1
|
Liu K, Chen Y, An R. The Mechanism and Clinical Significance of Sperm DNA Damage in Assisted Reproductive. FRONT BIOSCI-LANDMRK 2024; 29:416. [PMID: 39735980 DOI: 10.31083/j.fbl2912416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/15/2024] [Accepted: 09/02/2024] [Indexed: 12/31/2024]
Abstract
The prevalence of sperm DNA fragmentation (SDF) is significantly higher in males with infertility, which is often associated with oligozoospermia and hypospermia. It can also occur in patients with infertility who have normal conventional semen indicators. The etiologies involve aberrations in sperm maturation, dysregulated apoptotic processes, and heightened levels of oxidative stress. In this article, we retrieved PubMed, China National Knowledge Infrastructure (CNKI) and Web of Science databases for articles and reviews published before February 28, 2024. Using "sperm DNA fragments; assisted reproductive technology, mechanism, clinical pregnancy outcome" as keywords, and comprehensively reviewed on their basis. Numerous literature sources have reported an increased utilization of SDF testing in the context of male infertility, as there is a negative correlation between SDF levels and the success of natural conception as well as assisted reproductive technologies. To enhance the clinical outcome for individuals experiencing infertility, investigating the prevalence and underlying mechanisms of sperm DNA damage is beneficial. This review article delves into the mechanisms that lead to sperm DNA damage and assesses the impact of DNA fragmentation index (DFI) on pregnancy outcomes in the context of assisted reproductive technologies.
Collapse
Affiliation(s)
- Kangsheng Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Health Care Hospital, 210029 Nanjing, Jiangsu, China
| | - Yajun Chen
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Health Care Hospital, 210029 Nanjing, Jiangsu, China
| | - Ruifang An
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi, China
| |
Collapse
|
2
|
Balder P, Jones C, Coward K, Yeste M. Sperm chromatin: Evaluation, epigenetic signatures and relevance for embryo development and assisted reproductive technology outcomes. Eur J Cell Biol 2024; 103:151429. [PMID: 38905808 DOI: 10.1016/j.ejcb.2024.151429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024] Open
Abstract
Sperm chromatin is distinct from somatic cell chromatin, as a result of extensive remodeling during the final stages of spermatogenesis. In this process, the majority of histones is replaced with protamines. The chromatin is consequently highly condensed and inert, which facilitates protection of the DNA. The sperm epigenomic landscape is shaped by histone retention, histone and protamine modification, DNA methylation, and RNAs. In recent years, sperm chromatin integrity and its epigenetic marks have been increasingly studied, and the constitution of sperm chromatin is steadily being uncovered. This growing body of research prompts assessment of the frequently overlooked involvement of sperm in fertility and embryonic development. Moreover, numerous endogenous and exogenous factors are known to affect sperm chromatin, which may in turn impact the reproductive success. Concerns have been raised about the effects of assisted reproductive technology (ART) on the sperm epigenome, embryonic development and offspring health. This review examines the structure and epigenetic signatures of sperm chromatin in the context of fertility and early embryonic development. Additionally, sperm chromatin evaluation and causes of aberrant integrity are outlined. Building on the knowledge discussed in the current review, future research should aim to elucidate the intricate relationship between all aspects of sperm chromatin and embryo development. This could lead to the uncovering of new targets for treating infertility, as well as the acquisition of much needed insights into the possible reciprocal association between ART and sperm chromatin integrity.
Collapse
Affiliation(s)
- Pauline Balder
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK; The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Celine Jones
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Kevin Coward
- Nuffield Department of Women's and Reproductive Health, Level 3, Women's Centre, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona ES-17003, Spain; Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona ES-17003, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona ES-08010, Spain.
