1
|
Arora M, Mehta P, Sethi S, Anifandis G, Samara M, Singh R. Genetic etiological spectrum of sperm morphological abnormalities. J Assist Reprod Genet 2024; 41:2877-2929. [PMID: 39417902 PMCID: PMC11621285 DOI: 10.1007/s10815-024-03274-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
PURPOSE Male infertility manifests in the form of a reduction in sperm count, sperm motility, or the loss of fertilizing ability. While the loss of sperm production can have mixed reasons, sperm structural defects, cumulatively known as teratozoospermia, have predominantly genetic bases. The aim of the present review is to undertake a comprehensive analysis of the genetic mutations leading to sperm morphological deformities/teratozoospermia. METHODS We undertook literature review for genes involved in sperm morphological abnormalities. The genes were classified according to the type of sperm defects they cause and on the basis of the level of evidence determined by the number of human studies and the availability of a mouse knockout. RESULTS Mutations in the SUN5, CEP112, BRDT, DNAH6, PMFBP1, TSGA10, and SPATA20 genes result in acephalic sperm; mutations in the DPY19L2, SPATA16, PICK1, CCNB3, CHPT1, PIWIL4, and TDRD9 genes cause globozoospermia; mutations in the AURKC gene cause macrozoospermia; mutations in the WDR12 gene cause tapered sperm head; mutations in the RNF220 and ADCY10 genes result in small sperm head; mutations in the AMZ2 gene lead to vacuolated head formation; mutations in the CC2D1B and KIAA1210 genes lead to pyriform head formation; mutations in the SEPT14, ZPBP1, FBXO43, ZCWPW1, KATNAL2, PNLDC1, and CCIN genes cause amorphous head; mutations in the SEPT12, RBMX, and ACTL7A genes cause deformed acrosome formation; mutations in the DNAH1, DNAH2, DNAH6, DNAH17, FSIP2, CFAP43, AK7, CHAP251, CFAP65, ARMC2 and several other genes result in multiple morphological abnormalities of sperm flagella (MMAF). CONCLUSIONS Altogether, mutations in 31 genes have been reported to cause head defects and mutations in 62 genes are known to cause sperm tail defects.
Collapse
Affiliation(s)
- Manvi Arora
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Poonam Mehta
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shruti Sethi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - George Anifandis
- Department of Obstetrics and Gynaecology, School of Health Sciences, Faculty of Medicine, University of Thessaly, Larisa, Greece
| | - Mary Samara
- Department of Obstetrics and Gynaecology, School of Health Sciences, Faculty of Medicine, University of Thessaly, Larisa, Greece
| | - Rajender Singh
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
2
|
Zhou Y, Yu S, Zhang W. The Molecular Basis of Multiple Morphological Abnormalities of Sperm Flagella and Its Impact on Clinical Practice. Genes (Basel) 2024; 15:1315. [PMID: 39457439 PMCID: PMC11506864 DOI: 10.3390/genes15101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Multiple morphological abnormalities of the sperm flagella (MMAF) is a specific form of severe flagellar or ciliary deficiency syndrome. MMAF is characterized by primary infertility with abnormal morphology in the flagella of spermatozoa, presenting with short, absent, bent, coiled, and irregular flagella. As a rare disease first named in 2014, studies in recent years have shed light on the molecular defects of MMAF that comprise the structure and biological function of the sperm flagella. Understanding the molecular genetics of MMAF may provide opportunities for the development of diagnostic and therapeutic strategies for this rare disease. This review aims to summarize current studies regarding the molecular pathogenesis of MMAF and describe strategies of genetic counseling, clinical diagnosis, and therapy for MMAF.
Collapse
Affiliation(s)
- Yujie Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Songyan Yu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Wenyong Zhang
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Liu Z, Wang C, Ni F, Li T, Yang F, Wei H, Li T, Huang C, Wang J, Wang B. Identification of a Homozygous Mutation of CCDC40 in a Chinese Infertile Man with MMAF and PCD-like Phenotypes. Genet Test Mol Biomarkers 2024; 28:337-341. [PMID: 38837151 DOI: 10.1089/gtmb.2023.0263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Aims: Asthenozoospermia is the most common factor of male infertility, mainly caused by multiple morphological abnormalities of the sperm flagella (MMAF) and primary ciliary dyskinesia (PCD). Previous studies have shown that genetic factors may contribute to MMAF and PCD. The study aimed to identify novel potentially pathogenic gene mutations in a Chinese infertile man with MMAF and PCD-like phenotypes. Methods: A Chinese infertile man with MMAF and PCD was enrolled in this study. Whole exome sequencing and Sanger sequencing were performed to identify potential causative genes and mutations. Results: A novel homozygous missense mutation (c.1450G>A; p.E484K) of CCDC40 was finally identified and Sanger sequencing confirmed that the patient carried the homozygous mutation, which was inherited from his parents. We reported the first homozygous missense CCDC40 mutation in infertile men with MMAF but had other milder PCD symptoms. Conclusion: Our findings not only broaden the disease-causing mutation spectrum of CCDC40 but also provide new insight into the correlation between CCDC40 mutations and MMAF.
