings.
Collapse
Affiliation(s)
- Nesibe Yilmaz
- Department of Anatomy, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| | - Jemal Hudaykulıyeva
- Department of Anatomy, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Semir Gul
- Department of Histology and Embryology, Faculty of Medicine, Malatya Turgut Ozal University, Malatya, Turkey
| |
Collapse
|
2
|
Akhigbe R, Odetayo A, Akhigbe T, Hamed M, Ashonibare P. Pathophysiology and management of testicular ischemia/reperfusion injury: Lessons from animal models. Heliyon 2024; 10:e27760. [PMID: 38694115 PMCID: PMC11058307 DOI: 10.1016/j.heliyon.2024.e27760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/24/2024] [Accepted: 03/06/2024] [Indexed: 05/03/2024] Open
Abstract
Testicular torsion is a urological emergency that involves the twisting of the spermatic cord along its course. Compelling pieces of evidence have implicated oxidative stress-sensitive signaling in pathogenesis of testicular I/R injury. Although, surgical detorsion is the mainstay management; blockade of the pathways involved in the pathogenesis may improve the surgical outcome. Experimental studies using various testicular I/R models have been reported in a bid to explore the mechanisms associated with testicular I/R and evaluate the benefits of potential therapeutic measures; however, most are limited by their shortcomings. Thus, this review was intended to describe the details of the available testicular I/R models as well as their merits and drawbacks, the pathophysiological basis and consequences of testicular I/R, and the pharmacological agents that have being proposed to confer testicular benefits against testicular I/R. This provides an understanding of the pathophysiological events and available models used in studying testicular I/R. In addition, this research provides evidence-based molecules with therapeutic potentials as well as their mechanisms of action in testicular I/R.
Collapse
Affiliation(s)
- R.E. Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - A.F. Odetayo
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Physiology, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - T.M. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Breeding and Plant Genetics Unit, Department of Agronomy, Osun State University, Osun State, Nigeria
| | - M.A. Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
- The Brainwill Laboratory, Osogbo, Osun State, Nigeria
| | - P.J. Ashonibare
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| |
Collapse
|
3
|
Seker U, Kavak DE, Guzel BC, Baygeldi SB, Yuksel M, Unay Demirel O, Irtegun Kandemir S, Sener D. Targeting soluble guanylate cyclase with Riociguat has potency to alleviate testicular ischaemia reperfusion injury via regulating various cellular pathways. Andrologia 2022; 54:e14616. [DOI: 10.1111/and.14616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/17/2022] [Accepted: 09/28/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Ugur Seker
- Department of Histology and Embryology, School of Medicine Harran University Sanliurfa Turkey
| | - Deniz Evrim Kavak
- Department of Medical Biology, School of Medicine Dokuz Eylul University Izmir Turkey
| | - Baris Can Guzel
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine Firat University Elazig Turkey
| | - Saime Betul Baygeldi
- Department of Veterinary Anatomy, Faculty of Veterinary Medicine Firat University Elazig Turkey
| | - Meral Yuksel
- Department of Medical Laboratory, Vocational School of Health‐Related Professions Marmara University Istanbul Turkey
| | - Ozlem Unay Demirel
- Department of Medical Biochemistry, School of Medicine Bahcesehir University Istanbul Turkey
| | | | - Dila Sener
- Department of Histology and Embryology, School of Medicine Bahcesehir University Istanbul Turkey
| |
Collapse
|
4
|
Bašković M, Ježek D. Letter to the Editor re 'Effects of hypothermia and pentoxifylline on the adnexal torsion/detorsion injuries in a rat testis model'. Andrologia 2021; 54:e14314. [PMID: 34855259 DOI: 10.1111/and.14314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/28/2022] Open
Affiliation(s)
- Marko Bašković
- Department of Pediatric Urology, Children's Hospital Zagreb, Zagreb, Croatia
| | - Davor Ježek
- School of Medicine, Department of Histology and Embryology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|