| |
Collapse
|
3
|
Gill K, Machałowski T, Harasny P, Grabowska M, Duchnik E, Piasecka M. Low human sperm motility coexists with sperm nuclear DNA damage and oxidative stress in semen. Andrology 2024; 12:1154-1169. [PMID: 38018344 DOI: 10.1111/andr.13556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/03/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Low sperm motility, one of the common causes of male infertility, is associated with abnormal sperm quality. Currently, important sperm/semen biomarkers are sperm chromatin status and oxidation‒reduction potential (ORP) in semen. Because the association between sperm motility and these biomarkers is still not fully clarified, our study was designed to verify the distribution and risk of sperm DNA fragmentation (SDF) and oxidative stress in semen in asthenozoospermic men. MATERIALS AND METHODS This study was carried out on discharged sperm cells of asthenozoospermic men (isolated asthenozoospermia or coexisted with reduced sperm number and/or morphology), nonasthenozoospermic men (reduced total sperm count and/or sperm morphology) (experimental groups) and normozoospermic men (proven and presumed fertility) (control group). Basic semen analysis was evaluated according to the 6th edition of the World Health Organization manual guidelines. SDF was assessed using the sperm chromatin dispersion test, while static(s) ORP in semen was measured by means of a MiOXSYS analyser. RESULTS The men from the asthenozoospermic group had lower basic semen parameters than those from the control and nonasthenozoospermic groups. In men with poor sperm motility SDF and sORP, prevalence and risk for > 20% SDF (high level of DNA damage) and for > 1.37 sORP (oxidative stress) were significantly higher than those of control and nonasthenozoospermic subjects. The risk for sperm DNA damage and oxidative stress in asthenozoospermic men was over 10-fold higher and almost 6-fold higher than those in control subjects and almost or over 3-fold higher than those in nonasthenozoospermic men. CONCLUSIONS AND DISCUSSION Poor human sperm motility coexisted with low basic sperm quality. Sperm DNA damage and oxidative stress in semen were much more frequent in asthenozoospermia. These abnormalities can decrease the sperm fertilizing capability under both natural and medically assisted reproduction conditions. Thus, in asthenozoospermia, the evaluation of sperm chromatin status and oxidation-reduction potential in semen is justified and inevitable, and the appropriate antioxidant therapy can be suggested.
Collapse
Affiliation(s)
- Kamil Gill
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| | - Tomasz Machałowski
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
- Department of Perinatology, Obstetrics and Gynecology, Faculty of Medicine and Dentistry, Pomeranian Medical University, Police, Poland
| | - Patryk Harasny
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
- Department of Urology and Urological Oncology, Faculty of Medicine and Dentistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| | - Ewa Duchnik
- Department of Aesthetic Dermatology, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Małgorzata Piasecka
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
4
|
Vasseur C, Serra L, El Balkhi S, Lefort G, Ramé C, Froment P, Dupont J. Glyphosate presence in human sperm: First report and positive correlation with oxidative stress in an infertile French population. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116410. [PMID: 38696871 DOI: 10.1016/j.ecoenv.2024.116410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/15/2024] [Accepted: 04/27/2024] [Indexed: 05/04/2024]
Abstract
Environmental exposure to endocrine disruptors, such as pesticides, could contribute to a decline of human fertility. Glyphosate (GLY) is the main component of Glyphosate Based Herbicides (GBHs), which are the most commonly herbicides used in the world. Various animal model studies demonstrated its reprotoxicity. In Europe, GLY authorization in agriculture has been extended until 2034. Meanwhile the toxicity of GLY in humans is still in debate. The aims of our study were firstly to analyse the concentration of GLY and its main metabolite, amino-methyl-phosphonic acid (AMPA) by LC/MS-MS in the seminal and blood plasma in an infertile French men population (n=128). We secondly determined Total Antioxidant Status (TAS) and Total Oxidant Status (TOS) using commercial colorimetric kits and some oxidative stress biomarkers including malondialdehyde (MDA) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) by ELISA assays. We next analysed potential correlations between GLY and oxidative stress biomarkers concentration and sperm parameters (sperm concentration, progressive speed, anormal forms). Here, we detected for the first time GLY in the human seminal plasma in significant proportions and we showed that its concentration was four times higher than those observed in blood plasma. At the opposite, AMPA was undetectable. We also observed a strong positive correlation between plasma blood GLY concentrations and plasma seminal GLY and 8-OHdG concentrations, the latter reflecting DNA impact. In addition, TOS, Oxidative Stress Index (OSI) (TOS/TAS), MDA blood and seminal plasma concentrations were significantly higher in men with glyphosate in blood and seminal plasma, respectively. Taken together, our results suggest a negative impact of GLY on the human reproductive health and possibly on his progeny. A precaution principle should be applied at the time of the actual discussion of GLY and GBHs formulants uses in Europe by the authorities.