Collapse
Affiliation(s)
- Zhonglin Liu
- Center of Reproductive Medicine, Affiliated hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Chunyan Wang
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
- Center for Genetics, National Research Institute of Family Planning, Beijing, China
| | - Feng Ni
- Medicine Center, 901st hospital of PLA Joint Logistic Support Force, Hefei, China
| | - Tingshu Li
- Center of Reproductive Medicine, Affiliated hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Fenglian Yang
- Industrial College of biomedicine and health industry, Youjiang Medical University for Nationalities, Baise, China
| | - Han Wei
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
- Center for Genetics, National Research Institute of Family Planning, Beijing, China
| | - Tengyan Li
- Center for Genetics, National Research Institute of Family Planning, Beijing, China
| | - Changhui Huang
- Department of Radiology, Affiliated hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Junli Wang
- Center of Reproductive Medicine, Affiliated hospital of Youjiang Medical University for Nationalities, Baise, China
- Industrial College of biomedicine and health industry, Youjiang Medical University for Nationalities, Baise, China
| | - Binbin Wang
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
- Center for Genetics, National Research Institute of Family Planning, Beijing, China
- NHC Key Laboratory of Reproductive Health Engineering Technology Research (NRIFP), Beijing, China
| |
Collapse
|
4
|
Song B, Yang T, Shen Q, Liu Y, Wang C, Li G, Gao Y, Cao Y, He X. Novel mutations in DNAH17 cause sperm flagellum defects and their influence on ICSI outcome. J Assist Reprod Genet 2023; 40:2485-2492. [PMID: 37574497 PMCID: PMC10504183 DOI: 10.1007/s10815-023-02897-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/19/2023] [Indexed: 08/15/2023] Open
Abstract
PURPOSE To identify new mutations in DNAH17 that cause male infertility and analyze intracytoplasmic sperm injection (ICSI) outcomes in patients with DNAH17 mutations. METHODS A total of five cases of new DNAH17 mutations exhibiting the multiple morphological abnormalities of the sperm flagella (MMAF) phenotype were identified through semen analysis and genetic testing. They were recruited at our reproductive medicine center from September 2018 to July 2022. Information on DNAH17 genetic mutations and ICSI outcomes was systematically explored following a literature review. RESULTS Three novel compound mutations in DNAH17 were identified in patients with male infertility caused by MMAF. This study and previous publications included 21 patients with DNAH17 mutations. DNAH17 has been associated with asthenozoospermia and male infertility, but different types of DNAH17 variants appear to be involved in different sperm phenotypes. In 11 couples of infertile patients with DNAH17 mutations, there were 17 ICSI cycles and 13 embryo transplantation cycles. Only three men with DNAH17 variants ultimately achieved clinical pregnancy with their partners through ICSI combined with assisted oocyte activation (AOA). CONCLUSIONS Loss-of-function mutations in DNAH17 can lead to severe sperm flagellum defects and male infertility. Patients with MMAF-harboring DNAH17 mutations generally have worse pregnancy outcomes following ICSI. ICSI combined with AOA may improve the outcome of assisted reproductive techniques (ARTs) for men with DNAH17 variants.
Collapse
Affiliation(s)
- Bing Song
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032 China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032 China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032 China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032 China
| | - Tianjin Yang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
| | - Qunshan Shen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032 China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032 China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032 China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032 China
| | - Yiyuan Liu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
| | - Chao Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032 China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032 China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032 China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032 China
| | - Guanjian Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032 China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032 China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032 China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032 China
| | - Yang Gao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032 China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032 China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032 China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032 China
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032 China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032 China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032 China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032 China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032 China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei, 230032 China
- Ministry of Education Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032 China
- Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, 230032 China
- Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, 230032 China
| |
Collapse
|
5
|
Wang J, Wang W, Shen L, Zheng A, Meng Q, Li H, Yang S. Clinical detection, diagnosis and treatment of morphological abnormalities of sperm flagella: A review of literature. Front Genet 2022; 13:1034951. [PMID: 36425067 PMCID: PMC9679630 DOI: 10.3389/fgene.2022.1034951] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2023] Open
Abstract
Sperm carries male genetic information, and flagella help move the sperm to reach oocytes. When the ultrastructure of the flagella is abnormal, the sperm is unable to reach the oocyte and achieve insemination. Multiple morphological abnormalities of sperm flagella (MMAF) is a relatively rare idiopathic condition that is mainly characterized by multiple defects in sperm flagella. In the last decade, with the development of high-throughput DNA sequencing approaches, many genes have been revealed to be related to MMAF. However, the differences in sperm phenotypes and reproductive outcomes in many cases are attributed to different pathogenic genes or different pathogenic mutations in the same gene. Here, we will review information about the various phenotypes resulting from different pathogenic genes, including sperm ultrastructure and encoding proteins with their location and functions as well as assisted reproductive technology (ART) outcomes. We will share our clinical detection and diagnosis experience to provide additional clinical views and broaden the understanding of this disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shenmin Yang
- Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|