Collapse
Affiliation(s)
- Claudine Vasseur
- Centre de fertilité, Pôle Santé Léonard de Vinci, Chambray-lès-Tours, France.
| | - Loïse Serra
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly F-37380, France
| | - Souleiman El Balkhi
- Service de Pharmacologie, Toxicologie et Pharmacovigilance, Limoges, CHU F-87042, France
| | - Gaëlle Lefort
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly F-37380, France
| | - Christelle Ramé
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly F-37380, France
| | - Pascal Froment
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly F-37380, France
| | - Joëlle Dupont
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly F-37380, France.
| |
Collapse
|
5
|
Hekim N, Gunes S, Ergun S, Barhan EN, Asci R. Investigation of sperm hsa-mir-145-5p and MLH1 expressions, seminal oxidative stress and sperm DNA fragmentation in varicocele. Mol Biol Rep 2024; 51:588. [PMID: 38683237 DOI: 10.1007/s11033-024-09534-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Mechanisms by which varicocele causes infertility are not clear and few studies have reported that some miRNAs show expression alterations in men with varicocele. Recently, sperm promoter methylation of MLH1 has been shown to be higher in men diagnosed with varicocele. This study aimed to assess the potential effects of miR-145, which was determined to target MLH1 mRNA in silico on sperm quality and function in varicocele. METHODS Sperm miR-145 and MLH1 expressions of six infertile men with varicocele (Group 1), nine idiopathic infertile men (Group 2), and nine fertile men (control group) were analyzed by quantitative PCR. Sperm DNA fragmentation was evaluated by TUNEL and the levels of seminal oxidative damage and total antioxidant capacity were analyzed by ELISA. RESULTS Our results have shown that sperm expression of miR-145 was decreased in Group 1 compared to Group 2 (P = 0.029). MLH1 expression was significantly higher in Group 2 than the controls (P = 0.048). Total antioxidant level and sperm DNA fragmentations of Group 1 and Group 2 were decreased (P = 0.001 and P = 0.011, respectively). Total antioxidant capacity was positively correlated with sperm concentration (ρ = 0.475, P = 0.019), total sperm count (ρ = 0.427, P = 0.037), motility (ρ = 0.716, P < 0.0001) and normal morphological forms (ρ = 0.613, P = 0.001) and negatively correlated with the seminal oxidative damage (ρ=-0.829, P = 0.042) in varicocele patients. CONCLUSION This is the first study investigating the expressions of sperm miR-145 and MLH1 in varicocele patients. Further studies are needed to clarify the potential effect of miR-145 on male fertility.
Collapse
Affiliation(s)
- Neslihan Hekim
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, Samsun, 55139, Turkey.
- Graduate Institute, Department of Molecular Medicine, Ondokuz Mayis University, Samsun, Turkey.
| | - Sezgin Gunes
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, Samsun, 55139, Turkey
- Graduate Institute, Department of Molecular Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Sercan Ergun
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, Samsun, 55139, Turkey
- Graduate Institute, Department of Molecular Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Elzem Nisa Barhan
- Faculty of Medicine, Department of Medical Biology, Ondokuz Mayis University, Samsun, 55139, Turkey
| | - Ramazan Asci
- Graduate Institute, Department of Molecular Medicine, Ondokuz Mayis University, Samsun, Turkey
- Faculty of Medicine, Department of Urology, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
6
|
Liang S, Yin Y, Zhang Z, Fang Y, Lu G, Li H, Yin Y, Shen M. Moxibustion prevents tripterygium glycoside-induced oligoasthenoteratozoospermia in rats via reduced oxidative stress and modulation of the Nrf2/HO-1 signaling pathway. Aging (Albany NY) 2024; 16:2141-2160. [PMID: 38277193 PMCID: PMC10911353 DOI: 10.18632/aging.205475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/30/2023] [Indexed: 01/27/2024]
Abstract
Oligoasthenoteratozoospermia (OAT) decreases male fertility, seriously affecting the production of offspring. This study clarified the preventive impact of different moxibustion frequencies on OAT and selected the optimal frequency to elucidate the underlying mechanism. An OAT rat model was constructed by gavage of tripterygium glycosides (TGS) suspension. Daily moxibustion (DM) or alternate-day moxibustion (ADM) was administered on the day of TGS suspension administration. Finally, we selected DM for further study based on sperm quality and DNA fragmentation index, testicular and epididymal morphology, and reproductive hormone level results. Subsequently, the oxidative stress (OS) status was evaluated by observing the OS indices levels; malondialdehyde (MDA), 8-hydroxy-deoxyguanosine (8-OHdG), total antioxidant capacity (T-AOC), and total superoxide dismutase (T-SOD) in testicular tissue using colorimetry and enzyme-linked immunosorbent assay. Furthermore, heme oxygenase 1 (HO-1) and nuclear factor erythropoietin-2-related factor 2 (Nrf2) were evaluated using Western blotting. Immunohistochemistry was employed to locate and assess the expression of HO-1 and Nrf2 protein, while quantitative real-time polymerase chain reaction was utilized to detect their mRNA expression. MDA and 8-OHdG levels decreased following DM treatment, while T-SOD and T-AOC increased, suggesting that DM may prevent TGS-induced OAT in rats by decreasing OS in the testis. Furthermore, protein and mRNA expression of Nrf2 and HO-1 in the testis were elevated, indicating that DM may reduce OS by activating the signaling pathway of Nrf2/HO-1. Therefore, DM could prevent OAT in rats via the Nrf2/HO-1 pathway, thereby presenting a promising therapeutic approach against OAT.
Collapse
Affiliation(s)
- Shangjie Liang
- College of Acupuncture, Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Yaqun Yin
- College of Acupuncture, Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Zhizi Zhang
- College of Acupuncture, Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Yansu Fang
- College of Acupuncture, Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Ge Lu
- College of Acupuncture, Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Hongxiao Li
- College of Acupuncture, Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Yaoli Yin
- College of Acupuncture, Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Meihong Shen
- College of Acupuncture, Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| |
Collapse
|
7
|
Ribas-Maynou J, Novo S, Salas-Huetos A, Rovira S, Antich M, Yeste M. Condensation and protamination of sperm chromatin affect ICSI outcomes when gametes from healthy individuals are used. Hum Reprod 2023; 38:371-386. [PMID: 36539233 DOI: 10.1093/humrep/deac261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
STUDY QUESTION Do defects in sperm chromatin protamination and condensation have an impact on ICSI outcomes? SUMMARY ANSWER Sperm protamination is related to fertilization rates in healthy donors, and the in vitro capacity of sperm to condense their chromatin is linked to blastocyst rates, both associations being more apparent in women <33 years of age. WHAT IS KNOWN ALREADY Previous data on how sperm chromatin damage affects ICSI outcomes are inconsistent. Revealing which sperm factors influence embryo development is necessary to understand the male contribution to ICSI success and to develop novel sperm selection techniques or male-based treatments. Sperm chromatin is mainly condensed in protamines, which are cross-linked through disulphide bridges. This study aimed to determine whether sperm protamination and the integrity of disulphide bonds (condensation) are related to embryo development after ICSI. STUDY DESIGN, SIZE, DURATION The design was a retrospective study with a blind analysis of sperm chromatin. Gametes were divided into two groups: double donation (DD) cohort and single donation (SD) cohort. Samples from 45 semen donors used in 55 ICSI cycles with oocyte donors (age range 19-33 years), generating 491 embryos, were included in the DD cohort. The SD cohort consisted of samples from 34 semen donors used in 41 ICSI cycles with oocytes from healthy females (single-parent families or lesbian couples, age range 20-44 years), generating a total of 378 embryos. PARTICIPANTS/MATERIALS, SETTINGS, METHODS Donor sperm samples from DD and SD cohorts were used for standard ICSI, and embryo development was observed by time-lapse imaging. The incidence of thiol reduction (dibromobimane, DBB) and the degree of chromatin protamination (chromomycin A3, CMA3, indicating non-protaminated regions) in sperm were determined by flow cytometry at 0 and 4 h post-thawing. MAIN RESULTS AND THE ROLE OF CHANCE Percentages ± standard deviation of CMA3 were 21.08 ± 9.09 and 35.01 ± 14.68 at 0 and 4 h post-thawing, respectively, in the DD cohort and 22.57 ± 9.48 and 35.79 ± 12.58, at 0 and 4 h post-thawing, respectively, in the SD cohort. Percentages of DBB+ were 16.57 ± 11.10 and 10.51 ± 8.40 at 0 and 4 h post-thawing (P < 0.0001), respectively, in the DD cohort and 17.98 ± 10.19 and 12.72 ± 8.76 at 0 and 4 h post-thawing (P < 0.0001), respectively, in the SD cohort. Female age correlated with fertilization rates, and the relation between sperm chromatin and embryo development was determined through multiple linear regression. While CMA3 was associated with fertilization rates, with no influence of female age, in the DD cohort (β1 = -1.036, P < 0.001 for CMA3; β2 = 0.667, P = 0.304 for female age), this was not observed in the SD cohort, where female age had a significant effect, masking the effects of CMA3 (β1 = -0.066, P = 0.804 for CMA3; β 2 = -1.451, P = 0.003 for female age). The in vitro capacity of sperm to condense their chromatin after 4 h of incubation was associated with blastocyst rates, independent of female age (DD cohort: β1 = -0.238, P = 0.008 for %DBB+ variation; β2 = 0.404, P = 0.638 for female age; SD cohort: β1 = -0.278, P = 0.010 for %DBB+ variation; β2 = -0.292, P = 0.594 for female age). The in vitro capacity of sperm to condense their chromatin was also related to the time required for the embryo to reach blastocyst stage in the DD cohort (P = 0.007). Finally, multiple logistic regression showed that both chromatin protamination and condensation, together with the age of the oocyte donors and the embryo recipients, had an impact on pregnancy achievement (P < 0.01) and on live birth rates (P < 0.01). LIMITATIONS, REASONS FOR CAUTION The main limitation was the restrictive selection of couples, which led to a relatively small sample size and could influence the observed outcomes. For this reason, and to reduce Type I error, the level of significance was set at P ≤ 0.01. On the other hand, the use of cryopreserved samples could also be a limitation. WIDER IMPLICATIONS OF THE FINDINGS This research demonstrated that protamination and condensation of sperm chromatin are related to embryo development after ICSI, but female age could be a confounding factor when oocytes from older females are used. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the European Union's Horizon 2020 Research and Innovation scheme under the Marie Skłodowska-Curie grant agreement No 801342 (Tecniospring INDUSTRY; TECSPR-19-1-0003); La Marató de TV3 Foundation (214/857-202039); the Ministry of Science and Innovation, Spain (IJC2019-039615-I); the Catalan Agency for Management of University and Research Grants, Regional Government of Catalonia, Spain (2017-SGR-1229); and the Catalan Institution for Research and Advanced Studies, Spain (ICREA). The authors declare no competing interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Jordi Ribas-Maynou
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain.,Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain
| | - Sergi Novo
- Fertilab-Institut Catala de Fertilitat SL, Barcelona, Spain.,Fertibank, Barcelona, Spain
| | - Albert Salas-Huetos
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain.,Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sergi Rovira
- Fertilab-Institut Catala de Fertilitat SL, Barcelona, Spain.,Fertibank, Barcelona, Spain
| | - Marta Antich
- Fertilab-Institut Catala de Fertilitat SL, Barcelona, Spain.,Fertibank, Barcelona, Spain
| | - Marc Yeste
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain.,Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|